七年级下册数学试卷全套
七年级数学全册试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. πC. 0.101001D. √-12. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列各组数中,成比例的是()A. 2, 4, 6, 8B. 1, 2, 3, 4C. 2, 3, 6, 9D. 4, 5, 6, 74. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 45. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)6. 若等腰三角形底边长为8,腰长为6,则该三角形的面积是()A. 24B. 28C. 32D. 367. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆8. 下列各数中,属于有理数的是()A. √2B. πC. 0.101001D. √-19. 若x + y = 5,x - y = 1,则x的值是()A. 3B. 2C. 1D. 010. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 4二、填空题(每题3分,共30分)11. 若a > b,则a - b > _______。
12. 0.25 + 0.25 + 0.25 + 0.25 = _______。
13. 在直角坐标系中,点B(-3,4)关于原点的对称点是 _______。
14. 等腰三角形底边长为10,腰长为8,则该三角形的周长是 _______。
15. 若等边三角形的边长为a,则该三角形的面积是 _______。
16. 下列各数中,绝对值最小的是 _______。
北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)

七年级数学下册——第一章整式的乘除(复习)单项式整式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.下列运算正确的是()A. 954aaa=+ B. 33333aaaa=⋅⋅C. 954632aaa=⨯ D. ()743aa=-=⎪⎭⎫⎝⎛-⨯⎪⎭⎫⎝⎛-20122012532135.2()A. 1- B. 1 C. 0 D. 19973.设()()Ababa+-=+223535,则A=()A. 30abB. 60abC. 15abD. 12ab4.已知,3,5=-=+xyyx则=+22yx()A. 25. B 25- C 19 D、19-5.已知,5,3==ba xx则=-bax23()A、2527B、109C、53D、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142++mx x 是一个完全平方式,则m =_______。
人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。
七年级数学下册试卷全卷

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2.5B. -3C. √2D. 1/42. 若a、b是相反数,且|a| > |b|,则a与b的和是()A. 0B. aC. -aD. 2a3. 下列各数中,能被3整除的是()A. 24B. 25C. 26D. 274. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 2D. y = x^3 - 16. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 27. 若a、b是方程2x + 3 = 0的解,则a + b的值是()A. 0B. 3C. -3D. -68. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 梯形9. 下列等式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)^2 = a^2 + 2ab + b^210. 若m、n是方程x^2 - 5x + 6 = 0的解,则m^2 - n^2的值是()A. 1B. 5C. 6D. 10二、填空题(每题3分,共30分)11. 0的相反数是________,0的倒数是________。
12. 若a = -3,则|a| = ________,-a = ________。
13. 若a = 2,b = -4,则a - b = ________,a + b = ________。
14. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C = ________°。
15. 下列函数中,是正比例函数的是________。
七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
七年级数学下册试卷

七 年 级 下 册数 学 试 卷2022.7一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个....是符合题意的.1 叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约米.其中,用科学记数法表示为 A .5510-⨯ B .4510-⨯C .40.510-⨯D .35010-⨯2 若a<b ,则下列各式正确的是A .22+>+b aB .22->-b aC .b a 22->-D .22ba > 3 下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=4 下列调查中,不适合用抽样调查方式的是A .调查“神舟十一号”飞船重要零部件的产品质量B .调查某电视剧的收视率C .调查一批炮弹的杀伤力D .调查一片森林的树木有多少棵5 如图,已知直线a 若方程234mx y=x+- 是关于x y ,的二元一次方程,则m 满足A .2m -≠B 0m ≠C 3m ≠D 4m ≠ 7.某健步走运动爱好者用手机软件记录了某个月(30天)每天健步 走的步数(单位:万步),将记录结果绘制成了如图所示的统计 图.在每天所走的步数这组数据中,众数和中位数分别是ba 21步数/万步天数A .,B .,C .,D .,8.观察下列等式: ① 32 - 12 = 2 × 4 ② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12那么第n (n 为正整数)个等式为A .n 2 - n -22 = 2 × 2n -2B .n 12 - n -12 = 2 × 2nC .2n 2 - 2n -22 = 2 ×4n -2D .2n 12 - 2n -12 = 2 × 4n二、填空题(本题共8道小题,每小题2分,共16分) 9 因式分解:21x-= .10 在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是 . 11 写出不等式组11x x -⎧⎨<⎩≥,的整数解为 .12 在①11x=y=-⎧⎨⎩,, ②23x=y=⎧⎨⎩,,-- ③30x=y=⎧⎨⎩,- 中,①和②是方程235x y=-的解; 是方程39x+y=-的解;不解方程组,可写出方程组23539x y=x+y=--⎧⎨⎩, 的解为 .13 程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统 宗》) 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚各几丁意思是:有100个和尚分100个馒头,如果大 和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人 如果设大和尚有人, 小和尚有人,那么根据题意可列方程组为 .14 在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a 3b .如:1⊕5=2×13×5=17.则不等式⊕4<0的解集为 .15 若3a b +=,则226a b b -+的值为16数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:baa①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b小华的画法:baa①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据答:我喜欢同学的画法,画图的依据是三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17因式分解:(1)269x x-+;(2)()22m n m n-+-18解不等式:12+x≥13-x,并把它的解集在数轴上表示出来.19解不等式组:3(1)51924x xxx-+-<⎧⎪⎨⎪⎩≤,.–1–2–3–4123420 解方程组:13 5.x+y=x+y=⎧⎨⎩,21 已知关于,的二元一次方程组231ax+by=ax by=-⎧⎨⎩,的解为11x=y=⎧⎨⎩,. 求2a+b 的值22已知:如图,OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°求∠AOE 的度数FOED CBA23 已知2870x x +-=,求2)12()1(4)2)(2(++---+x x x x x 的值24 某电子品牌商下设台式电脑部、平板电脑部、手机部等.2022年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2022年前五个月的月销售额(统计信息不全).图1表示该品牌手机..部.各月销售额占该..品牌所有商品......当月销售额的百分比情况统计图. 品牌月销售额统计表(单位:万元)D 5%E 25% C 17%B 28%A 25%5月份手机部各机型销售额占5月份手机部 销售额的百分比统计图图1 图2手机部各月销售额占品牌当月销售额的 百分比统计图(1) 该品牌5月份的销售额是 万元; (2)手机部5月份的销售额是 万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗请说明理由;(3)该品牌手机部有A 、B 、C 、D 、E 五个机型,图2表示在5月份手机部各.机型..销售额...占5月份手机部销售额的百分比情况统计图.则5月份 机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是 .25 如图,已知BD 平分∠ABC 请补全图形后,依条件完成解答 (1)在直线BC 下方画∠CBE ,使∠CBE 与∠ABC 互补;(2)在射线BE 上任取一点F ,过点F 画直线FG ∥BD 交BC 于点G ; (3)判断∠BFG 与∠BGF 的数量关系,并说明理由26 某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需万元;新建3个地上停车位和2个地下停车位共需万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元(2)该小区物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案D CBA27 在三角形ABC 中,点D 在线段AB 上,DE ∥BC 交AC 于点E ,点F 在直线BC 上,作直线EF ,过点D 作直线DH ∥AC 交直线EF 于点H(1)在如图1所示的情况下,求证:∠HDE =∠C ;(2)若三角形ABC 不变,D ,E 两点的位置也不变,点F 在直线BC 上运动①当点H 在三角形ABC 内部时,直接写出∠DHF 与∠FEC 的数量关系;②当点H 在三角形ABC 外部时,①中结论是否依然成立请在图2中画图探究,并说明理由28 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程例如:方程260x =- 的解为3x= ,不等式组205x x ->⎧⎨<⎩,的解集为25x << ,因为235<< ,所以,称方程260x =-为不等式组205x x ->⎧⎨<⎩,的关联方程(1) 在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号)(2)若不等式组1144275xx x⎧-⎪⎨⎪++⎩<,>-的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)数学试卷参考答案及评分标准2022.5一、选择题(本题共8道小题,每小题2分,共16分)二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解:(1)原式= -3 2 ………………………… 2分 (2)原式= mn m -n m -n ………………………… 3分= m -n mn 1 ………………………… 5分18 解: 移项,得2-3≥-1-1 ………………………… 2分合并同类项,得-≥-2 ………………………… 3分 系数化为1,得≤2 ………………………… 4分解集在数轴上表示如下:……………… 5分19.解:3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,①. ② 由①,得3-3≤5 1 ………………………… 1分-2 ≤4≥-2 …………………………2分由②,得8<9 -…………………………3分9<9<1…………………………4分所以不等式组的解集为-2≤<1…………………………5分20.解:13 5.x+y=x+y=⎧⎨⎩,①②由②-①,得2=4…………………………1分解这个方程,得=2…………………………2分把=2代入①,得2 = 1…………………………3分= -1 …………………………4分所以这个方程组的解为21.x=y=-⎧⎨⎩,…………………………5分21解:法一:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分①-②,得 a 2b = 2…………………………5分法二:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分解得431.3a=b=⎧⎪⎪⎨⎪⎪⎩,…………………………………………………………4分4321FO EDCBA所以a 2b = 2 ………………………………………………………… 5分22.解:∵OA ⊥OB ,∴∠1=90° …………………………1分 ∵∠2=60°,∴∠3=∠2=60° …………………………2分 ∵DF ∥OE ,∴∠3∠4=180° …………………………3分 ∴∠4=120° …………………………4分 ∴∠AOE =360°-∠1-∠4=360°-90°-120°=150° ………………5分23.解:原式= 2 - 4 - 42 4 42 4 1………………………… 3分= 2 8 - 3 ………………………… 4分由2 8 – 7 = 0,得 2 8 = 7 ………………………… 5分所以,原式= 7 – 3 = 4 ………………………… 6分24 解:(1)120 ………………………… 1分 (2)36 ………………………… 2分 不同意小明的看法 ………………………… 3分 手机部4月份销售额为:95×32%=(万元) …………………… 4分 手机部5月份销售额为:120×30%=36(万元) 因为36万元>万元, 故小明说法错误4321GFE D CBA(3)B ………………………… 5分 % ………………………… 6分 25解:(1)如图 ………………………… 1分 (2)如图 ………………………… 2分 (3)∠BFG =∠BGF ………………………… 3分 ∵BD ∥FG ,∴∠1=∠3,∠2=∠4 …………………………5分 ∵BD 平分∠ABC ,∴∠3=∠4 …………………………6分 ∴∠1=∠2即∠BFG =∠BGF26 解:(1)设0.632 1.3.x+y=x+y=⎧⎨⎩,0.10.5.x y =⎧⎨=⎩,(m 为整数)个地上停车位,则建(50-m )个地下停车位根据题意,得12<(50-m )≤13. ……………4分 解得:30≤m <. ……………5分 ∵m 为整数,∴m =30,31,32,共有3种建造方案. ……………6分 ①建30个地上停车位,20个地下停车位; ②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.54321AB CDEF H图2-2HFED CBA27(1)证明:如图∵DE ∥BC ,∴∠1=∠C ………………………… 1分 ∵DH ∥AC ,∴∠1=∠2 ………………………… 2分 ∴∠2=∠C ………………………… 3分即∠HDE =∠C(2)解:①∠DHF +∠FEC =180° ……………… 4分 ②当点H 在三角形ABC 外部时,①中结论不成立理由如下:ⅰ如图2-1,当点H 在直线DE 上方时, ∵DH ∥AC ,∴∠DHF =∠FEC ………………… 6分ⅱ如图2-2,当点H 在直线DE 下方时,∵DH ∥AC ,∴∠DHF =∠FEC …………………… 7分综上所述,当点H 在三角形ABC 外部时,∠DHF =∠FEC(注(2)②中对应一图一理由正确得2分,完全正确得3分)28 解:(1)③ ………………………… 1分 (2)答案不唯一,只要解为 = 1即可 ………………………… 2分AB C D EFH图2-1(3)22.x x mx m-⎧⎨-⎩<,①≤②解不等式①,得>m…………………………3分解不等式②,得≤m2 …………………………4分所以不等式组的解集为m<≤m2方程2-1= 2的解为=3 …………………………5分方程1322x x+=+⎛⎫⎪⎝⎭的解为=2 …………………………6分所以,m的取值范围是1≤m<2…………………………7分。
人教版版七年级数学下册全套单元试卷含答案(共3套)

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD 所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC 的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题:1.(3分)同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直 D.平行或相交2.(3分)如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线()A.垂直B.相交C.平行D.不能确定3.(3分)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°4.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°5.(3分)已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°6.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.48.(3分)下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直9.(3分)∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有()A.∠1=∠2 B.∠1+∠2=90°C.∠1+∠2=90°D.∠1是钝角,∠2是锐角10.(3分)如图,AB∥DE,那么∠BCD=()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°+∠2﹣2∠111.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3个B.2个C.1个D.0个12.(3分)下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等13.(3分)下列图中∠1和∠2是同位角的是()A.(1)(2)(3)B.(2)(3)(4)C.(3)(4)(5)D.(1)(2)(5)14.(3分)如图,已知∠1=∠2,则有()A.AB∥CD B.AE∥DF C.AB∥CD且AE∥DF D.以上都不对15.(3分)如图,直线AB与CD交于点O,OE⊥AB于O,则图中∠1与∠2的关系是()A.对顶角B.互余C.互补D.相等16.(3分)如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.6二、填空题17.(3分)小玮家在小强家的北偏西75度,则小强家在小玮家的坐标方向是度.18.(3分)若一个角的余角是30°,则这个角的补角为°.19.(3分)一个角与它的补角之差是20°,则这个角的大小是.20.(3分)如果一个角的补角是150°,那么这个角的余角是度.21.(3分)小明从点A沿北偏东60°的方向到B处,又从B沿南偏西25°的方向到C处,则小明两次行进路线的夹角为.22.(3分)把“同角的余角相等”写成“如果…,那么…”的形式为.23.(3分)如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=度.24.(3分)把一张长方形纸条按图中那样折叠后,若得到∠AOB′=70°,则∠OGC=.25.(3分)如图,已知直线AB、CD相交于O,OE⊥AB,∠1=25°,则∠2=°,∠3=°,∠4=°.26.(3分)如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为.27.(3分)如图,直线l1∥l2,AB⊥CD,∠1=34°,求∠2的度数.28.(3分)如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD 的平分线FP相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=度.29.(3分)如图∠1=82°,∠2=98°,∠3=80°,则∠4=度.30.(3分)如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.请你认真完成下面的填空.证明:∵∠B=∠BGD(已知)∴AB∥CD()∵∠DGF=∠F;(已知)∴CD∥EF()∵AB∥EF()∴∠B+∠F=180°().三、计算题:31.(10分)如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,则∠BOE=度,∠AOG=度.参考答案与试题解析一、选择题:1.(3分)同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直 D.平行或相交【考点】J7:平行线;J1:相交线.【分析】根据在同一平面内两直线的位置关系进行解答即可.【解答】解:同一平面内如果两条直线不重合,那么他们平行或相交;故选D.【点评】此题考查了平行线,掌握在同一平面内两直线的位置关系是本题的关键,是一道基础题.2.(3分)如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线()A.垂直B.相交C.平行D.不能确定【考点】JA:平行线的性质.【分析】由两条平行线被第三条直线所截,根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故选C.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.3.(3分)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°【考点】JA:平行线的性质.【专题】2B :探究型.【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等画出图形,根据图形直接解答即可.【解答】解:如图所示:A、,故本选项错误;B、,故本选项正确;C、,故本选项错误;D、,故本选项错误.故选B.【点评】本题考查的是平行线的性质,根据题意画出图形是解答此题的关键.4.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°【考点】JA:平行线的性质.【分析】延长BE交CD于点F,根据平行线的性质求得∠BFD的度数,然后根据三角形外角的性质即可求解.【解答】解:延长BE交CD于点F.∵AB∥CD,∴∠B+∠BFD=180°,∴∠BFD=180°﹣∠B=180°﹣120°=60°,∴∠1=∠ECD+∠BFD=25°+60°=85°.故选C.【点评】本题考查了平行线的性质以及三角形外角的性质,正确作出辅助线是关键.5.(3分)已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°【考点】J3:垂线.【专题】11 :计算题;32 :分类讨论.【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.【解答】解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.【点评】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.6.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°【考点】JB:平行线的判定与性质;J2:对顶角、邻补角.【专题】11 :计算题.【分析】本题首先应根据同位角相等判定两直线平行,再根据平行线的性质及邻补角的性质求出∠4的度数.【解答】解:∵∠1=∠2,∠5=∠1(对顶角相等),∴∠2=∠5,∴a∥b(同位角相等,得两直线平行);∴∠3=∠6=55°(两直线平行,内错角相等),故∠4=180°﹣55°=125°(邻补角互补).故选D.【点评】解答此题的关键是注意平行线的性质和判定定理的综合运用.7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【考点】JA:平行线的性质;IL:余角和补角.【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.(3分)下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直【考点】J7:平行线;J3:垂线;J5:点到直线的距离;J8:平行公理及推论.【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【解答】解:A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过一点有且只有一条直线与已知直线平行,过直线外一点,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点评】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.9.(3分)∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有()A.∠1=∠2 B.∠1+∠2=90°C.∠1+∠2=90°D.∠1是钝角,∠2是锐角【考点】JA:平行线的性质.【分析】直接根据平行线的性质即可得出结论.【解答】解:∵l1∥l2,∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,∴∠1+∠2=180°,即∠1+∠2=90°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.10.(3分)如图,AB∥DE,那么∠BCD=()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°+∠2﹣2∠1【考点】JA:平行线的性质.【专题】2B :探究型.【分析】过点C作CF∥AB,由AB∥DE可知,AB∥DE∥CF,再由平行线的性质可知,∠1=∠BCF,∠2+∠DCF=180°,故可得出结论.【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠BCF=∠1①,∠2+∠DCF=180°②,∴①+②得,∠BCF+∠DCF+∠2=∠1+180°,即∠BCD=180°+∠1﹣∠2.故选C.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.11.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3个B.2个C.1个D.0个【考点】J9:平行线的判定.【专题】11 :计算题.【分析】①由∠1=∠2,利用内错角相等两直线平行得到AD∥BC,本选项不合题意;②由∠BAD=∠BCD,不能判定出平行,本选项不合题意;③由∠ABC=∠ADC且∠3=∠4,利用等式的性质一对内错角相等,进而得到AB∥CD,本选项符合题意;④由∠BAD+∠ABC=180°,利用同旁内角互补得到AD∥BC,本选项不合题意.【解答】解:①由∠1=∠2,得到AD∥BC,本选项不合题意;②由∠BAD=∠BCD,不能判定出平行,本选项不合题意;③由∠ABC=∠ADC且∠3=∠4,得到∠ABC﹣∠4=∠ADC﹣∠3,即∠ABD=∠CDB,得到AB∥CD,本选项符合题意;④由∠BAD+∠ABC=180°,得到AD∥BC,本选项不合题意,则符合题意的只有1个.故选C【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.12.(3分)下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等【考点】JB:平行线的判定与性质;IL:余角和补角;J2:对顶角、邻补角.【分析】根据平行线的判定即可判断A;根据平行线的性质即可判断B;举出反例图形即可判断C;根据互余互补的性质即可判断D.【解答】解:A、内错角相等,两直线平行,正确,故本选项错误;B、两直线平行,同旁内角互补,正确,故本选项错误;C、如图CD⊥AB,则∠ADC=∠BDC,但两个角不是对顶角,错误,故半选项正确;D、等角的补角相等,正确,故本选项错误;故选C.【点评】本题考查了平行线的性质和判定,对顶角,互余互补当知识点,主要考查学生的辨析能力.13.(3分)下列图中∠1和∠2是同位角的是()A.(1)(2)(3)B.(2)(3)(4)C.(3)(4)(5)D.(1)(2)(5)【考点】J6:同位角、内错角、同旁内角.【分析】根据同位角的定义,对每个图进行判断即可.【解答】解:(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点评】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.14.(3分)如图,已知∠1=∠2,则有()A.AB∥CD B.AE∥DF C.AB∥CD且AE∥DF D.以上都不对【考点】J9:平行线的判定.【分析】∠1、∠2是直线AE、DF被AD所截形成的内错角,根据内错角相等,两直线平行可知AE∥DF.【解答】解:∵∠1=∠2,∴AE∥DF(内错角相等,两直线平行).。
七年级全册数学试题及答案

七年级全册数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 2D. -22. 计算下列哪个表达式的结果为负数?A. 3 + 4B. 5 - 2C. -3 × 2D. 6 ÷ 33. 下列哪个选项是质数?A. 4B. 9C. 11D. 124. 哪个选项是完全平方数?A. 16B. 14C. 18D. 205. 计算下列哪个表达式的结果为0?A. 3 × 0B. 0 + 5C. 2 - 2D. 1 - 16. 下列哪个选项是奇数?A. 2B. 4C. 5D. 67. 计算下列哪个表达式的结果为1?A. 2 ÷ 2B. 3 - 2C. 4 × 0D. 5 ÷ 58. 下列哪个选项是偶数?A. 1B. 3C. 4D. 59. 哪个选项是合数?A. 2B. 3C. 7D. 910. 计算下列哪个表达式的结果为负数?A. 3 × 2B. 4 - 1C. 5 + (-3)D. 6 ÷ 2二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
2. 一个数的立方是-8,这个数是______。
3. 一个数的倒数是2,这个数是______。
4. 一个数的绝对值是5,这个数可以是______。
5. 一个数的相反数是-3,这个数是______。
三、解答题(每题10分,共50分)1. 计算:(3x - 2) + (5x + 4)。
2. 计算:(-3) × 4 + 2 × 5。
3. 计算:(2x + 3) - (5x - 7)。
4. 计算:(-2) ÷ 4 + 3 × 2。
5. 如果一个数的三倍加上5等于20,求这个数。
四、答案一、选择题答案1. C2. C3. C4. A5. A6. C7. D8. C9. D10. C二、填空题答案1. ±52. -23. 0.54. ±55. 3三、解答题答案1. 3x - 2 + 5x + 4 = 8x + 22. (-3) × 4 + 2 × 5 = -12 + 10 = -23. 2x + 3 - 5x + 7 = -3x + 104. (-2) ÷ 4 + 3 × 2 = -0.5 + 6 =5.55. 3x + 5 = 20 → 3x = 15 → x = 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品试卷,请参考使用,祝老师、同学们取得好成绩!七年级下册数学试卷全套第五章相交线与平行线测试题一、选择:1、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是 ( )A 第一次右拐50°,第二次左拐130 °B 第一次左拐50 °,第二次右拐50 °C 第一次左拐50 °,第二次左拐130 °D 第一次右拐50 °,第二次右拐50 °2、下列句子中不是命题的是 ( )A 、两直线平行,同位角相等。
B 、直线AB 垂直于CD 吗?C 、若︱a ︱=︱b ︱,则a 2 = b 2。
D 、同角的补角相等。
3、平面内有两两相交的4条直线,如果最多有m 个交点,最少有n 个交点,则m-n=( )A 3B 4C 5D 64、“两直线相交只有一个交点”题设是( )A 两直线B 相交C 只有一个交点D 两直线相交5、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,的位置.若∠EFB =65°,则∠AED′等于 ( )A .70°B .65°C .50°D .25°6、如图,直线AB CD 、相交于点E ,若°=∠100AEC ,则D ∠等于( )A .70°B .80°C .90°D .100°7、如图直线1l ∥2l ,则∠ 为( ).8、如图,已知AB ∥CD,若∠A=20°,∠E=35°,则∠C 等于( ).A.20°B. 35°C. 45°D.55°9、在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=30o 时,∠BOD 的度数是( ).A .60oB .120oC .60o 或 90oD .60o 或120o 10、30°角的余角是( )A .30°角B .60°角C .90°角D .150°角二、填空:1、x 的补角是3y,x=30°,则|x-y|的值是( )。
2、图形平移后对应点所连的线段( )且( )。
3、若两个角互为邻补角且度数之比为2:3,这两个角的度数分别为( )。
4、∠A 的邻补角是∠A 的2倍,则∠A 的度数是( )。
E D B C′ F C D ′ A 5题 CA EB F D6题5、一个角的余角是这个角的补角的1/3,这个角的度数是( )。
6、在某一时刻钟表的时针和分针垂直,这一时刻可能是( )(写出一种即可)7、如图,AD ∥BC ,BD 平分∠ABC ,且°=∠100A ,则=∠D ( )。
8、AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =( )9、如图所示,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E 的度数为( )10、如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠1=47°,则∠2的大小是( )三、判断:(1)对顶角的余角相等.( )(2)邻补角的角平分线互相垂直.( )(3)平面内画已知直线的垂线,只能画一条.( )(4)在同一个平面内不相交的两条直线叫做平行线.( )(5)如果一条直线垂直于两条平行线中的一条直线,那么这条直线垂直于平行线中的另一条直线.( )(6)两条直线被第三条直线所截,两对同旁内角的和等于一个周角.( )(7)点到直线的距离是这点到这条直线的垂线的长.( )(8)“过直线外一点,有且只有一条直线平行于已知直线”是公理.( )四、解答题:1、如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.(1) (2) (3) (4)2、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.3、如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的度数.PD C B AP D C B A P D C B A P D C B A ED C BA A DC B 7题第六章平面直角坐标系基础训练题一、填空题1、原点O 的坐标是 ,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M (a ,0)在 轴上。
2、点A (﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。
点A 关于x 轴对称的点的坐标为3、已知点M ()y x ,与点N ()3-,2-关于x 轴对称,则______=+y x 。
4、已知点P ()3,3b a +与点Q ()b a 2,5-+关于x 轴对称,则___________==b a 。
5、点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 。
6、线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为______________。
7、在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。
8、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________ 。
9、已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 。
10、A (– 3,– 2)、B (2,– 2)、C (– 2,1)、D (3,1)是坐标平面内的四个点,则线段AB 与CD 的关系是_________________。
11、在平面直角坐标系内,有一条直线PQ 平行于y 轴,已知直线PQ 上有两个点,坐标分别为(-a ,-2)和(3,6),则 a 。
12 、点A 在x 轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为 ;13、在Y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为___________________。
14、在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于 个单位长度。
线段PQ 的中点的坐标是________________。
15、已知P 点坐标为(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是_________________________________________________。
16、已知点A (-3+a ,2a+9)在第二象限的角平分线上,则a 的值是____________。
17、已知点P (x ,-y )在第一、三象限的角平分线上,由x 与y 的关系是_____________。
18、若点B(a ,b)在第三象限,则点C(-a+1,3b -5) 在第____________象限。
19、如果点M (x+3,2x -4)在第四象限内,那么x 的取值范围是______________。
20、已知点P 在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P 。
点K 在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 。
21、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是________________。
22、已知0=mn ,则点(m ,n )在 。
二、选择题1、在平面直角坐标系中,点()1,1-2+m 一定在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、如果点A (a.b )在第三象限,则点B (-a+1,3b -5)关于原点的对称点是( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限3、点P (a ,b )在第二象限,则点Q(a-1,b+1)在( )(A ) 第一象限 (B ) 第二象限 (C ) 第三象限 (D)第四象限4、若4,5==b a ,且点M (a ,b )在第二象限,则点M 的坐标是( )A 、(5,4)B 、(-5,4)C 、(-5,-4)D 、(5,-4)6、△DEF (三角形)是由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-1),则点B (1,1)的对应点E 、点C (-1,4)的对应点F 的坐标分别为( )A 、(2,2),(3,4)B 、(3,4),(1,7)C 、(-2,2),(1,7)D 、(3,4),(2,-2)7、过A (4,-2)和B (-2,-2)两点的直线一定( )A .垂直于x 轴B .与Y 轴相交但不平于x 轴B . 平行于x 轴 D .与x 轴、y 轴平行8、已知点A ()b a 2,3在x 轴上方,y 轴的左边,则点A 到x 轴、y 轴的距离分别为( )A 、b a 2-,3B 、b a 2,3-C 、a b 3-,2D 、a b 3,2-9、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( )A (-1,1)B (-1,2)C (-2,1)D (-2,2)10、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)11、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)12、在直角坐标系内顺次连结下列各点,不能得到正方形的是( )A 、(-2,2) (2,2) (2,-2) (-2,-2) (-2,2);B 、(0,0) (2,0) (2,2) (0,2) (0,0);C 、(0,0) (0,2) (2,-2) (-2,0) (0,0);D 、(-1,-1) (-1,1) (1,1) (1,-1) (-1,-1)。
13、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )A 、(-2,2),(3,4),(1,7);B 、(-2,2),(4,3),(1,7);C 、(2,2),(3,4),(1,7);D 、(2,-2),(3,3),(1,7)14、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位14、若点P(m -1, m )在第二象限,则下列关系正确的是( )A 10<<mB 0<mC 0>mD 1>m三、解答题1、在图所示的平面直角坐标系中表示下面各点:A (0,3);B (1,-3);C (3,-5);D (-3,-5);E (3,5);F (5,7);G (5,0)(1)A 点到原点O 的距离是 。