矿用行星减速器噪声的综合控制
行星减速机详细介绍

行星减速机知识行星减速机:主要传动结构为:行星轮,太阳轮,外齿圈.行星轮减速其实就是齿轮减速的原理,它有一个轴线位置固定的齿轮叫中心轮或太阳轮,在太阳轮边上有轴线变动的齿轮,即既作自转又作公转的齿轮叫行星轮,行星轮有支持构件叫行星架,通过行星架将动力传到轴上,再传给其它齿轮.它们由一组若干个齿轮组成一个轮系.只有一个原动件,这种周转轮系称为行星轮系.行星减速机常用术语级数:行星齿轮的套数.由于一套星星齿轮无法满足较大的传动比,有时需要2套或者3套来满足拥护较大的传动比的要求.由于增加了星星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降.回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.单位是"分",就是一度的六十分之一.也有人称之为背隙.行星减速机工作原理1)齿圈固定,太阳轮主动,行星架被动。
从演示中可以看出,此种组合为降速传动,通常传动比一般为2.5~5,转向相同。
2)齿圈固定,行星架主动,太阳轮被动。
从演示中可以看出,此种组合为升速传动,传动比一般为0.2~0.4,转向相同。
3)太阳轮固定,齿圈主动,行星架被动。
从演示中可以看出,此种组合为降速传动,传动比一般为1.25~1.67,转向相同。
4)太阳轮固定,行星架主动,齿圈被动。
从演示中可以看出,此种组合为升速传动,传动比一般为0.6~0.8,转向相同。
5)行星架固定,太阳轮主动,齿圈被动。
从演示中可以看出此种组合为降速传动,传动比一般为1.5~4,转向相反。
6)行星架固定,齿圈主动,太阳轮被动。
从演示中可以看出此种组合为升速传动,传动比一般为0.25~0.67,转向相反。
7)把三元件中任意两元件结合为一体的情况:当把行星架和齿圈结合为一体作为主动件,太阳轮为被动件或者把太阳轮和行星架结合为一体作为主动件,齿圈作为被动件的运动情况。
机械课程设计说明书,行星齿轮减速器传动装置设计(单级)

基于行星轮减速器的传动装置设计学院: XXXXXXXXXXXXXXX专业:机械设计制造及其自动化班级:机械 xxx学号: XXXXX姓名: XXXXX指导老师: XXXXXXX目录一、设计选题............................. 错误!未定义书签。
应用背景.............................. 错误!未定义书签。
题设条件.............................. 错误!未定义书签。
二、传动装置的方案设计................... 错误!未定义书签。
选取行星齿轮传动机构................. 错误!未定义书签。
总体传动机构的设计................... 错误!未定义书签。
三、传动装置的总体设计................... 错误!未定义书签。
选择电动机........................... 错误!未定义书签。
传动系统的传动比...................... 错误!未定义书签。
传动系统各轴转速/功率/转矩........... 错误!未定义书签。
四、减速器传动零件的设计................. 错误!未定义书签。
齿轮的设计计算与校核................. 错误!未定义书签。
确定各齿轮的齿数.................. 错误!未定义书签。
初算中心距和模数.................. 错误!未定义书签。
齿轮几何尺寸计算................... 错误!未定义书签。
齿轮强度校核(受力分析/接触弯曲强度校核)错误!未定义书签。
轴/轴承/联轴器/键的设计计算与校核.... 错误!未定义书签。
行星轴设计(轴/轴承)............. 错误!未定义书签。
行星架结构设计.................... 错误!未定义书签。
减速器的公差综合设计

60 1000
渐开线圆柱齿轮精度等级的适用范围
精度等级
工作条件 与应用范围
圆 周 直齿 速度 m/s 斜齿
4
用于特 殊精密分 度机构的 齿轮在速 度极高、 要求最平 稳及无噪 声情况下 工作的齿 轮**;高速 汽轮机的 齿轮;检 验 6~7 精 度齿轮的 测量齿轮
承载能力
F
7 / 35
减速器齿轮
8 / 35
若齿轮的检验项目同为某一精度等级时,可标注精度等级和标准 号。如齿轮检验项目同为8级,则标注为:
8 GB/T l0095.1—2001 8 GB/T 10095.2—2001
若齿轮检验项目的精度等级不同时,如:
8(Fα 、fpt 、Fp) 7(Fβ) GB/T 10095.1—2001
箱体(与箱盖结合)表面的平面度公 差箱体表面的平面度公差取8级
固定轴承盖的螺钉为M8,通孔为Φ9, 则螺孔位置度公差为Φ0.5
箱体 螺纹精度
33 / 35
选取安装轴承盖的M8螺孔为中等级优 先选用的公差带 6H(可省略标注) 箱座右侧安装油塞的M16×1.5螺孔公 差带 6H 安装油标的M12螺孔精度要求较低, 选粗糙级公差带7H
箱体 表面精度
34 / 35
查表选取2-Φ80H7和2-Φ100H7孔表面 粗糙度Ra上限值为1.6μm 其端面的表面粗糙度Ra上限值为3.2μm 根据经验,箱盖与箱座结合表面的表面粗 糙度Ra上限值为6.3μm 箱座底平面表面粗糙度Ra上限值为 12.5μm 其余表面的表面粗糙度Ra上限值为50μm 未注尺寸公差按GB/T1804-m加工 未注几何公差按GB/T1184-K加工
用于不 提出精度 要求的粗 糙工作的 齿轮,按照 大载荷设 计,且用于 轻载的齿 轮
行星齿轮减速器的设计

行星齿轮减速器的设计首先,齿轮参数的选取是行星齿轮减速器设计的基础。
在选取齿轮参数时,需要考虑传动比、传动效率、传动扭矩、离散比和齿面强度等因素。
传动比决定了输入输出转速的比值,传动效率反映了传动系统的能量损失情况,传动扭矩决定了行星轮的尺寸和选用材料,离散比是指行星轮和太阳轮的齿数之比,齿面强度是指齿轮的齿面承受的最大应力。
根据传动系统的具体要求和实际情况,可以选择合适的齿轮参数。
其次,齿轮传动的计算是行星齿轮减速器设计中的核心内容。
在进行齿轮传动计算时,需要确定行星轮、太阳轮和内外交叉轮的齿数,计算齿轮的模数、分度圆直径和齿宽等参数。
同时,还需要根据齿轮的传动比和传动效率计算出减速器的输入输出转速,并通过传递系数和传递效率计算出轴间传递力,以确定齿轮的尺寸和强度。
然后,行星齿轮减速器的结构设计是保证减速器正常运行的重要环节。
行星齿轮减速器的结构主要包括机壳、输入轴、输出轴、行星轮和太阳轮等零部件。
在进行结构设计时,需要根据传动比和减速器的安装位置来确定行星轮和太阳轮的位置,选择合适的轴承和密封件,设计适当的联轴器和传递机构,以确保减速器的可靠性和稳定性。
最后,强度分析是行星齿轮减速器设计的最后一步。
在进行强度分析时,需要考虑齿轮的疲劳强度、齿面接触应力、齿根弯曲应力和材料的强度等因素。
通过应力分析和强度计算,可以确定齿轮的尺寸和选用的材料是否满足设计要求,以确保减速器在使用过程中的安全可靠。
综上所述,行星齿轮减速器的设计涉及到齿轮参数选取、齿轮传动计算、结构设计和强度分析等方面,需要综合考虑多个因素并根据具体需求进行优化,以实现减速器的高效性和可靠性。
此外,在设计过程中需要使用专业的设计软件和工具,进行系统仿真和优化分析,以提高设计效率和减速器的整体性能。
NGW行星轮减速器设计

NGW行星减速器的设计之青柳念文创作摘要本文完成了对一级行星齿轮减速器的布局设计.该减速器具有较小的传动比,而且,它具有布局紧凑、传动效率高、外廓尺寸小和重量轻、承载才能大、运动平稳、抗冲击和震动的才能较强、噪声低的特点,适用于化工、轻工业以及机器人等范畴.这些功用对于现代机械传动的发展有着较重要的意义.首先简要先容了课题的布景以及齿轮减速器的研究现状和发展趋势,然后比较了各种传动布局,从而确定了传动的基本类型.论文主体部分是对传动机构主要构件包含太阳轮、行星轮、内齿圈及行星架的设计计算,通过所给的输入功率、传动比、输入转速以及工况系数确定齿轮减速器的大致布局之后,对其停止了整体布局的设计计算和主要零部件的强度校核计算.其中该减速器的设计与其他减速器的布局设计相比有三大特点:其一,为了使三个行星轮的载荷平均分配,采取了齿式浮动机构,即太阳轮与高速轴通过齿式联轴器将二者毗连在一起,从而实现了太阳轮的浮动;其二,该减速器的箱体采取的是法兰式箱体,上下箱体分别铸造而成;其三,内齿圈与箱体采取分离式,通过螺栓和圆锥销将其与上下箱体固定在一起.最后对整个设计过程停止了总结,基本上完成了对该减速器的整体布局设计.关键词:行星齿轮,传动机构,布局设计,校核计算The design of NGW planetary gear reducerABSTRACTThis completed a single-stage planetary gear reducer design. The gear has a smaller transmission ratio, and it has a compact, high transmission efficiency, outline, small size and light weight, carrying capacity, smooth motion, shock and vibration resistant and low noise characteristics, Used in chemical, light industry and robotics fields. The function of the development of modern mechanical transmission has a more important significance.First paper introduces the background and the subject of gear reducer situation and development trend, and then compared various transmission structures, which determine the basic type of transmission. Thesis is the main part of the main components of drive mechanism including the sun wheel, planet gear, ring gear and planet carrier in the design calculation, given by the input power, gear ratio, input speed and the condition factor to determine the approximate structure after the gear reducer And to carry out the design and calculation of the overall structure and main components of the strength check calculation. One of the other gear reducer design and compared the structural design of the three major characteristics: First, the three planetary gear to make the load evenly, using a gear-type floating body, the sun gear and high-speed shaft through the gear together Coupling the two together to achieve a floating sun gear; Second, the box uses a reducer flange box, upper and lower box were cast;Third, the ring gear and Box with separate, through bolts and tapered pins will be fixed together with the upper and lower box. Finally, a summary of the entire design process is basically complete the overall design of the reducer.KEY WORDS:planetary gear,driving machanism,structural design,checking calculation目录前言1第1章传动方案的确定51.1 设计任务51.1.1 齿轮传动的特点51.1.2 齿轮传动的两大类型561.2.1 行星机构的类型及特点61.2.2 确定行星齿轮传动类型8第2章齿轮的设计计算102.1 配齿计算102.1.1 确定各齿轮的齿数102.1.2 初算中心距和模数112.2 几何尺寸计算122.3 装配条件验算152.3.1 邻接条件152.3.2 同心条件152.3.2 装置条件152.4 齿轮强度校核162.4.1 a-c传动强度校核162.4.1 c-b传动强度校核21第3章轴的设计计算263.1 行星轴设计263.2 转轴的设计283.2.1 输入轴设计283.2.2 输出轴设计29第4章行星架和箱体的设计314.1 行星架的设计314.1.1 行星架布局方案314.1.2 行星架制造精度334.2 箱体的设计35结论37谢辞38参考文献38附录40外文资料翻译43主要代号)rad)rad前言本课题通过对行星齿轮减速器的布局设计,初步计算出各零件的设计尺寸和装配尺寸,并对涉及成果停止参数化分析,为行星齿轮减速器产品的开辟和性能评价实现行星齿轮减速器规模化生产提供了参考和实际依据.通过本设计,要能弄懂该减速器的传动原理,达到对所学知识的复习与巩固,从而在以后的工作中能处理近似的问题.齿轮是使用量大面广的传动元件.今朝世器上齿轮最大传递功率已达6500kW,最大线速度达210m/s(在实验室中达300m/s);齿轮最大重量(组合式),最大模数m达50mm.我国自行设达200t,最大直径达m256.计的高速齿轮(增)减速器的功率已达44000kW,齿轮圆周速度达150m/s以上.由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛.20世纪末的20多年,世界齿轮技术有了很大的发展.产品发展的总趋势是小型化、高速化、低噪声、高靠得住度.技术发展中最引人注目标是硬齿面技术、功率分支技术和模块化设计技术.硬齿面技术到20世纪80年月时在国外日趋成熟.采取优质合金钢锻件渗碳淬火磨齿的硬齿面齿轮,精度不低于IS01328一1975的6级,综合承载才能为中硬齿面调质齿轮的4倍,为软齿而齿轮的5一6倍.一个中等规格的硬齿面齿轮减速器的重量仅为软齿面齿轮减速器的1/3左右.功率分支技术主要指行星及大功率齿轮箱的功率双分及多分支装置,如中心传动的水泥磨主减速器,其核心技术是均载.模块化设计技术对通用和尺度减速器旨在追求高性能和知足用户多样化大覆盖面需求的同时,尽可以减少零部件及毛坯的品种规格,以便于组织生产,使零部件生产形成批量,降低成本,取得规模效益.其他技术的发展还表示在实际研究(如强度计算、修形技术、现代设计方法的应用,新齿形、新布局的应用等)更完善、更接近实际;普遍采取各种优质合金钢锻件;资料和热处理质量节制水平的提高;布局设计更合理;加工精度普遍提高到ISO的4一6级;轴承质量和寿命的提高;润滑油质量的提高;加工装备和检测手段的提高等方面.这些技术的应用和日趋成熟,使齿轮产品的性能价格比大大提.高,产品越来越完美.如非常粗略地估计一下,输出IOONm转矩的齿轮装置,如果在1950年时重10kg,到80年月便可做到仅约lkg.20世纪70年月至90年月初,我国的高速齿轮技术履历了测绘仿制、技术引进(技术攻关)到独立设计制造3个阶段.现在我国的设计制造才能基本上可知足国内生产需要,设计制造的最高参数:最大功率44MW,最高线速度168m/s,最高转速67000r/min.我国的低速重载齿轮技术,特别是硬齿面齿轮技术也履历了测绘仿制等阶段,从无到有逐步发展起来.除了试探掌握制造技术外,在20世纪80年月末至90年月初推广硬齿面技术过程中,我们还作了处理“断轴”、“选用”等一系列有意义的工作.在20世纪70-80年月一直认为是国内重载齿轮两大困难的“水泥磨减速器”和“轧钢机械减速器”,可以说已完全处理.20世纪80年月至90年月初,我国相继制订了一批减速器尺度,如ZBJ19004一88《圆柱齿轮减速器》、ZBJ19026一90《运输机械用减速器》和YB/T050一93《冶金设备用YNK齿轮减速器》等几个硬齿面减速器尺度,我国有自己知识产权的尺度,如YB/T079 - 95《三环减速器》.按这些尺度生产的许多产品的主要技术指标都可达到或接近国外同类产品的水平,其中YNK减速器较完整地吸取了德国FLENDER公司同类产品的特点,并连系国情作了许多改进与创新.(1)渐开线行星齿轮效率的研究行星齿轮传动的效率作为评价器传动性能优劣的重要指标之一,国表里有许多学者对此停止了系统的研究.现在,计算行星齿轮传动效率的方法很多,国表里学者提出了许多有关行星齿轮传动效率的计算方法,在设计计算中,较常常使用的计算方有3种:啮合功率法、力偏移法、和传动比法(克莱依涅斯法),其中以啮合功率法的用途最为广泛,此方法用来计算普通的2K2H和3K型行星齿轮的效率十分方便.(2)渐开线行星齿轮均载分析的研究现状行星齿轮传动具有布局紧凑、质量小、体积小、承载才能大等优点.这些都是由于在其布局上采取了多个行星轮的传动方式,充分操纵了同心轴齿轮之间的空间,使用了多个行星轮来分担载荷,形成功率流,并合理的采取了内啮合传动,从而使其具有了上述的许多优点.但是,这只是最抱负的情况,而在实际应用中,由于加工误差和装配误差的存在,使得在传动过程中各个行星轮上的载荷分配不平均,造成载荷有集中在一个行星轮上的现象,这样,行星齿轮的优越性就得不到发挥,甚至不如普通的外传动布局.所以,为了更好的发挥行星齿轮的优越性,均载的问题就成了一个十分重要的课题.在布局方面,起初人们只尽力地提高齿轮的加工精度,从而使得行星齿轮的制造和装配变得比较坚苦.后来通过时间采纳了对行星齿轮的基本构件径向不加限制的专门措施和其它可自动调位的方法,即采取各种机械式地均载机构,以达到各行星轮间的载荷分布平均的目标.典型的几种均载机构有基本构件浮动的均载机构、杠杆联动均载机构和采取弹性件的均载机构.随着我国市场经济的推进,“九五”期间,齿轮行业的专业化生产水平有了分明提高,如一汽、二汽等大型企业集团的齿轮变速箱厂、车轿厂,通过企业改组、改制,改为相对独立的专业厂,参与市场竞争;随着兵工转平易近用,农机齿轮企业转加工非农用齿轮产品,调整了企业产品布局;私有企业的堀起,中外合资企业的涌现,齿轮行业的整体布局得到优化,行业实力增强,技术前进加快.近十几年来,计算机技术、信息技术、自动化技术在机械制造中的广泛应用,改变了制造业的传统观念和生产组织方式.一些先进的齿轮生产企业已经采取精益生产、火速制造、智能制造等先进技术.形成了高精度、高效率的智能化齿轮生产线和计算机网络化管理.适应市场要求的新产品开辟,关键工艺技术的创新竞争,产品质量竞争以及员工技术素质与创新精力,是2l世纪企业竞争的核心.在2l世纪成套机械装备中,齿轮仍然是机械传动的基本部件.由于计算机技术与数控技术的发展,使得机械加工精度、加工效率太为提高,从而推动了机械传动产品多样化,整机配套的模块化、尺度化,以及造型设计艺术化,使产品更加精美、雅观.CNC机床和工艺技术的发展,推动了机械传动布局的飞速发展.在传动系统设计中的电子节制、液压传动,齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向.在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势.工业通用变速箱是指为各行业成套装备及生产线配套的大功率和中小功率变速箱.国内的变速箱将继续淘汰软齿面,向硬齿面(50~60HRC)、高精度(4~5级)、高靠得住度软启动、运行监控、运行状态记录、低噪声、高的功率与体积比和高的功率与重量比的方向发展.中小功率变速箱为适应机电一体化成套装备自动节制、自动调速、多种节制与通讯功能的接口需要,产品的布局与外型在相应改变.矢质变频代替直流伺服驱动,已成为近些年中小功率变速箱产品(如摆轮针轮传动、谐波齿轮传动等)追求的方针.随着我国航天、航空、机械、电子、动力及核工业等方面的疾速发展和工业机器人等在各工业部分的应用,我国在谐波传动技术应用方面已取得显著成绩.同时,随着国家高新技术及信息财产的发展,对谐波传动技术产品的需求将会更加突出.总之,当当代界各国减速器及齿轮技术发展总趋势是向六高、二低、二化方面发展.六高即高承载才能、高齿面硬度、高精度、高速度、高靠得住性和高传动效率;二低即低噪声、低成本;二化即尺度化、多样化.减速器和齿轮的设计与制造技术的发展,在一定程度上标记着一个国家的工业水平,因此,开辟和发展减速器和齿轮技术在我国有广阔的前景.的基本内容:(1)选择传动方案.传动方案的确定包含传动比的确定和传动类型的确定.(2)设计计算及校核.传动布局的设计计算,都大致包含:选择传动方案、传动零件齿轮的设计计算与校核、轴的设计计算与校核、轴承的选型与寿命计算、键的选择与强度计算、箱体的设计、润滑与密封的选择等.在对行星齿轮减速器的布局停止深入分析的基础上,依据给定的减速器设计的主要参数,通过CAD绘图软件建立行星齿轮减速器各零件的二维平面图,绘制出减速器的总装图对其停止分析.第1章传动方案的确定1.1 设计任务设计一个行星齿轮传动减速器.原始条件和数据:传动比i=5.5,功率p=120kw,输入转速N=1000 rpm,中等冲击.使用寿命10年.且要求该齿轮传动布局紧凑、外廓尺寸较小.齿轮传动的特点齿轮传动与其它传动比较,具有瞬时传动比恒定、工作靠得住、寿命长、效率高、可实现平行轴任意两相交轴和交错轴之间的传动,适应的圆周速度和传动功率范围大,但齿轮传动的制造成本高,低精度齿轮传动时噪声和振动较大,不适宜于两轴间间隔较大的传动.齿轮传动是以主动轮的轮齿依次推动从动轮来停止工作的,是是现代机械中应用十分广泛的一种传动形式.齿轮传动可按一对齿轮轴线的相对位置来划分,也可以按工作条件的分歧来划分.随着行星传动技术的迅速发展,今朝,高速渐开线行星齿轮传动装置所传递的功率已达到20000kW,输出转矩已达到4500kN m•.占有关资料先容,人们认为今朝行星齿轮传动技术的发展方向如下.(1)尺度化、多品种今朝世界上已有50多个渐开线行星齿轮传动系列设计;而且还演化出多种型式的行星减速器、差速器和行星变速器等多品种的产品.(2)硬齿面、高精度行星传动机构中的齿轮广泛采取渗碳和氮化等化学热处理.齿轮制造精度一般均在6级以上.显然,采取硬齿面、高精度有利于进一步提高承载才能,使齿轮尺寸变得更小.(3)高转速、大功率行星齿轮传动机构在高速传动中,如在高速汽轮中已获得日益广泛的应用,其传动功率也越来越大.(4)大规格、大转矩在中低速、重载传动中,传递大转矩的大规格的行星齿轮传动已有了较大的发展.齿轮传动的两大类型轮系可由各种类型的齿轮副组成.由锥齿轮、螺旋齿轮和蜗杆涡轮组成的轮系,称为空间轮系;而由圆柱齿轮组成的轮系,称为平面轮系.根据齿轮系运转时各齿轮的几何轴线相对位置是否变动,齿轮传动分为两大类型.(1)普通齿轮传动(定轴轮系)当齿轮系运转时,如果组成该齿轮系的所有齿轮的几何位置都是固定不变的,则称为普通齿轮传动(或称定轴轮系).在普通齿轮传动中,如果各齿轮副的轴线均相互平行,则称为平行轴齿轮传动;如果齿轮系中含有一个相交轴齿轮副或一个相错轴齿轮副,则称为不服行轴齿轮传动(空间齿轮传动).(2)行星齿轮传动(行星轮系)当齿轮系运转时,如果组成该齿轮系的齿轮中至少有一个齿轮的几何轴线位置不固定,而绕着其他齿轮的几何轴线旋转,即在该齿轮系中,至少具有一个作行星运动的齿轮,则称该齿轮传动为行星齿轮传动,即行星轮系.行星机构的类型及特点行星齿轮传动与普通齿轮传动相比较,它具有许多独特的优点.行星齿轮传动的主要特点如下:(1)体积小,质量小,布局紧凑,承载才能大.一般,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的51~21(即在承受相同的载荷条件下).(2)传动效率高.在传动类型选择恰当、布局安插合理的情况下,其效率值可达0.97~0,99.(3)传动比较大.可以实现运动的合成与分解.只要适当选择行星齿轮传动的类型及配齿方案,即可以用少数几个齿轮而获得很大的传动比.在仅作为传递运动的行星齿轮传动中,其传动比可达到几千.应该指出,行星齿轮传动在其传动比很大时,仍然可坚持布局紧凑、质量小、体积小等许多优点.(4)运动平稳、抗冲击和振动的才能较强.由于采取了数个布局相同的行星轮,平均地分布于中心轮的周围,从而可使行星轮与转臂的惯性力相互平衡.同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的才能较强,工作较靠得住.最罕见的行星齿轮传动机构是NGW 型行星传动机构.行星齿轮传动的型式可按两种方式划分:按齿轮啮合方式分歧分有NGW、NW、NN、WW、NGWN和N等类型.按基本布局的组成情况分歧有2Z-X、3Z、Z-X-V、Z-X等类型.行星齿轮传动最显著的特点是:在传递动力时它可停止功率分流;同时,其输入轴与输出轴具有同轴性,即输入轴与输出轴均设置在同一主轴线上.所以,行星齿轮传动现已被人们用来代替普通齿轮传动,而作为各种机械传动系统的中的减速器、增速器和变速装置.尤其是对于那些要求体积小、质量小、布局紧凑和传动效率高的航空发动机、起重运输、石油化工和刀兵等的齿轮传动装置以及需要变速器的汽车和坦克等车辆的齿轮传动装置,行星齿轮传动已得到了越来越广泛的应用,表1-1列出了常常使用行星齿轮传动的型式及特点:表1-1常常使用行星齿轮传动的传动类型及其特点传动形式简图性能参数特点传动比效率最大功率/kWNGW (2Z-X负号机构)BAXi=1.13~13.7推荐2.8~9不限效率高,体积小,重量轻,布局简单,制造方便,传递公路范围大,轴向尺寸小,可用于各个工作条件,在机械传动中应用最广.单级传动比范围较小,耳机和三级传动均广泛应用NW (2Z-X 负号机构)BAXi=1~50推荐7~21效率高,径向尺寸比NGW型小,传动比范围较NGW型大,可用于各种工作条件.但双联行星齿轮制造、装置较复杂,故|BAXi| 7时不宜采取NN (2Z-X 负号机构)推荐值:BXEi=8~30≤40 传动比打,效率较低,适用于短期工作传动.当行星架X从动时,传动比|i|大于某一值后,机构将发生自锁WW (2Z-X 负号机构)BXAi=1.2~数千|BXAi|=1.2~5时,效率可达0.9~0.7,i>5以后.随|i|增加徒降≤20 传动比范围大,但外形尺寸及重量较大,效率很低,制造坚苦,一般不必与动力传动.运动精度低也不必于分度机构.当行星架X从动时,|i|从某一数值起会发生自锁.常常使用作差速器;其传动比取值为XABiNGW (Ⅰ)型(3Z)小功率传动BAEi≤500;推荐:BAEi=20~100BAEi增加而下降短期工作≤120,长期工作≤10布局紧凑,体积小,传动比范围大,但效率低于NGW型,工艺性差,适用于中小功率功率或短期工作.若中心轮A输出,当|i|大于某一数值时会发生自锁NGWN (Ⅱ)型(3Z)BAEi=60~500推荐:BAEi=64~300bAEi增加而下降短期工作≤120,长期工作≤10布局更紧凑,制造,装置比上列Ⅰ型传动方便.由于采取单齿圈行星轮,需角度变成才干知足同心条件.效率较低,宜用于短期工作.传动自锁情况同上确定行星齿轮传动类型根据设计要求:持续运转、传动比小、布局紧凑和外廓尺寸较小.根据表1-1中传动类型的工作特点可知,2Z-X(A)型效率高,体积小,机构简单,制造方便.适用于任何工况下的大小功率的传动,且广泛地应用于动力及辅助传动中,工作制度不限.本设计选用2Z-X(A)型行星传动较合理,其传动简图如图1-1所示.图1-1减速器设计方案(单级NGW—2Z-X(A)型行星齿轮传动)拟定的设计方案如下图:图2-2 减速器整体装配图第2章 齿轮的设计计算2.1 配齿计算确定各齿轮的齿数据2Z-X(A)型行星传动的传动比p i 值和按其配齿计算(见参考文献[1])公式(3-27)~公式(3-33)可求得内齿轮b 和行星轮c 的齿数b z 和c z .现思索到行星齿轮传动的外廓尺寸较小,故选择中心轮a 的齿数a z =17和行星轮p n =3.根据内齿轮 a p b z i z )1(-=1715.5⨯-=)(b z =76.5对内齿轮齿数停止圆整,同时思索到装置条件,取79=b z ,此时实际的p 值与给定的p 值稍有变更,但是必须节制在其传动比误差的范围内.实际传动比为a b z z i +=1=647.51779= 其传动比误差5.5647.55.5-=-=∆pp i i i i =2.67%由于外啮合采取角度变位的传动,行星轮c 的齿数c z 应按如下公式计算,即c ab c z z z z ∆+-=2'因为62=-a b z z 为偶数,故取齿数修正量为1-=∆c z .此时,通过角变位后,既不增大该行星传动的径向尺寸,又可以改善a-c 啮合齿轮副的传动性能.故c z =301-217-79= 在思索到装置条件为322==+C z z ba (整数)初算中心距和模数1. 齿轮资料、热处理工艺及制造工艺的选定太阳轮和行星轮资料为20GrMnTi ,概况渗碳淬火处理,概况硬度为57~ 61HRC.试验齿轮齿面接触疲劳极限lim H σ=1591Mpa. 试验齿轮齿根弯曲疲劳极限太阳轮lim F σ=485Mpa.行星轮lim F σ=485⨯0.7Mpa=339.5Mpa (对称载荷).齿形为渐开线直齿.最终加工为磨齿,精度为6级.内齿圈资料为38GrMoAlA ,淡化处理,概况硬度为973HV. 试验齿轮的接触疲劳极限lim H σ=1282Mpa 验齿轮的弯曲疲劳极限lim F σ=370MPa 齿形的终加工为插齿,精度为7级. 2. 减速器的名义输出转速2n 由 i =21n n 得 2n =in 1=5.51000min r min r3. 载荷不平衡系数P K采取太阳轮浮动的均载机构,取15.1==P P F H K K . 4. 齿轮模数m 和中心距a 首先计算太阳轮分度圆直径:3lim 21a 1d u u k k k T K H d H HP A td ±=∑σϕ式中:u 一齿数比为76.11730= A K 一使用系数为1.25; td K 一算式系数为768; ∑H K 一综合系数为2;1T 一太阳轮单个齿传递的转矩.ηηpp a n n P n T T 1119549===985.0100031209549⨯⨯⨯m N •=376m N •其中 η—高速级行星齿轮传动效率,取ηd ϕ—齿宽系数暂取a d blim H σ=1450Mpa代入3lim 21a 1d uu k k k T K H d H HP A td ±=∑σϕ32a 76.1)176.1(15915.06.115.125.123.376768d +⨯⨯⨯⨯⨯⨯=mm 模数 m =63.41766.78==a a z d 取 m =5 则 mm z z m a g a )3017(521)(210+⨯⨯=+=mm取 mm a 5.122=齿宽 5.421755.0=⨯⨯=•=d b d ϕ 取 mm b 62=2.2 几何尺寸计算1. 计算变位系数 (1) a-c 传动 啮合角ac α 因 20cos 5.1225.117cos cos 0==ααa a ac所以 ac α=“‘543920变位系数和ααα2tan )(inv inv z z x ac c a -+=∑=(17+30)⨯20tan 220543920"'inv inv -图2-1选择变位系数线图中心距变动系数y y=55.1175.1220-=-m a a =1 齿顶降低系数y ∆141.01141.1=-=-=∆∑y x y 分配边位系数:根据线图法,通过查找线图2-1 中心距变动系数y y=55.1175.1220-=-m a a =1 齿顶降低系数y ∆141.01141.1=-=-=∆∑y x y 分配边位系数:根据线图法,通过查找线图2-1 得到边位系数 549.0=a x则 592.5490.0141.1-=-=∑a c x x x (2) c-b 传动由于内啮合的两个齿轮采取的是高度变位齿轮,所以有0=+=∑b c x x x从而 592.0-=-=c b x x 且 a a ='αα='0=y 0=∆y 2. 几何尺寸计算成果对于单级的2Z-X(A)型的行星齿轮传动按公式停止几何尺寸的计算,各齿轮副的计算成果如下表:表3-1各齿轮副的几何尺寸的计算成果注:齿顶高系数:太阳轮、行星轮—1=*a h ,内齿轮—8.0=*a h ;顶隙系数:内齿轮—25.0=*c2.3 装配条件验算对于所设计的单级2Z-X(A)型的行星齿轮传动应知足如下装配条件 邻接条件按公式验算其邻接条件,即p ac ac n a d πsin 2'<已知行星轮c 的齿顶圆的直径ac d =164.513,5.122'=ac a 和3=p n 代入上式,则得mm 176.2123sin 5.1222=⨯⨯<π知足邻接条件同心条件按公式对于角变位有''cos cos bc c b ac ca z z z z αα-=+已知17=a z 30=c z 79=b z ,"''543925 =ac α 20'=bc α代入上式得20cos 3079543920cos 3017"'-=+ 装置条件按公式验证其装置条件,即得)(整数C n z z pb a =+ 将 17=a z 79=b z 3=p n 代入该式验证得3237917=+ 知足装置条件 啮合要素的验算1. a-c 传动端面重合度a ε(1)顶圆齿形曲率半径a ρ22)2()2(b a a d d -=ρ 太阳轮221)2874.79()20076.99(-=a ρmm 行星轮222)2954.140()2513.164(-=a ρ mm(2)端面啮合长度a g)sin (''21t a a a a g αρρ-±=式中“±”号正号为外啮合,负号为内啮合;'t α端面节圆啮合角.直齿轮't α=ac α="'543925则mm g a )543925sin 5.122416.4231.29("' ⨯-+= mm(3)端面重合度 20cos 567.18)cos /(cos ⨯==παπβεt n a a m g2. b c -端面重合度a ε(1)顶圆齿形曲率半径a ρ 22)2()2(b a a d d -=ρ 行星轮1a ρ由上面计算得,1a ρmm 内齿轮222)218.371()208.391(-=a ρmm mm(2)端面啮合长度a g''21sin t a a a a g αρρ+-== 20sin 5.122597.61146.42⨯+-mmmm(3)端面重合度 )cos /(cos t n a a a m g πβε= =20cos 505.24⨯π 2.4 齿轮强度校核2.4.1 a-c 传动强度校核本节仅列出相啮合的小齿轮(太阳轮)的强度计算过程,大齿轮(行星。
行星架销轴位置精度误差的控制

行星架销轴位置精度误差的控制机械运行离不开齿轮传动,在制造齿轮的时候应该特别注意,尤其是生产所用的设备精度,即使是丝毫的差错都有可能造成齿轮在转动时出现差错,导致生产线的滞纳或者工程机械的使用。
行星减速器是齿轮中十分常见的一种模式。
本文对行星架销轴位置精度误差的控制进行分析,以供参考。
标签:行星减速器;行星架;销轴位置;误差控制0 引言行星减速器不是单个结构,而是多个部分共同组成的,并且各个部分的功能不同,其中作为整个结构的基础为行星架,基本其他的结构都通过联通装置接在行星架上。
减速器的运行稳定性和行星架的性能有着直接的联系。
所以在制造行星架时应该针对销轴位置的确定进行重点关注。
1 行星减速器的相关概述1.1 国内外行星减速器的简述上文中提到行星齿轮在很多的工程机械设备中都有运用,主要是一些大型的设备中,如船舶行业、矿业开采行业,道路施工行业等,都大量的使用该装置,并且在减速器的占据比例也较大,对其质量的重视是必然的。
随着技术的不断提高,行星齿轮的性能也在不断的提升中。
日木三菱造船公司生产的,运用在船舶上的行星减速器功率已达7000kW,美国卡特皮勒公司为大型矿车开发的行星减速器的功率已达8500kW。
在我国,对渐开线行星齿轮的研究较多,比较典型就是NGW及其衍生型的减速器应用较广泛,即由行星齿轮与锥齿轮啮台的垂直传动,或由行星齿轮与圆柱齿轮啮合的平行传动方式为主,此结构一般运用于工程机械、船舶和轻工等行业,而后期发展的如ZK行星齿轮减速器、ZZ行星齿轮减速器及其衍生型的运用也较多,其设计标准是矿山机械、大型重工业等行业使用的专业标准。
1.2 NGW行星减速器的应用分析(1)刀齿轮变位系数的确定。
齿轮选用合理的变位系数可增强齿轮的承载能力和传动效率,在NGW行星减速器中,当设计要求齿轮齿面许用接触疲劳强度相同时,内啮合的齿面接触强度一般是外啮合的齿面接触强度3倍左右,其选用啮合角时,外啮合角一般大于内啮合角5度左右,准确的啮台角度需通过相應的计算公式得出。
二级减速器机械设计论文

二级减速器机械设计论文减速器是将工作机作用在原动机上,使机械降低本身的转动速度,达到控制的目的。
下文是店铺为大家整理的关于二级减速器机械设计论文的范文,欢迎大家阅读参考!二级减速器机械设计论文篇1减速器设计中虚拟样机技术的应用探讨摘要:减速器设计是众多机械工业中必不可少的程序流程,而虚拟样机技术恰恰可以为减速器设计提供帮助,让减速器的设计更加容易,更加高效。
本文重点分析如何应用虚拟样机技术设计减速器,以期对众多机械工业设计部门有所帮助。
关键词:减速器设计;虚拟样机技术;应用减速器的原理是将工作机作用在原动机上,使机械降低本身的转动速度,达到控制的目的,目前,在众多机械工业中使用减速器,大到航空航天,小到我们的自行车,都离不开减速器的作用。
在传统的减速器设计中,往往技术人员需要事先制作需要试验的减速器,然后再将这些减速器用作设计研究,在这过程中,会浪费很多制作原件的时间,让设计过程放慢脚步,这不利于企业的发展。
所以,采用虚拟样机技术就成为了必然,它能减少设计研发的时间,增加设计的效率,为企业创造更多的价值,还能降低设计成本,对企业来说是非常值得推广的技术。
1 虚拟样机技术虚拟样机技术,最早诞生于上世纪80年代,它是一种以计算机技术为基础的设计手段,在产品设计研发的过程中,它能把零散的、甚至是不存在的零件组合成一个设计人员想要的完成品,在计算机中建立一个模型,以方便设计人员的分析、整理,还能将这个虚拟的完成品进行试验,以此检验它的性能,为以后的改进设计打下基础。
虚拟样机技术采用专业的设计软件进行工作,这些专业的软件非常适合设计人员的需求,上面有数不尽的零件信息,想要什么零件,都能在上面找到,如果实在找不到,还可以自己进行设计,用参数和几何模型就能实现。
设计人员通过在软件上,建立产品的模型、虚拟调配以及后期的仿真试验,就能对产品的设计有一个完整的认识,不需要再浪费时间制作原件,只需要动动手指,就能把设计搞定,这是多么高效率的工作方法。
矿用卡车电传动系统漫谈

矿用自卸车是目前大型露天矿山的主要运输工具,承担着矿山开采中主要的运输任务,而电传动几乎是当前大型矿用卡车的“标准配置”,它相比机械传动有不少优势,所以应用越来越多,下面就和大家一起学习些矿用卡车电传动控制系统方面的知识:先对在内容中可能出现的名词简单了解一下:交流电:AC,英文Alternating Current,交流电也称“交变电流”,简称“交流”。
一般指大小和方向随时间作周期性变化的电压或电流。
它的最基本的形式是正弦电流。
交流电随时间变化可以以多种多样的形式表现出来。
不同表现形式的交流电其应用范围和产生的效果也是不同的。
直流电:DC,英文Direct Current,是指方向和时间不作周期性变化的电流,但电流大小可能不固定,而产生波形。
又称恒定电流。
整流:将交流电变换为直流电称为AC/DC变换,这种变换的功率流向是由电源传向负载,称之为整流。
整流电路是利用二极管的单向导电性将正负变化的交流电压变为单向脉动电压的电路。
常用的整流电路有:(1)半波整流;(2)全波整流;(3)桥式整流。
变频:就是改变供电频率,变频技术的核心是变频器,它通过对供电频率的转换来实现电动机运转速度率的自动调节。
逆变器:是把直流电能转变成交流电的装置。
GTO:可关断晶闸管GTO(Gate Turn-Off Thyristor)亦称门控晶闸管。
其主要特点为,当门极加负向触发信号时晶闸管能自行关断。
IGBT:IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。
应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。
(电磁式电涡流)缓行器:是车辆的一种辅助制动装置,它将车辆制动时的动能通过电磁感应转变为逆向电涡流并以热能方式消耗掉,实现减速作用。
特点是无机械磨损,制动平稳,没有冲击和噪声等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王 迎祥
曹
勇
陈怀 防 山东 兖州 2 20 ) 7 1 9
( 兖矿 大陆机 械有 限公 司减速 机研 究所
【 摘
要】 全文 以减噪为专题 , 结合矿 用行 星减速 器的结构特 点, 对此类减速器噪声的影响因素进行 分析 和概括 , 并通过 内
部 结构优化和工 艺过程控制。 大幅降低 了整机 的噪声值 , 实现 了减速器质量和噪声控制 同步优化。
表 1
影 响因素 齿轮速度与载荷 重合度
压 力 角
可能降噪量( B) d
备 注 噪声随载荷和速度增加
1减 速器齿轮 啮合参数 的选择 、 ) 润滑方式 选择 、 箱体 材 料选择是控制噪声的前提。
07 -
越大越安静
越 小 越 安 静
() 1 根据使用要求全面优化啮合参数 。适 当增 加齿轮齿
这种齿面摩 擦会 引发齿轮 自激振动而产生 噪声 。 行星减速器是个复杂 的承载机构 . 噪声来源与影 响因素 也较多 。3 0多年来 , 陆公 司积累了很多减速器噪声的控制 大
办法 . 大致 归 纳 为 以下 几 方 面 :
和浮动量 , 降低机构噪声 。 下表 ( 1是《 表 ) 机械设计手册》 第五版 ( 闻邦椿 , 主编 ) 列 出各项因素对 噪声影响 的估计值 , 仅供参考。
S in e& Te h o o y Vi o ce c c n lg s n i
2 1 年 7月 第 2 期 02 1
科 技 视 PP -
机械与电子
矿用行星减速器噪声的综合控制
Co mb n t n Co t o n M e h n c lNo s fM i e u e l n t r a d c o i a i n r l c e i a i o n - s d P a e a y Ge r Re u t r o o e
素 给 噪声 控 制增 加 了新 的 课 题 。减速 器 噪声 产 生 的 根本 原 因
载机构 中 。 阳轮和齿 圈同时与多个行星 轮进行 啮合 , 以 太 所 我们必须严格控制太阳轮的公法线长度一致性 , 并保证各行
星轮轴 、 阳轮、 太 齿圈轴线的 同心度要求等 , 以控制不均匀性
是 :) 1 齿轮啮合齿 对周期性 的碰撞与连续 冲击 , 导致 齿轮受 迫振动而产生噪声 。 ) 2 啮合齿之间不可避免 的相对齿面滑动 ,
【 关键词】 行星减速器; 噪声量控制; 齿形参数; 加工精度; 装配调整
前 言:
都可 以减少箱体对内部齿轮激振 的响应 , 避免共振 , 降低噪声。 () 4 合理设计结构和控制均载机构公差对控 制噪声也有 较大作用 。行星减速器复杂的结构 和特有均载机构要求我们
必须严 格论证整个轮系的承载状态 。如常用的太 阳轮 浮动均
噪声是施工现场 环境 的重要指 标 , 是衡 量减速器质量水
平的重要指标 , 同时也是减速器整 机设计参数 、 制造精度 、 安 装 优劣等情况的综合反映 。随着产品标准的 国际化 , 行业对 减速器 噪声值 的限定更加严格。而大功率行星减速器又 因所 处恶劣 的工况 、 大承载 、 大安 全系数和特有 的均载机 构等 因
用 的齿轮 副 , 因表面质量 的恶化而加 速磨 损 , 会 因此 润滑油
齿侧表 面粗糙度 齿距和齿 向误差
37 -
L
在标准的制造技术范围 内
3 1 -2
牌 号必须根 据减 速器 的结 构形 式、 使用油 温和工况 载荷等指 标适 当选用 。工作油位范围也 须严格控制 , 建议 采用局部 并
机 械与 电子
科 技 视 界
21年 7 02 月第 2噪音 的核心 。 成
() 1 提高齿轮加工精度是 噪声 控制 的基础 。齿轮 的加 工 精度对齿轮系统噪声有 着重要 的影响。齿轮加工精度有三个 方面标准 : 平稳性 、 准确 性 、 面接 触情 况 。提高 加工精度有 齿
6 7级后 , — 噪声较精度在 8 9级齿轮明显 降低 , 同时对齿 轮 - 若 修形 , 噪声会大幅降低。高精度设备加工 的箱体 , 整机噪声也 明显较小 。合理使用加工设备 , 综合控 制齿轮和箱体 等关键
要辐射体 ,合理选择箱体材料和安装方式能调整箱体固有频
率, 设置筋板增加箱体刚度 , 保证箱体密封眭。以上优化办法 ,
强制润滑 。良好的保护油膜可 以很好的保护齿面 , 降低齿面 磨 擦带来 的噪声 。 () 3合理选择箱体的结构和材料 。箱体是减速器噪声的主
齿侧 间隙
O 1 3 5 -4 -
间隙过大 间隙过小
2齿 轮和箱体的加 工精度和齿轮修形方式是整机噪声 控 )
制最重要的因素 。根据本公司大量实践验证 , 齿轮磨齿达 到
作者简介 : 王迎祥 (91 , 山 东兖 A , 18一) 男, I .工程 师, ' I 主要从事煤矿机械 的开发 与设计 。
1 4 科技视 界 s E E&T cHN。L Y I l 4 cINc E 。G V s。N
I
S in e & Te h oo Vi o ce c c n l ̄ s n i
螺旋角 齿侧间隙
24 - O 1 3 5 -4 -
斜齿优于直齿 间隙过大问隙过小
空气挤压效应
齿轮箱体
齿 形误 差
6 1 -0
6 1 —0
0 5 5 l - 一O
v 54 /i ≥12 m mn
如果发生共振
一般 制 造 精度 超 精度 齿 轮
() 2 合理选 用润滑方式 , 滑油种类和用量。长期重载使 润
数、 减小 啮合角能 增加齿轮重合 度 , 降低齿 轮啮入时 冲击 速 度 。选 用小 螺旋 角斜齿 轮可以增加承载的齿数 , 提高运转平 稳 性 。 合理分 配变位系数 能降低齿 面滑 动率 , 并 合理选择 侧 隙可以保证 齿轮在高温和一定 制造 误差下不“ 卡死 ” 又能降 . 低齿 面排气 速度确保 润滑状态 , 又可 以保证齿 轮啮合时冲击 较小 . 通过大量生产实践证明有效降低 了噪声 。