双曲线同步练习二
双曲线的简单几何性质(2) 同步练习-高二上学期数学人教A版(2019)选择性必修第一册

3.2.2双双双双双双双双双双(2)一、单选题1. 已知斜率为1的直线l 与双曲线2214x y -=的右支交于A ,B 两点,若||8AB =,则直线l 的方程为 ( )A. 21y x =B. 21y x =C. 35y x = D. 35y x =2. 已知圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,则双曲线C 的离心率的取值范围是( )A. 3)B. (1,2]C. 3,)+∞D. [2,)+∞3. 设12,F F 是双曲线22:-=145x y C 的两个焦点,O 为坐标原点,点P 在C 上且||3OP =,则12PF F 的面积为( )A. 3B.72C.532D. 54. 已知1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点,12||23F F =,600(,)M x y 是双曲线C 上的一点,若120MF MF ⋅<,则0y 的取值范围是( )A. 33(B. 33(C. 2222(33-D. 2323( 5. 若直线2y x =与双曲线22221(0,0)x y a b a b-=>>有公共点,则双曲线的离心率的取值范围为( )A. 5)B. 5,)+∞C. 5]D. 5,)+∞6. 已知双曲线方程为2214y x -=,过(1,0)P 的直线L 与双曲线只有一个公共点,则L 的条数共有( )A. 4条B. 3条C. 2条D. 1条7. 已知双曲线C :2212x y -=,若直线l :(0)y kx m km =+≠与双曲线C 交于不同的两点M ,N ,且M ,N 都在以(0,1)A -为圆心的圆上,则m 的取值范围是( )A. 1(,0)(3,)3-⋃+∞B. (3,)+∞C. (,0)(3,)-∞⋃+∞D. 1(,3)3-二、多选题8. 已知双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点分别为1F ,2F ,过2F 作垂直于渐近线的直线l 交两渐近线于A ,B 两点,若223||||F A F B =,则双曲线C 的离心率可能为( )A.141B.6 C. 3 D. 59. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,左、右顶点分别为A 、B ,O 为坐标原点.点P 为双曲线上任意一点(异于实轴端点),过点1F 作12F PF ∠的平分线的垂线,垂足为Q ,连接.OQ 则下列结论正确的有.( )A. 2//OQ PFB. ||OQ a =C. 22||||2PF PF b ⋅=D. 2max()ABQ Sa =三、填空题10. 若直线0x y m -+=与双曲线2212y x -=交于不同的两点A ,B ,且线段AB 的中点在圆225x y +=上,则m 的值为__________.11. 直线1y kx =+与双曲线2231x y -=相交于不同的两点,.A B 若点,A B 分别在双曲线的左、右两支上,则实数k 的取值范围为__________;若以线段AB 为直径的圆经过坐标原点,则实数k 的值为__________.12. 已知双曲线C :22145x y -=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,若||5AB =,则满足条件的l 的条数为__________.13. 已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,1F ,2F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F 的面积分别为1S ,2S ,则21S S =__________. 四、解答题14. 设A ,B 分别为双曲线22221(0,0)x y a b a b-=>>的左,右顶点,双曲线的实轴长为43 3.(1)求双曲线的方程; (2)已知直线32y x =-与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM ON tOD +=,求t 的值及点D 的坐标.15. 如图,平面上,P 、Q 两地间距离为4,O 为PO 中点,M 处为一基站,设其发射的电波为直线,测量得60MOQ ︒∠=,且O 、M 间距离为23N 正在运行,它在运行过程中始终保持到P 地的距离比到Q 地的距离大2(P 、O 、M 、N 及电波直线均共面),请建立适当的平面直角坐标系.(1)求出机器人N 运行的轨迹方程;(2)为了使机器人N 免受M 处发射的电波的影响(即机器人接触不到过点M 的直线),求出电波所在直线斜率k 的取值范围.16. 已知双曲线E :22221(0,0)x y a b a b -=>>的两条渐近线方程为3y x =,且点(2,3)P 为E 上一点.(1)求E 的标准方程;(2)设M 为E 在第一象限的任一点,过M 的直线与E 恰有一个公共点,且分别与E 的两条渐近线交于点A ,B ,设O 为坐标原点,证明:AOB 面积为定值.17. 已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,过点且斜率为1的直线l 交双曲线C 于A ,B 两点.且 3.OA OB ⋅=(1)求双曲线C 的标准方程.(2)设Q 为双曲线C 右支上的一个动点,F 为双曲线C 的右焦点,在x 轴的负半轴上是否存在定点.M 使得2QFM QMF ∠=∠?若存在,求出点M 的坐标;若不存在,请说明理由.答案和解析1.【答案】B解:设直线l 的方程为y x m =+,,由2214y x m x y =+⎧⎪⎨-=⎪⎩得2238440x mx m +++=, 则212443m x x +=,1283m x x +=-,又因为||8AB =,且A 、B 是直线l 与双曲线2214x y -=右支的交点, 所以,且803m->, 即,且0m <,解得221m =,且0m <, 所以21m =-,所以直线l 的方程为21.y x =- 故选.B2.【答案】B解:由题意,圆心到直线的距离231d k ==+,3k ∴= 圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,与其中一条渐近线by x a=斜率比较即可, 3b a∴,2214b a+,∴双曲线C 的离心率的取值范围是(1,2].故答案选:.B11(,)A x y3.【答案】D解:由已知得2, 3.a c == 设(,)P x y ,由||3OP =,得229x y +=, 所以229x y =-,代入22145x y -=,解得5.3y =± 所以1212115||||6||5223F F PSF F y ==⨯⨯±=, 故选.D4.【答案】A解:由题意,3c =2a =1b =,∴双曲线方程为22 1.2x y -=120MF MF ⋅<,220030x y ∴+-<, 220022x y =+, 20310y ∴-<,03333y ∴-<<, 故选:.A5.【答案】B解:双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a=±,由双曲线与直线2y x =有交点, 则有2ba>, 即有22221()145c a b b e a a a+===+>+=则双曲线的离心率的取值范围为(5,).+∞ 故选:.B6.【答案】B解:由题意可得:双曲线2214y x -=的渐近线方程为:2y x =±, 点(1,0)P 是双曲线的右顶点,故直线1x =与双曲线只有一个公共点;过点(1,0)P 平行于渐近线2y x =±时,直线L 与双曲线只有一个公共点,有2条, 所以,过(1,0)P 的直线L 与双曲线只有一个公共点,这样的直线共有3条. 故选.B7.【答案】A解:设11(,)M x y ,22(,)N x y , 由,则①,且122412mkx x k+=-,21222(1)12m x x k -+=-, 设MN 的中点为00(,)G x y ,则02212km x k =-,0212my k=-, M ,N 在以A 为圆心的圆上,,G 为MN 的中点,AG MN ∴⊥,21212m k k km+-∴⋅=-,2231k m ∴=+②,由①②得103m -<<或3m >, 故选.A8.【答案】BC解:由题意得直线 l 垂直于渐近线by x a=,则2OA BF ⊥, 由双曲线性质得2||AF b =,||OA a =,由223||||F A F B =,得2||2||2AB AF b ==或2||4||4.AB AF b == 当2||2||2AB AF b ==时,如图:在Rt BOA 中,2tan b BOA a∠=, 由双曲线渐近线性质得21AOF BOF ∠=∠,2tan b AOF a∠=, 因此有22tan tan(2)tan(2)BOA AOF AOF π∠=-∠=-∠2222222tan 21tan 1bAOF b a b AOF a a⨯∠=-=-=-∠-,化简得2b a =,故离心率2213b e a=+=;当||4AB b =时,如图:在2Rt AOF 中,2tan b AOF a∠=,在Rt AOB 中,4tan b AOB a ∠=,因为22AOB AOF ∠=∠,利用二倍角公式,得2241()bb a b a a⨯=-, 化简得21()2b a =,故离心率2261.2b e a =+=综上所述,离心率e 的值为3或6.2故选.BC9.【答案】ABD解:如图所示:A 选项,延长1F Q 交2PF 于点C ,因为PQ 为12F PF ∠的平分线,1PQ F Q ⊥, 故Q 为1F C 的中点,1||||F Q QC =,又因为12||||FO F O =,即O 为12F F 的中点, 故OQ 为12F F C 的中位线, 所以2||2||F C OQ =,2//OQ F C , 又因为P 、2F 、C 共线, 故2//OQ PF ,故A 正确;B 选项,由定义可知12||||2PF PF a -=, 因为1||||F P PC =,而12||||2F P PF a -=, 故22||||||2PC PF F C a -==,而2||2||F C OQ =, 故1||22OQ a a =⨯=,故B 正确; C 选项,若212||||2PF PF b ⋅=,则222222212121212||||(||||)2||||444()PF PF PF PF PF PF a b c F F +=-+=+==,则1290F PF ∠=︒,题中无说明,故不成立,故C 错误; D 选项,因为||2AB a =,||OQ a =, 当OQ x ⊥轴时,2max1()22ABQ Sa a a =⨯⨯=,故D 正确.故选:.ABD10.【答案】1±解:设A ,B 两点的坐标分别为11(,)A x y ,22(,)B x y ,线段AB 的中点为00(,).M x y 由得22220(0)x mx m ---=∆>,则212122,2x x m x x m +==--,1202x x x m +∴==,002.y x m m =+= 点00(,)M x y 在圆225x y +=上,22(2)5m m ∴+=, 1.m ∴=±故答案为 1.±11.【答案】1±解:(1)由直线1y kx =+与双曲线2231x y -=,得22(3)220k x kx ---=, 因为A , B 在双曲线的左右两支上,所以230k -≠,2203k -<- 解得33;k -<<(2)假设存在实数k ,使得以线段AB 为直径的圆经过坐标原点,设11(,)A x y ,22(,)B x y ,则0OA OB ⋅=,即12120x x y y +=,1212(1)(1)0x x kx kx ∴+++=,即21212(1)()10k x x k x x ++++=,22222(1)1033kk k k k -∴+⋅+⋅+=--, 整理得21k =,符合条件,1.k ∴=±故答案为; 1.±12.【答案】3解:24a =,25b =,29c =,则(3,0)F ,若A 、B 都在右支上,当AB 垂直于x 轴时,将3x =代入22145x y -=得52y =±,则||5AB =,满足, 若A 、B 分别在两支上,2a =,∴两顶点的距离为2245+=<,∴满足||5AB =的直线有2条,且关于x 轴对称,综上满足条件的l 的条数为3. 故答案为:3.13.【答案】4解:离心率为2ce a==,即2c a =,3b a =, (,0)M a -,(0,)N b ,可得MN 的方程为0bx ay ab -+=,设(,)P m n ,1(,0)F c -,2(,0)F c ,可得22212(,)(,)PF PF c m n c m n m n c ⋅=---⋅--=+-, 由22222()m n m n +=+表示原点O 与P 的距离的平方, 显然OP 垂直于MN 时,||OP 最小, 由OP :ay x b=-,即33y x =-330x y a -+=, 可得33(,)44P a a -,即211332242S c a a =⋅⋅=, 当P 与N 重合时,可得||OP 最大, 可得2212232S c b a =⋅⋅=, 即有222123 4.3S a S a ==故答案为:4.14.【答案】解:(1)双曲线的渐近方程为by x a=±,焦点为(,0)F c ±, ∴焦点到渐近线的距离为,又243a =,23a ∴=,双曲线的方程为221.123x y -=(2)设点112200(,),(,),(,)M x y N x y D x y ,由得: 2163840x x -+=,1212123163,()4123x x y y x x ∴+=+=+-=, OM ON tOD +=,0,01212()(,)t x y x x y y ∴=++,有,又点00(,)D x y 在双曲线上, 2216312()()1123t t ∴-=,解得216t =,点D 在双曲线的右支上,0t ∴>,4t ∴=,此时点(43,3).D15.【答案】解:(1)如图所示,以点O 为坐标原点,以PQ 所在的直线为x 轴建立直角坐标系,则(2,0),(2,0)P Q -,设点(,)N x y ,则||||2||4NP NQ PQ -=<=, 所以动点N 是以点,P Q 为焦点的双曲线的右支, 由题得22,2,1a c a ===, 所以2413b =-=,所以动点N 的轨迹方程为221(1).3y x x -= (2)由题得点M 的坐标为3,3),设直线的方程为3(3)y k x -=,即:(3)3y k x =-+,联立直线和221(1)3y x x -=, 消去y 得2222(3)(236)633120k x k k x k k -+-+--=当230k -=时,若3k =当3k =当230k -≠时,由0∆<得2222(236)4(3)(63312)0k k k k k -----<,所以(3)(3)0k k --<, 32 3.k << 32 3.k <所以电波所在直线斜率k 的取值范围16.【答案】解:(1)当3ba =E 的标准方程为222213x y a a -=,代入(2,3),解得2 1.a =故E 的标准方程为221.3y x -=(2)直线斜率显然存在,设直线方程为y kx t =+,与2213y x -=联立得:222(3)230.k x ktx t -+++=由题意,3k ≠222244(3)(3)0k t k t ∆=--+=,化简得:2230.t k -+=设1122(,),(,)A x y B x y ,将y kx t =+与3y x =联立,解得13x k =-;与3y x =-联立,解得23x k=+ 212122113||||sin |2||2|sin1203|.22|3|AOBt S OA OB AOB x x x x k ︒∆=⋅⋅∠=⋅⋅==- 由2230t k -+=,3AOB S ∆∴AOB 3.17.【答案】解:(1)设双曲线C 的焦距为2c ,由双曲线C 的离心率为2知2c a =,所以223b c a a -=,从而双曲线C 的方程可化为222213x y a a-=,由得22226630x x a ---=,设11(,)A x y ,22(,)B x y , 因为,所以126x x +=,212332x x a ⋅=--, 因为3OA OB ⋅=,所以12121212(6)(6)3x x y y x x x x +=+=, 于是21212326()62(3)66632x x x x a ++=⨯--=,解得1a =, 所以双曲线C 的标准方程为2213y x -=; (2)假设存在,点(,0)(0)M t t <满足题设条件.由(1)知双曲线C 的右焦点为,设为双曲线C 右支上一点,当02x =时,因为290QFM QMF ︒∠=∠=, 所以45QMF ︒∠=,于是,所以 1.t =-当02x ≠时,00tan 2QF y QFM k x ∠=-=--,00tan QM y QMF k x t∠==-, 因为2QFM QMF ∠=∠,所以0002000221()y y x ty x x t⨯--=---, 将220033y x =-代入并整理得22200002(42)4223x t x t x tx t -++-=--++,所以,解得 1.t =-综上,满足条件的点M 存在,其坐标为。
人教版高中数学《双曲线》同步练习

打印版本
高中数学 双 曲 线 的 几 个 结 论
1、 已知左、右焦点分别为12,F F 的双曲线22
221x y a b
-=(0,0a b >>)上有一点P ,若12F PF θ∠=,求12PF F ∆的面积。
2、 若双曲线的方程为22
221x y a b
-=(0,0a b >>),AB 为不平行于对称轴且不过原点的弦,M 为弦AB 的中点,设AB 、OM (O 是原点)的斜率分别为12,k k ,则2
122b k k a =。
3、 已知P 为双曲线22
221x y a b
-=(0,0a b >>)上任意一点,过点P 分别作双曲线渐近线的平行线,分别交于另一条渐近线于M,N ,求证:|PM |·|PN|=2
4
c (c 为双曲线的半焦距)
4、 双曲线的一条渐近线和一条准线交于M 点,F 点是该准线相应的焦点,求证:FM 垂直于
这条渐近线。
5、 设F 为双曲线的一个焦点,l 为相应的准线,设过点F 的直线与双曲线的一支相交于A ,
B 两点,试推断以线段AB 为直径的圆与直线l 的位置关系?
思考题:定长为l 22()b l a >的线段AB 的二端点在双曲线22
221x y a b
-=(0,0a b >>)的右支上,求AB 中点的横坐标的最小值.。
双曲线训练题(二)(含答案)

双曲线训练题(二)一、选择题: 1.设P 是双曲线22219x ya-=上一点,双曲线的一条渐近线方程为320x y -=,12F F ,分别是双曲线的左、右焦点,若13PF =,则2PF =( ) A .1或5B .6C .7D .92.焦点为(06),,且与双曲线2212xy -=有相同的渐近线的双曲线方程是( )A .2211224xy-= B .2211224yx-=C .2212412yx-= D .2212412xy-=3.过双曲线221169xy-=左焦点1F 的弦A B 长为6,则2ABF △(2F 为右焦点)周长为( ) A .28B .22C .14D .124.已知m n ,为两个不相等的非零实数,则方程0m x y n -+=与22nx my mn +=所表示的曲线可能是( )5.已知双曲线方程为2214yx -=,过点(10)P ,的直线l 与双曲线只有一个公共点,则l 的条数共有( ) A .4 B .3 C .2 D .16.已知双曲线22221x y ab-=(00)a b >>,的左、右焦点分别为12F F ,,点P 在双曲线的右支上,且124PF PF =,则此双曲线的离心率e 的最大值为( ) A .43B .53C .2D .73二、填空题:7.直线1y x =+与双曲线22123xy-=相交于A B ,两点,则AB =8.已知定点A B ,,且6AB =,动点P 满足4PA PB -=,则PA 的最小值是9.双曲线22221(00)x y a b ab-=>>,一条渐近线的倾斜角为π(0)2αα<<,则其离心率为10.直线y x b =+与双曲线2222x y -=相交于A B ,两点,若以A B 为直径的圆过原点,则b =11.若直线y x m =+与曲线y =m 的取值范围为12.双曲线221169xy-=上有点12P F F ,,是双曲线的焦点,且12π3F P F ∠=,则12F PF △的面积是 三、解答题:13.已知动点P 与双曲线221x y -=的两个焦点12F F ,的距离之和为定值,且12cos F PF ∠的最小值为13-,求动点P 的轨迹方程.14.求过点(3-,,离心率为2e =的双曲线的标准方程.15.已知双曲线2222:1(00)x y C a b ab-=>>,,B 是右顶点,F 是右焦点,点A 在x 轴的正半轴上,且满足O A ,O B ,O F成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P .(1)求证:PA OP PA FP =;(2)若直线l 与双曲线C 的左、右两支分别相交于点D E ,,求双曲线C 的离心率e 的取值范围.双曲线训练题(二)参考答案CBACBB sec α 2± (](]202-- ∞,,13.解:221x y -= ,c ∴=.设1PF m =,2PF n =,则2m n a +=(常数0a >),所以点P 是以12F F ,为焦点,2a为长轴的椭圆,22a c >=a ∴>由余弦定理,有2221212cos 2m n F F F PF m n+-∠=2212()22m n m n F F m n+--=2241a m n-=-.222m n m n a +⎛⎫= ⎪⎝⎭≤,∴当且仅当m n =时,mn 取得最大值2a .此时12cos F PF ∠取得最小值22241a a--,由题意2224113a a--=-,解得23a =,222321b a c ∴=-=-=.P ∴点的轨迹方程为2213xy +=.14.解:(1)若焦点在x 轴上,设方程为22221x y ab-=,则22921ab-=,又2c e a====,得224a b =.由①、②,得21a =,214b =,得方程为2241x y -=.(2)若焦点在y 轴上,同理可得2172b =-不合题意.故所求双曲线标准方程为2241x y -=.15.(1)证明:直线l 为()ay x c b =--, ①在第一、三象限的渐近线by x a =, ②解①、②得垂足2a ab P c c ⎛⎫⎪⎝⎭,. 因为O A ,O B ,O F成等比数列, 所以可得点20a A c ⎛⎫⎪⎝⎭,. 所以0ab P A c ⎛⎫=- ⎪⎝⎭ ,,2a ab O P c c ⎛⎫= ⎪⎝⎭,,2b ab F P c c ⎛⎫=- ⎪⎝⎭ ,. 所以222a b PA O P c = ,222a bPA FP c=- . 因此PA OP PA FP =;(2)解:由222222()a y x c bb x a y a b ⎧=--⎪⎨⎪-=⎩,,得4442222222220a a a c b x cx a b b b b ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭ , 因为直线l 与双曲线C 的左、右两支分别相交于点D E ,,所以42222124220a c a b b x x a b b⎛⎫-+ ⎪⎝⎭=<-, 所以4220a b b->,即44b a >,22b a >,222c a a ->,222c a >,22e >,因此e >。
高二数学双曲线几何性质同步练习(含答案)

高二数学双曲线几何性质同步练习(含答案 )双曲线方程的观察是圆锥曲线的要点知识点,以下是双曲线几何性质同步练习,请大家认真练习。
1.动点与点与点知足,则点的轨迹方程为______________2.假如双曲线的渐近线方程为,则离心率为____________3.过原点的直线与双曲线有两个交点,则直线的斜率的取值范围为 _____________4.已知双曲线的离心率为,则的范围为____________________5.已知椭圆和双曲线有公共焦点,那么双曲线的渐近线方程为 _____6.已知双曲线的中心在原点,两个焦点分别为和,点在双曲线上且,且的面积为 1,则双曲线的方程为__________________7.若双曲线的一条渐近线的倾斜角为,其离心率为.8.双曲线的两条渐近线相互垂直,则双曲线的离心率为.9.设是双曲线上一点,双曲线的一条渐近线方程为,分别是双曲线的左、右焦点,若,则的值为.10.若双曲线的两个焦点分别为,且经过点,则双曲线的标准方程为 .11.若椭圆和双曲线有同样的焦点,点是两条曲线的一个交点,则的值为.12.是双曲线左支上的一点,为其左、右焦点,且焦距为,则的内切圆圆心的横坐标为 .13.过双曲线的一个焦点且与双曲线的实轴垂直的弦叫做双曲线的通径,则双曲线- =1 的通径的长是 _______________ 14.双曲线 16x2-9y2=144 上一点 P(x0,y0)(x00 ) 到左焦点距离为 4,则 x0= .15.已知双曲线的左、右焦点分别为,为双曲线上一点,若且,求双曲线的方程.16.如图,某农场在处有一堆肥料沿道路或送到大田中去,已知,,且,,可否在大田中确立一条界限,使位于界限一侧沿送肥料较近 ?若能,请成立适合坐标系求出这条界限方程 .17.试求以椭圆+ =1 的右焦点为圆心,且与双曲线- =1 的渐近线相切的圆方程.参照答案1.2. 或 3.4.5. 6. 7. 8. 9. 7 10.11. 12. 13. 14.15。
人教新课标版(A)高二选修1-1 2.2.2双曲线及其标准方程(二)同步练习题

人教新课标版(A )高二选修1-1 2.2.2 双曲线及其标准方程(二)同步练习题【基础演练】题型一:双曲线中的基本运算 因为双曲线中的基本量之间存在着内在联系,所以从方程的角度来讲,可已知一部分求另一部分,请根据以上知识解决以下1~4题。
1. 双曲线1k9y k 25x 22=-+-的焦距为A. 16B. 8C. 4D. 3422. 在双曲线中,25a c =且双曲线与椭圆36y 9x 422=+有公共焦点,则双曲线的方程是A. 1x 4y 22=-B. 1y 4x 22=-C. 14y x 22=-D. 14x y 22=-3. 双曲线8my mx 822=-的焦距为6,则m 的值是A. 1±B. –1C. 1D. 84. 设双曲线与椭圆136y 27x 22=+有共同的焦点,且与椭圆相交,在第一象限的交点A 的纵坐标为4,求此双曲线的方程。
题型二:求双曲线的方程 求双曲线的方程的常用方法有:待定系数法、直译法、定义法、相关点法、几何法等,请根据以上知识解决以下5~8题。
5. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+6. 双曲线的焦点在y 轴上,且它的一个焦点在直线020y 2x 5=+-上,两焦点关于原点对称,35a c =,则此双曲线的方程是A. 164y 36x 22=-B. 136y 64x 22=-C. 164y 36x 22=-D. 136y 64x 22-=-7. 动圆与两圆1y x 22=+和012x 8y x 22=+-+都外切,则动圆圆心的轨迹是A. 圆B. 椭圆C. 双曲线D. 双曲线的一支8. 在周长为48的Rt △MPN 中,∠MPN=90°,tan ∠PMN=43,求以M 、N 为焦点,且过点P 的双曲线方程。
(完整word版)打印双曲线基础训练题(含答案),推荐文档

双曲线基础训练题(一)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是( D )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF(C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B )A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb 13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x双曲线基础练习题(二)一. 选择题1.已知双曲线的离心率为2,焦点是(4,0),(4,0)-,则双曲线的方程是A. 221412x y -=B. 221124x y -= C. 221106x y -= D. 221610x y -=2.设椭圆1C 的离心率为513,焦点在x 上,长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点距离差的绝对值等于8,则曲线2C 的标准方程是A. 2222143x y -=B. 22221135x y -=C. 2222134x y -= D. 222211312x y -=3. 已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率等于A .53B .43C .54D .324. 已知双曲线22112x y n n+=-,则n = A.2- B .4 C.6 D.8-5.设1F 、2F 是双曲线22221x y a b-=的两个焦点,若1F 、2F 、(0,2)P b 是正三角形的三个顶点,那么其离心率是A.32 B. 52C. 2D. 3 6.已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线距离之比等于A C. 2 D.4 7.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 的距离是A.B. C. D. 8.设12F F ,是双曲线22221x y a b-=的左、右焦点,若其右支上存在一点P 使得1290F PF ∠=o,且12PF =,则e =A.B. 1C.D . 19. 若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5C D10. 设ABC △是等腰三角形,120ABC ∠=o ,则以A B ,为焦点且过点C 的双曲线的离心率为A .221+ B .231+ C .21+D .31+11. 双曲线22221x y a b-=的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 ABCD .312. 设1,a >则双曲线22221(1)x y a a -=+的离心率e 的取值范围是A .B .C .(25),D .(213.已知双曲线()222102x y b b-=>的左、右焦点分别为1F 、2F ,它的一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF =u u u r u u u u rgA .12-B .2-C .0D .414.双曲线22221x y a b-=的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则离心率e 的取值范围是A .(1),3B .(1,3]C .(3)∞,+D .)+[3,∞15.设P 为双曲线22112y x -=上一点,1F 、2F 是双曲线的两个焦点,若1PF :2PF =3:2,则12PF F ∆的面积为A .B .12C .D .2416.设1F 、2F 是双曲线2219y x -=的左、右焦点,P 为该双曲线上一点,且120PF PF =u u u r u u u u r g ,则12PF PF +=u u u r u u u u rA .B .CD .二.填空题17.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程是y x =,若顶点到渐近线的距离为1,则双曲线方程为18.以1(60)F -,,2(60)F ,为焦点,离心率2e =的双曲线的方程是19.中心在原点,一个焦点是1(30)F -,20y ±=的双曲线的方程为20.过点(20)N ,且与圆2240x y x ++=外切的动圆圆心的轨迹方程是21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 22. 已知双曲线22291(0)ym x m -=>的一个顶点到它的一条渐近线的距离为15,则m =23.已知双曲线2221(2x y a a -=>的两条渐近的夹角为3π,则双曲线的离心率为24.已知双曲线22221x y a b -=的右焦点为F ,右准线与一条渐近线交于点A ,OAF ∆的面积为22a ,(O 为坐标原点),则该双曲线的两条渐近线的夹角为25.过双曲线22143x y -=左焦点1F 的直线交双曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN+-=26. 若双曲线22221x y a b-=的右支上存在一点,它到右焦点及左准线的距离相等,则e 取值范围是27..P是曲线22221x y a b-=的右支上一点,F为其右焦点,M 是右准线:x l 与x 轴的交点,若60,PMF ∠=o 45PFM ∠=o ,则双曲线方程是28.过双曲线221916x y -=的右焦点F 且平行双曲线的一条渐近线的直线与双曲线交于点B, A 为右顶点,则FAB ∆的面积等于 三.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是x=,离心率e =(2)中心在原点,离心率e =30.已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点(3P 在双曲线C 上.⑴求双曲线C 的方程; ⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若OEF =△S l 方程.双曲线练习题答案(二)一.选择题1.A 2. A3.A4. B 5. C6.C7.A8D9. D10. B11. B12. B13.C14.B15.B16B 二.填空题17.223144x y-=18.221927x y-=19.22145x y-=20.()22113yx x-=≥21.322.423.324.2π25.826.(11⎤⎦27.2211260x y-=28.3215二.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e=2214yx-=(2)中心在原点,离心率2e=顶点到渐近线的距离为5;2214xy-=30. 已知双曲线22221(00)x yC a ba b-=>>:,的两个焦点为1(20)F-,,2(20)F,,点(3P在双曲线C上.⑴求双曲线C的方程;⑵记O为坐标原点,过点(02)Q,的直线l与双曲线C相交于不同的两点E F,,若OEF=△S l方程.⑴解略:双曲线方程为22122x y-=.⑵解:直线:l2y kx=+,代入双曲线C的方程并整理,得22(1)460k x kx---=. ①Q直线l与双曲线C相交于不同的两点E F,,222110(4)46(1)0kkkk k≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<<∆=-+⨯->⎪⎪⎩⎩,,,,(1)(11)(1k∴∈--U U,.②设1122()()E x yF x y,,,,则由①式得12241kx xk+=-,12261x xk=--,EF ∴21k -而原点O 到直线l 的距离d =1122OEFS d EF ∴=⋅==△.若OEFS =△,即422201k k k=⇔--=-,解得k =此满足②故满足条件的直线l 有两条,其方程分别为2y =+和2y =+双曲线基础练习题(三)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C.191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y x B .122=+-y x C .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x 12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________. 14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题17.(本小题(10分)已知双曲线C :191622=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,准线方程,渐近线方程。
苏教版高中数学选修2-1双曲线同步练习.docx
双曲线 同步练习一、选择题(本大题共10小题,每小题5分,共50分) 1.θ是第三象限角,方程x 2+y 2sin θ=cos θ表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线2.“a b<0”是“方程ax 2+b y 2 =c 表示双曲线”的( ) A .必要不充分条件B .充分不必要条件C .充要条件D .非充分非必要条件3.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆心的轨迹为 ( )A .抛物线B .圆C .双曲线的一支D .椭圆 4.双曲线虚半轴长为5,焦距为6,则双曲线离心率是( )A .35 B .53 C .23 D .325.过点P (2,-2)且与22x -y 2=1有相同渐近线的双曲线方程是( )A .14222=-x y B .12422=-y xC .12422=-x y D .14222=-y x 6.双曲线191622=-y x 右支上一点P 到右准线距离为18,则点P 到右焦点距离为( )A .245 B .558 C .229 D .532 7.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A 、B 两点,若|AB|=4,这样的直线 有 ( )A .1条B .2条C .3条D .4条 8.双曲线3x 2-y 2=3的渐近线方程是( )A .y =±3xB .y =±31xC .y =±3xD .y =±33x 9.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( )A .3B .26C .36 D .33 10.设双曲线12222=-by a x (0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l 的距离为43c ,则双曲线的离心率为 ( )A .2B .3C .2D .332 二、填空题(本大题共4小题,每小题6分,共24分)11.11422=-+-t y t x 表示双曲线,则实数t 的取值范围是 . 12.双曲线191622-=-y x 的准线方程是 . 13.焦点为F 1(-4,0)和F 2(4,0),离心率为2的双曲线的方程是 .14.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 . 三、解答题(本大题共6小题,共76分)15.已知双曲线与椭圆1244922=+y x 共焦点,且以x y 34±=为渐近线,求双曲线方程.(12分)16.双曲线的中心在原点,焦点在x 轴上,两准线间距离为29,并且与直线)4(31-=x y 相交所得弦的中点的横坐标是32-,求这个双曲线方程.(12分)17.某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A 、A ′是双曲线的顶点,C 、C ′是冷却塔上口直径的两个端点,B 、B ′是下底直径的两个端点,已知AA ′=14m ,CC ′=18m ,BB ′=22m ,塔高20m .建立坐标系并写出该双曲线方程.(12分)18.F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,求三角形△F 1MF 2的面积.(12分)19.一炮弹在A 处的东偏北60°的某处爆炸,在A 处测到爆炸信号的时间比在B 处早4秒,已知A 在B 的正东方、相距6千米, P 为爆炸地点,(该信号的传播速度为每秒1千米)求A 、P 两地的距离.(14分)A A'BB'C'C 20m14m18m 22m20.如图,已知梯形ABCD 中|AB|=2|CD|,点E 分有向线段−→−AC 所成的比为118,双曲线过C 、D 、E 三点,且以A 、B 为焦点.求双曲线的离心率.(14分)参考答案一.选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案D A C C A A C C BA二.填空题(本大题共4小题,每小题6分,共24分)11.t>4或t<1 12.y = 59± 13.112422=-y x 14.316三、解答题(本大题共6题,共76分)15.(12分) [解析]:由椭圆1244922=+y x 5=⇒c .设双曲线方程为12222=-b y a x ,则⎪⎩⎪⎨⎧=+±=253422b a a b ⎪⎩⎪⎨⎧==⇒16922b a 故所求双曲线方程为116922=-y x16.(12分) [解析]:设双曲线方程为12222=-by a x (a >0,b>0),∵两准线间距离为29,∴c a 22⋅=29,得=2a 49c ,c c b 4922-= ①∵双曲线与直线相交,由方程组⎪⎪⎩⎪⎪⎨⎧-==-)4(3112222x y b y a x 得0)916(98)9(222222=+-+-a b x a x a b , 由题意可知0922≠-a b ,且32)9(298222221-=--=+a b ax x 2297b a =⇒ ② AB E D CA A'BB'C'COxy联立①②解得:92=a ,72=b 所以双曲线方程为17922=-y x .17.(12分) [解析]:(I )如图建立直角坐标系xOy ,AA ′在x 轴上,AA ′的中点为坐标原点O ,CC ′与BB ′平行于x 轴. 设双曲线方程为),0,0(12222>>=-b a by a x 则.721='=A A a 又设B (11,y 1),C (9,y 2),因为点B 、C 在双曲线上,所以有,171122122=-by ① ,17922222=-by ② 由题意知.2012=-y y ③ 由①、②、③得.27,8,1221==-=b y y 故双曲线方程为.1984922=-y x18.(12分) [解析]:由题意可得双曲线的两个焦点是F 1(0,-5)、F 2(0,5), 由双曲线定义得:621=-MF MF ,联立3221=⋅MF MF 得21MF +22MF =100=221F F , 所以△F 1MF 2是直角三角形,从而其面积为S =162121=⋅MF MF19.(14分) [解析]:以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,则A (3,0)、B (-3,0) 3,5,2614||||===∴<⨯=-c b a PA PB15422=-∴y x P 是双曲线右支上的一点 ∵P 在A 的东偏北60°方向,∴360tan == AP k .∴线段AP 所在的直线方程为)3(3-=x y解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-==-0)3(315422y x x y y x ⎩⎨⎧==358y x 得 , 即P 点的坐标为(8,35) ∴A 、P 两地的距离为22)350()83(-+-=AP =10(千米). 20.(14分) [解析]:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系,则CD ⊥Oy .由题意可设A (-c ,0),C (2c ,h ),B (c ,0),其中c 为双曲线的半焦距,AB c 21=,h 是梯形的高. 由定比分点公式,得点E 的坐标为 c c c x E 19711812118-=+⨯+-=,h h y E 19811811180=+⨯+=. 设双曲线的方程为12222=-by a x ,由离心率a c e =. 由点C 、E 在双曲线上,得OxyA B PO x yA B E D C⎪⎪⎩⎪⎪⎨⎧=⋅-⋅=-⋅.136********,14122222222b h a c b h a c 由①得1412222-⋅=a c b h ,代入②得922=a c 所以离心率322==ac e ① ②。
人教新课标版(A)高二选修1-1 2.2.4双曲线的简单几何性质(二)同步练习题
人教新课标版(A )高二选修1-1 2.2.4 双曲线的简单几何性质(二)同步练习题【基础演练】题型一:由双曲线的方程研究其几何性质请根据以上知识解决以下1~4题。
1. 双曲线1b y a x 2222-=-的离心率为45,则其渐近线为A.016y9x =± B.09y16x =± C.04y3x =± D.03y4x =± 2. 双曲线的渐近线为43y ±=x ,则双曲线的离心率是A.45 B. 2 C.45或35 D.25或315 3. 双曲线的离心率为2,则双曲线的两条渐近线的夹角是A. 45°B. 30°C. 60°D. 90°4. 求双曲线144y 9x 1622-=-的实半轴长,虚半轴长,焦点坐标,离心率,顶点坐标,渐近线方程。
题型二:由双曲线的几何性质求其方程 充分利用双曲线的几何性质,以及a 、b 、c 、e 间的数量关系,并结合平面几何知识,求出基本参数a 、b 、c 的值,进而求出双曲线的标准方程,请根据以上知识解决以下5~7题。
5. 中心在坐标原点,离心率为35的双曲线的焦点在y 轴上,则它的渐近线方程为A. x 45y ±=B. x 54y ±=C. x 34y ±=D. x 43y ±=6. 双曲线以椭圆125y 9x 22=+的焦点为焦点,它的离心率是椭圆离心率的2倍,则双曲线的方程为___________。
7. 已知双曲线1by a x 2222=-(0a >,0b >)的离心率332e =,过A (0,b -)和B (a ,0)的直线与原点间的距离是23。
(1)求此双曲线的方程;(2)直线5kx y +=(0k ≠)与双曲线交于不同的两点C 、D ,且C 、D 两点都在以A 为圆心的同一个圆上,求k 的值。
题型三:创新应用8. 1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且∠=21PF F 60°,312S 21F PF =△,又离心率2e =,求双曲线方程。
打印双曲线基础训练题(含答案)
双曲线基础训练题(一)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是( D )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF(C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B )A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb 13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x双曲线基础练习题(二)一. 选择题1.已知双曲线的离心率为2,焦点是(4,0),(4,0)-,则双曲线的方程是A. 221412x y -=B. 221124x y -= C. 221106x y -= D. 221610x y -=2.设椭圆1C 的离心率为513,焦点在x 上,长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点距离差的绝对值等于8,则曲线2C 的标准方程是A. 2222143x y -=B. 22221135x y -=C. 2222134x y -= D. 222211312x y -=3. 已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率等于A .53B .43C .54D .324. 已知双曲线22112x y n n+=-,则n = A.2- B .4 C.6 D.8-5.设1F 、2F 是双曲线22221x y a b-=的两个焦点,若1F 、2F 、(0,2)P b 是正三角形的三个顶点,那么其离心率是A.32 B. 52C. 2D. 3 6.已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线距离之比等于A C. 2 D.4 7.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 的距离是A.B. C. D. 8.设12F F ,是双曲线22221x y a b-=的左、右焦点,若其右支上存在一点P 使得1290F PF ∠=,且12PF =,则e =A.B. 1C.D . 19. 若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5C D10. 设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为A .221+ B .231+ C .21+D .31+11. 双曲线22221x y a b-=的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 ABCD .312. 设1,a >则双曲线22221(1)x y a a -=+的离心率e 的取值范围是A .B .C .(25),D .(213.已知双曲线()222102x y b b-=>的左、右焦点分别为1F 、2F ,它的一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF =A .12-B .2-C .0D .414.双曲线22221x y a b-=的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则离心率e 的取值范围是A .(1),3B .(1,3]C .(3)∞,+D .)+[3,∞15.设P 为双曲线22112y x -=上一点,1F 、2F 是双曲线的两个焦点,若1PF :2PF =3:2,则12PF F ∆的面积为A .B .12C .D .2416.设1F 、2F 是双曲线2219y x -=的左、右焦点,P 为该双曲线上一点,且120PF PF =,则12PF PF +=A .B .CD .二.填空题17.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程是y x =,若顶点到渐近线的距离为1,则双曲线方程为18.以1(60)F -,,2(60)F ,为焦点,离心率2e =的双曲线的方程是19.中心在原点,一个焦点是1(30)F -,20y ±=的双曲线的方程为20.过点(20)N ,且与圆2240x y x ++=外切的动圆圆心的轨迹方程是21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 22. 已知双曲线22291(0)ym x m -=>的一个顶点到它的一条渐近线的距离为15,则m =23.已知双曲线2221(2x y a a -=>的两条渐近的夹角为3π,则双曲线的离心率为24.已知双曲线22221x y a b -=的右焦点为F ,右准线与一条渐近线交于点A ,OAF ∆的面积为22a ,(O 为坐标原点),则该双曲线的两条渐近线的夹角为25.过双曲线22143x y -=左焦点1F 的直线交双曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN+-=26. 若双曲线22221x y a b-=的右支上存在一点,它到右焦点及左准线的距离相等,则e 取值范围是27..P是曲线22221x y a b-=的右支上一点,F为其右焦点,M 是右准线:2x =与x 轴的交点,若60,PMF ∠=45PFM ∠=,则双曲线方程是28.过双曲线221916x y -=的右焦点F 且平行双曲线的一条渐近线的直线与双曲线交于点B, A 为右顶点,则FAB ∆的面积等于 三.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e =(2)中心在原点,离心率2e =30.已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点()P 在双曲线C 上.⑴求双曲线C 的方程; ⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若O E F =△S l 方程.双曲线练习题答案(二)一.选择题1.A 2. A3.A4. B 5. C6.C7.A8D9. D10. B11. B12. B13.C14.B15.B16B 二.填空题17.223144y=18.221927x y-=19.22145x y-=20.()22113yx x-=≥21.322.42324.2π25.826.(11⎤⎦27.2211260x y-=28.3215二.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是x=e=2214yx-=(2)中心在原点,离心率2e=顶点到渐近线的距离为5;2214xy-=30. 已知双曲线22221(00)x yC a ba b-=>>:,的两个焦点为1(20)F-,,2(20)F,,点()P在双曲线C上.⑴求双曲线C的方程;⑵记O为坐标原点,过点(02)Q,的直线l与双曲线C相交于不同的两点E F,,若OEF=△S l方程.⑴解略:双曲线方程为22122x y-=.⑵解:直线:l2y kx=+,代入双曲线C的方程并整理,得22(1)460k x kx---=. ①直线l与双曲线C相交于不同的两点E F,,222110(4)46(1)0kkkk k≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<<∆=-+⨯->⎪⎪⎩⎩,,,,(1)(11)(13)k∴∈--,,.②设1122()()E x yF x y,,,,则由①式得12241kx xk+=-,12261x xk=--,EF ∴21k -而原点O 到直线l 的距离d =1122OEFS d EF ∴=⋅==△.若OEFS =△,即422201k k k=⇔--=-,解得k =此满足②故满足条件的直线l 有两条,其方程分别为2y =+和2y =+双曲线基础练习题(三)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C.191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y x B .122=+-y x C .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x 12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________. 14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题17.(本小题(10分)已知双曲线C :191622=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,准线方程,渐近线方程。
选修2-1第二章第3节双曲线同步练习
高二数学人教新课标A 版(理)选修2-1第二章第3节双曲线同步练习(答题时间:50分钟)一、选择题:1、设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF FF =,且2F 到直线1PF的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A. 340x y ±=B. 350x y ±=C. 430x y ±=D. 540x y ±=2、设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A.2B.3C.312+ D. 512+ 3、设O 为坐标原点,1F ,2F 是双曲线2222x y 1a b-=(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠1F P 2F =60°,∣OP ∣=7a ,则该双曲线的渐近线方程为( )A. x ±3y =0B.3x ±y =0 C. x ±2y =0D. 2x ±y =04、到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A. 直线B. 椭圆C. 抛物线D. 双曲线5、已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y =3x ,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为( )A.22136108x y -= B. 221927x y -= C.22110836x y -= D. 221279x y -= 6、已知1F 、2F 为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =︒60,则=21PF PF ( )A. 2B. 4C. 6D. 8二、填空题:7、点00()A x y ,在双曲线221432x y -=的右支上,若点A 到右焦点的距离等于02x ,则0x =___8、已知双曲线22221x y a b-=的离心率为2,焦点与椭圆19y 25x 22=+的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线同步练习二
一、选择题(本大题共10小题,每小题5分,共50分)
1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )
A .椭圆
B .线段
C .双曲线
D .两条射线
2.方程1112
2=-++k
y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k
3. 双曲线14122
2
22=--+m y m x 的焦距是 ( ) A .4 B .22 C .8 D .与m 有关
4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的曲线可
)
A B C D
5. 双曲线的两条准线将实轴三等分,则它的离心率为 ( )
A .23
B .3
C .3
4 D . 3 6.焦点为()6,0,且与双曲线12
22
=-y x 有相同的渐近线的双曲线方程是 ( ) A .1241222=-y x B .1241222=-x y C .1122422=-x y D .112
242
2=-y x 7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线122
22=-b
y a x 有 ( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线 D . 相同的焦点
8.过双曲线19
162
2=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( ) A .28 B .22
C .14
D .12 9.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L
的条数共有 ( )
A .4条
B .3条
C .2条
D .1条
10.给出下列曲线:①4x +2y -1=0; ②x 2+y 2=3; ③1222=+y x ④12
22=-y x ,其中与直线 y=-2x -3有交点的所有曲线是 ( )
A .①③
B .②④
C .①②③
D .②③④
二、填空题(本题共4小题,每小题6分,共24分)
11.双曲线17
92
2=-y x 的右焦点到右准线的距离为__________________________. 12.与椭圆125
162
2=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为____________.
13.直线1+=x y 与双曲线13
22
2=-y x 相交于B A ,两点,则AB =__________________.
4.过点)1,3(-M 且被点M 平分的双曲线14
22
=-y x 的弦所在直线方程为 . 三、解答题(本大题共6题,共76分)
15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线
的离心率.(12分)。