四川省巴中市平昌县2020年中考数学模拟试卷(Word版,含答案解析)

合集下载

巴中市2020年中考数学押题卷及答案

巴中市2020年中考数学押题卷及答案

巴中市2020年中考数学押题卷及答案注意事项:1. 本试卷共5页,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在﹣4,2,﹣1,3这四个数中,最小的数是()A.-1 B. 3 C.2 D. -4≤x<3表示在数轴上,下列表示正确的是()2.将某不等式组的解集13.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A.35°B.25°C.65°D.50°4.下列图形中,是中心对称图形,但不是轴对称图形的是()A. B.C. D.5. 已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是( )A. ①②都有实数解B. ①无实数解,②有实数解C. ①有实数解,②无实数解D. ①②都无实数解6. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )A. 图象关于直线x=1对称B. 函数y=ax2+bx+c(a≠0)的最小值是﹣4C. ﹣1和3是方程ax2+bx+c(a≠0)=0的两个根D. 当x<1时,y随x的增大而增大7.计算,其结果是()A.2 B.3 C.x+2 D.2x+68.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个C.4个 D.5个9.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=28 B. x(x﹣1)=28C.x(x+1)=28 D.x(x﹣1)=2810.在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,611.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A. B. C.4 D.2+12.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC 与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x 之间的函数关系的图象大致是()A. B.C. D.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:ax2﹣2ax+a=.14.将数12000000科学记数法表示为________.15.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_______.16.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.17.如图,与抛物线y=x2﹣2x﹣3关于直线x=2成轴对称的函数表达式为.18.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.(本题10分)先化简,再求值:,其中x=﹣1.20.(本题10分)已知:如图,在△ABC中,点D、E分别在边BC和AB上,且AD=AC,EB=ED,分别延长ED、AC 交于点F.(1)求证:△ABD∽△FDC;(2)求证:AE2=BE•EF.21.(本题10分)目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.22.(本题12分)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.23.(本题12分)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.24.(本题12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且O A=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.(1)求抛物线的解析式;(2)当PO+PC的值最小时,求点P的坐标;(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.参考答案第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.B3.A4.A5.B6.D7.A8.D9.B 10.A 11.B 12.A第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.a(x﹣1)2 14. 1.2×107 15. 16.﹣ 17.y=(x﹣3)2﹣4 18.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.解:原式=•=•=当x=﹣1时,原式==20.证明:(1)∵AD=AC,∴∠ADC=∠ACD,∵BE=DE,∴∠B=∠BDE,∵∠BDE=∠CDF,∴∠CDF=∠B,∵∠BAD=∠ADC﹣∠B,∠F=∠ACD﹣∠CDF,∴∠BAD=∠F,∴△ABD∽△FDC;(2)∵∠EAD=∠F,∠AED=∠FEA,∴△AED∽△FEA,∴=,∴AE2=DE•EF,∵BE=DE,∴AE2=BE•EF.21.解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率==.22.证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.23.解:作BC⊥PA交PA的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD=,∴tan14°=,即0.25=,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC==,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB==19.5,即电梯AB的坡度是5:12,长度是19.5米.24. 解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线的顶点的横坐标为2,∵顶点在BC边上,∴抛物线顶点坐标为(2,3),设抛物线解析式为y=a(x﹣2)2+3,把(0,0)坐标代入可得0=a(0﹣2)2+3,解得a=,∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;(2)连接PA,如图,∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC=PA+PC.当点P与点D重合时,PA+PC=AC;当点P不与点D重合时,PA+PC>AC;∴当点P与点D重合时,PO+PC的值最小,设直线AC的解析式为y=kx+b,根据题意,得,解得∴直线AC的解析式为y=﹣x+3,当x=2时,y=﹣x+3=,则D(2,),∴当PO+PC的值最小时,点P的坐标为(2,);(3)存在.当以AC为对角线时,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P (2,0);当AC为边时,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,y=x2+3x=﹣9,此时Q(6,﹣9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,﹣6);当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为﹣2,当x=﹣2时,y=x2+3x=﹣9,此时Q(﹣2,﹣9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,﹣12);综上所述,P(2,0),Q(2,3)或P(2,﹣6),Q(6,﹣9)或P(2,﹣12),Q(﹣2,﹣9).11。

巴中市中考数学试卷及答案解析(word版)

巴中市中考数学试卷及答案解析(word版)

2020年四川省巴中市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(2020年四川巴中)﹣的相反数是()A.﹣B.C.﹣5 D. 5分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:﹣的相反数是,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2020年四川巴中)2020年三月发生了一件举国悲痛的空难事件﹣﹣马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,在搜救方面花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为()元.A.9.34×102B.0.934×103C.9.34×109D.9.34×1010分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150千万有11位,所以可以确定n=11﹣1=10.解:934千万=934 00 000 000=9.34×1010.故选:D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(2020年四川巴中)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°分析:根据角平分线的定义可得∠FCM=∠ACF,再根据两直线平行,同位角相等可得∠B=∠FCM.解:∵CF是∠ACM的平分线,∴∠FCM=∠ACF=50°,∵CF∥AB,∴∠B=∠FCM=50°.故选D.点评:本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.4.(2020年四川巴中)要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1D.m≥﹣1且m≠1分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:,解得:m≥﹣1且m≠1.故选D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.(2020年四川巴中)如图,两个大小不同的实心球在水平面靠在一起组成如图所示的几何体,则该几何体的左视图是()A.两个外切的圆B.两个内切的圆C.两个内含的圆D.一个圆分析:根据左视图是从左面看得到的视图,圆的位置关系解答即可.解:从左面看,为两个内切的圆,切点在水平面上,所以,该几何体的左视图是两个内切的圆.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.(2020年四川巴中)今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有()A.4个B.3个C.2个 D.1个分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.点评:本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7.(2020年四川巴中)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.分析:根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,也不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、是轴对称图形,不是中心对称图形.故本选项错误.故选C.点评:考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.(2020年四川巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为() A.B.C. D.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.9.(2020年四川巴中)已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限分析:根据m+n=6,mn=8,可得出m与n为同号且都大于0,再进行选择即可.解:∵mn=8>0,∴m与n为同号,∵m+n=6,∴m>0,n>0,∴直线y=mx+n经过第一、二、三象限,故选B.点评:本题考查了一次函数图象在坐标平面内的位置与m、n的关系.解答本题注意理解:直线y=mx+n所在的位置与m、n的符号有直接的关系.m>0时,直线必经过一、三象限.m<0时,直线必经过二、四象限.n>0时,直线与y轴正半轴相交.n=0时,直线过原点;n<0时,直线与y轴负半轴相交.10.(2020年四川巴中)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A. abc<0 B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y <0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.解:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(共10小题,每小题3分,满分30分)11.(2020年四川巴中)若一个正多边形的一个内角等于135°,那么这个多边形是正边形.分析:一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180﹣135=45度,360÷45=8,则这个多边形是八边形.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.(2020年四川巴中)若分式方程﹣=2有增根,则这个增根是.分析:分式方程变形后,去分母转化为整式方程,根据分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.解:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.(3分)(2020年四川巴中)分解因式:3a2﹣27= .分析:应先提取公因式3,再对余下的多项式利用平方差公式继续分解.解:3a2﹣27=3(a2﹣9)=3(a2﹣32)=3(a+3)(a﹣3).点评:本题考查了提公因式法和平方差公式分解因式,需要进行二次分解因式,分解因式要彻底.14.(2020年四川巴中)已知一组数据:0,2,x,4,5的众数是4,那么这组数据的中位数是.分析:根据众数为4,可得x=4,然后把这组数据按照从小到大的顺序排列,找出中位数.解:∵数据0,2,x,4,5的众数是4,∴x=4,这组数据按照从小到大的顺序排列为:0,2,4,4,5,则中位数为:4.故答案为:4.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.(2020年四川巴中)若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.解:设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n,根据题意得4π=,解得n=180°.故答案为180°.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(2020年四川巴中)菱形的两条对角线长分别是方程x2﹣14x+48=0的两实根,则菱形的面积为.分析:菱形的对角线互相垂直,四边形的对角线互相垂直的话,面积等于对角线乘积的一半,先解出方程的解,可求出结果.解:x2﹣14x+48=0x=4或x=12.所以菱形的面积为:(4×12)÷2=24.菱形的面积为:24.故答案为:24.点评:本题考查菱形的性质,菱形的对角线互相垂直,以即对角线互相垂直的四边形的面积的特点和根与系数的关系.17.(2020年四川巴中)如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是.分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.解:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°,∴∠BOC=2∠A=70°.故答案为70°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.(2020年四川巴中)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.分析:首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA,进而得出B′的坐标.解:直线y=﹣x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,即横坐标为OA+OB=OA+O′B′=3+4=7.故点B′的坐标是(7,3).故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B和点B′位置的特殊性,以及点B'的坐标与OA和OB的关系.19.(2020年四川巴中)在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.分析:列表得出所有等可能的情况数,找出能判定四边形ABCD是平行四边形的情况数,即可求出所求的概率.解:列表如下:1 2 3 41 ﹣﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣﹣所有等可能的情况有12种,其中能判定出四边形ABCD为平行四边形的情况有8种,分别为(2,1);(3,1);(1,2);(4,2);(1,3);(4,3);(2,4);(3,4),则P==.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(2020年四川巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4= .分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n 的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.三、解答题(共3小题,满分15分)21.(2020年四川巴中)计算:|﹣|+sin45°+tan60°﹣(﹣)﹣1﹣+(π﹣3)0.分析:原式第一项利用绝对值的代数意义化简,第二、三项利用特殊角的三角函数值计算,第四项利用负指数幂法则计算,第五项化为最简二次根式,最后一项利用零指数幂法则计算即可得到结果.解:原式=+×+﹣(﹣3)﹣2+1=+1++3﹣2+1=5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(2020年四川巴中)定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.分析:首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.解:3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:<x<.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.23.(2020年四川巴中)先化简,再求值:(+2﹣x)÷,其中x 满足x2﹣4x+3=0.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解:原式=÷=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式的值有意义.四、操作与统计(共2小题,满分15分)24.(2020年四川巴中)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C 2,请画出△A2B2C2.(3)求△A1B1C1与△A2B2C2的面积比,即:= 1:4 (不写解答过程,直接写出结果).分析:(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1:2,∴:=1:4.故答案为:1:4.点评:此题主要考查了位似变换以及轴对对称变换,得出对应点位置是解题关键.25.(2020年四川巴中)巴中市对初三年级学生的体育、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定为A,B,C,D四个等级.现抽取这三种成绩共1000份进行统计分析,其中A,B,C,D分别表示优秀,良好,合格,不合格四个等级.相关数据统计如下表及图所示.A B C D物理实验操作120 70 90 20化学实验操作90 110 30 20体育123 140 160 27(1)请将上表补充完整(直接填数据,不写解答过程).(2)巴中市共有40000名学生参加测试,试估计该市初三年级学生化学实验操作合格及合格以上大约有多少人?(3)在这40000名学生中,体育成绩不合格的大约有多少人?分析:(1)根据体育、物理实验操作、化学实验操作所占的百分比求得人数,然后减去其他等级的人数,从而完整表格;(2)用全市所有人数乘以化学实验操作合格及合格以上所占的百分比即可;(3)用全市所有人数乘以体育成绩不合格的所占的百分比即可;解:(1)A B C D物理实验操作120 70 90 20化学实验操作90 110 30 20体育123 140 160 27(2)初三年级学生化学实验操作合格及合格以上大约有40000×=36800人;(3)40000名学生中,体育成绩不合格的大约有40000×≈1963人.点评:本题考查了扇形统计图的知识,解题的关键是仔细的读图,并从统计图中整理出进一步解题的有关信息.五、方程及解直角三角形的应用(共2小题,满分18分)26.(2020年四川巴中)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?分析:利用销售利润=售价﹣进价,根据题中条件可以列出利润与x的关系式,求出即可.解:设每个商品的定价是x元,由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.x1=50时,进货180﹣10(x﹣52)=200个,不符合题意舍去.答:当该商品每个单价为60元时,进货100个.点评:此题主要考查了一元二次方程的应用;找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.27.((2020年四川巴中)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)°.分析:过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,在Rt△ABE中,BE=20米,=,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=CFcot∠D=20米,∴AD=AE+EF+FD=50+6+20≈90.6(米).故坝底AD的长度约为90.6米.点评:本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.六、推理(共2小题,满分20分)28.(2020年四川巴中)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH 时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.29.(2020年四川巴中)如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN 于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.分析(1)根据垂直定义得出∠BGD=∠DMA=90°,由圆周角定理、三角形内角和定理、对顶角性质及等角的余角相等得出∠DBG=∠ADM,再根据两角对应相等的两三角形相似即可证明△BGD∽△DMA;(2)连结OD.由三角形中位线的性质得出OD∥AC,根据垂直于同一直线的两直线平行得出AC∥BG,由平行公理推论得到OD∥BG,再由BG⊥MN,可得OD⊥MN,然后根据切线的判定定理即可证明直线MN是⊙O的切线.证明:(1)∵MN⊥AC于点M,BG⊥MN于G,∴∠BGD=∠DMA=90°.∵以AB为直径的⊙O交BC于点D,∴AD⊥BC,∠ADC=90°,∴∠ADM+∠CDM=90°,∵∠DBG+∠BDG=90°,∠CDM=∠BDG,∴∠DBG=∠ADM.在△BGD与△DMA中,,∴△BGD∽△DMA;(2)连结OD.∵BO=OA,BD=DC,∴OD是△ABC的中位线,∴OD∥AC.∵MN⊥AC,B G⊥MN,∴AC∥BG,∴OD∥BG,∵BG⊥MN,∴OD⊥MN,∴直线MN是⊙O的切线.点评:本题主要考查了切线的判定,相似三角形的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.七、函数的综合运用(共1小题,满分10分)30.(2020年四川巴中)如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中x+b.点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式kx+b﹣>0的解集.2分析:(1)先利用矩形的性质确定C点坐标(6,4),再确定A点坐标为(3,2),则根据反比例函数图象上点的坐标特征得到k=6,即反比例函数解析式为y=;然1后利用反比例函数解析式确定F点的坐标为(6,1),E点坐标为(,4),再利用待定系数法求直线EF的解析式;(2)利用△OEF的面积=S矩形BCDO ﹣S△ODE﹣S△OBF﹣S△CEF进行计算;(3)观察函数图象得到当<x<6时,一次函数图象都在反比例函数图象上方,即k2x+b>.解:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),∴C点坐标为(6,4),∵点A为线段OC的中点,∴A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;把x=6代入y=得x=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),把F(6,1)、E(,4)代入y=k2x+b得,解得,∴直线EF的解析式为y=﹣x+5;(2)△OEF的面积=S矩形BCDO ﹣S△ODE﹣S△OBF﹣S△CEF=4×6﹣×6﹣×6﹣×(6﹣)×(4﹣1)=;(3)不等式k2x+b﹣>0的解集为<x<6.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法确定函数解析式.八、综合运用(共1小题,满分12分)31.(2020年四川巴中)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x 轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH 的面积S的函数关系式,并求出S的最大值.分析:(1)根据抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,得到方程组,解方程组即可求出抛物线的解析式;(2)由于点M到达抛物线的对称轴时需要3秒,所以t≤3,又当点M到达原点时需要2秒,且此时点H立刻掉头,所以可分两种情况进行讨论:①当0<t≤2时,由△AMP∽△AOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;②当2<t≤3时,过点P作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可.解:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,∴,解得:,∴抛物线的解析式是:y=x2﹣x﹣4,(2)分两种情况:①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC,∴=,即=,∴PM=2t.解方程x2﹣x﹣4=0,得x1=﹣2,x2=4,∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6.∵AH=AB﹣BH=6﹣t,∴S=PM•AH=×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,当t=2时S的最大值为8;②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP,又∵CO=OB,∴F P=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1,∴S=PM•AH=(6﹣t)(t+1)=﹣t2+4t+3=﹣(t﹣)2+,当t=时,S最大值为.综上所述,点M的运动时间t与△APQ面积S的函数关系式是S=,S的最大值为.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键..。

【解析版】四川省巴中市平昌县中考数学一模试卷

【解析版】四川省巴中市平昌县中考数学一模试卷

四川省巴中市平昌县中考数学一模试卷一、选择题:(30分,共计10小题.)1.的相反数是()A. B. C.﹣ D.﹣2.对右图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形3.,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A. 1.2×10﹣9米 B. 1.2×10﹣8米 C. 12×10﹣8米 D. 1.2×10﹣7米4.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A. B. C. D.5.要使+有意义,则x应满足()A.≤x≤3 B. x≤3且x≠ C.<x<3 D.<x≤36.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()A. 4个 B. 5个 C. 10个 D. 12个7.下列各式计算正确的是()A. m2•m3=m6B.C.D.(a<1)8.“服务他人,提升自我”,学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A. B. C. D.9.一辆汽车从甲地开往乙地,开始以正常速度匀速行驶,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机加快了行驶速度并匀速行驶.下面是汽车行驶路程S(千米)关于时间t(小时)的函数图象,那么能大致反映汽车行驶情况的图象是()A. B.C. D.10.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.cm B.cm C.cm D.cm二、填空题:(30分,共计10小题.)11.因式分解:x2y4﹣x4y2= .12.已知x、y为实数,且+(y+2)2=0,则y x= .13.如图,AC、BD相交于O,AB∥DC,AB=BC,∠D=40°,∠ACB=35°,则∠AOD= .14.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是.15.已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过.16.已知实数x满足x2++x﹣=4,则x﹣的值是.17.已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是.18.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)19.下图是用火柴棍摆放的1个、2个、3个…六边形,那么摆100个六边形,需要火柴棍根.20.在平面直角坐标系中,如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标为x1、x2,其中﹣2<x1<﹣1,0<x2<1,则下列结论:①abc>0,②4a﹣2b+c<0,③当x>0时,函数值随x的增长而减少,④当x1<x<x2时,则y>0.其中正确的是(写出你认为正确的所有结论序号).三、解答题:(90分,共计9小题.)21.先化简,再求值:﹣÷+,其中x=﹣22++2(tan45°﹣cos30°)0.22.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.23.如图,已知反比例函数(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?24.课外阅读是提高学生素养的重要途径,亚光初中为了了解学校学生的阅读情况,组织调查组对全校三个年级共1500名学生进行了抽样调查,抽取的样本容量为300.已知该校有初一学生600名,初二学生500名,初三学生400名.(1)为使调查的结果更加准确地反映全校的总体情况,应分别在初一年级随机抽取人;在初二年级随机抽取人;在初三年级随机抽取人.(请直接填空)(2)调查组对本校学生课外阅读量的统计结果分别用扇形统计图和频数分布直方图表示如下请根据上统计图,计算样本中各类阅读量的人数,并补全频数分布直方图.(3)根据(2)的调查结果,从该校中随机抽取一名学生,他最大可能的阅读量是多少本?为什么?25.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.26.如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.(1)求⊙O的半径长;(2)求线段CF长.27.已知,如图,在笔山银子岩坡顶A处的同一水平面上有一座移动信号发射塔BC,笔山职中数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)移动信号发射塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)28.如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长及H点的坐标;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.四川省巴中市平昌县中考数学一模试卷参考答案与试题解析一、选择题:(30分,共计10小题.)1.的相反数是()A. B. C.﹣ D.﹣考点:实数的性质.分析:由于互为相反数的两个数和为0,由此即可求解.解答:解:的相反数为:﹣.故选:C.点评:此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重点.2.对右图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:由图形的对称性知右图不是轴对称图形,是中心对称图形.故选:B.点评:掌握好中心对称图形与轴对称图形的概念.①轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;②中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A. 1.2×10﹣9米 B. 1.2×10﹣8米 C. 12×10﹣8米 D. 1.2×10﹣7米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000012=1.2×10﹣7.故选:D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A. B. C. D.考点:简单组合体的三视图.分析:俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.解答:解:从上面看,正三棱柱的俯视图是正三角形,圆柱的俯视图是圆,且正三角形在圆内.故选:C.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.要使+有意义,则x应满足()A.≤x≤3 B. x≤3且x≠C.<x<3 D.<x≤3考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()A. 4个 B. 5个 C. 10个 D. 12个考点:一元一次方程的应用.分析:设有x个小朋友,根据苹果数量一定,可得出方程,解出即可.解答:解:设有x个小朋友,由题意得,3x﹣3=2x+2,解得:x=5.故选:B.点评:本题考查了一元一次方程的应用,解答本题的关键是根据苹果的分配情况得出方程.7.下列各式计算正确的是()A. m2•m3=m6B.C.D.(a<1)考点:二次根式的乘除法;同底数幂的乘法.分析:根据同底数幂的乘法法则、二次根式和立方根的化简等分别判断.解答:解:A、m2•m3=m5,故选项错误;B、==,故选项错误;C、=,故选项错误;D、正确.故选:D.点评:正确理解同底数幂的乘法法则、二次根式和立方根的化简等是解答问题的关键.8.“服务他人,提升自我”,学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A. B. C. D.考点:列表法与树状图法.专题:压轴题;图表型.分析:画出树状图,然后根据概率公式列式计算即可得解.解答:解:根据题意画出树状图如下:一共有20种情况,恰好是一男一女的有12种情况,所以,P(恰好是一男一女)==.故选:D.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9.一辆汽车从甲地开往乙地,开始以正常速度匀速行驶,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机加快了行驶速度并匀速行驶.下面是汽车行驶路程S(千米)关于时间t(小时)的函数图象,那么能大致反映汽车行驶情况的图象是()A. B.C. D.考点:函数的图象.专题:行程问题.分析:要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.解答:解:通过分析题意可知,行走规律是:匀速走﹣﹣停﹣﹣匀速走,速度是前慢后快.所以图象是.点评:主要考查了函数图象的读图能力.10.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.cm B.cm C.cm D.cm考点:菱形的性质;勾股定理;解直角三角形.分析:先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.解答:解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm,在Rt△AOB中,AB==5cm,∵BD×AC=AB×DH,∴DH=cm,在Rt△DHB中,BH==cm,则AH=AB﹣BH=cm,∵tan∠HAG===,∴GH=AH=cm.故选:B.点评:本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.二、填空题:(30分,共计10小题.)11.因式分解:x2y4﹣x4y2= x2y2(y﹣x)(y+x).考点:提公因式法与公式法的综合运用.分析:首先提取公因式x2y2,再利用平方差进行二次分解即可.解答:解:原式=x2y2(y2﹣x2)=x2y2(y﹣x)(y+x).故答案为:x2y2(y﹣x)(y+x).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.已知x、y为实数,且+(y+2)2=0,则y x= ﹣8 .考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以,y x=(﹣2)3=﹣8.故答案为:﹣8.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.如图,AC、BD相交于O,AB∥DC,AB=BC,∠D=40°,∠ACB=35°,则∠AOD=75°.考点:平行线的性质;等腰三角形的性质.分析:根据AB=BC,可得出∠BAC=∠ACB=35°,根据AB∥CD,可得∠D=∠ABD,继而利用三角形的外角的知识可求出∠AOD的度数.解答:解:∵AB=BC,∴∠BAC=∠ACB=35°,∵AB∥CD,∴∠D=∠ABD=40°,∴∠AOD=∠ABD+∠BAC=75°.故答案为:75°.点评:本题考查了平行线的性质及等腰三角形的性质,解答本题的关键是掌握两直线平行内错角相等,及等腰三角形的性质.14.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3).考点:坐标与图形变化-平移.分析:先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.解答:解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).点评:本题考查了平移变换的知识,注意左右平移纵坐标不变,上下平移横坐标不变.15.已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过第一、二、三象限.考点:一次函数图象与系数的关系.分析:根据m+n=6,mn=8,可得出m与n为同号且都大于0,再根据一次函数图象与系数的关系即可求解.解答:解:∵mn=8>0,∴m与n为同号,∵m+n=6,∴m>0,n>0,∴直线y=mx+n经过第一、二、三象限,故答案为第一、二、三象限.点评:本题考查了一次函数图象在坐标平面内的位置与m、n的关系.解答本题注意理解:直线y=mx+n所在的位置与m、n的符号有直接的关系.m>0时,直线必经过一、三象限.m<0时,直线必经过二、四象限.n>0时,直线与y轴正半轴相交;n=0时,直线过原点;n<0时,直线与y轴负半轴相交.16.已知实数x满足x2++x﹣=4,则x﹣的值是1或﹣2 .考点:换元法解分式方程.分析:设x﹣=t,则原方程利用完全平方公式转化为关于t的一元二次方程t2+t+2=4,通过解该方程求得t即x﹣的值.解答:解:x﹣=t,则由原方程,得t2+t+2=4,整理,得(t﹣1)(t+2)=0,解得 t=1或t=﹣2,所以 x﹣的值是 1或﹣2.故答案是:1或﹣2.点评:本题考查了换元法解分式方程.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.17.已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是6或12或10 .考点:根的判别式;解一元二次方程-因式分解法;三角形三边关系.专题:计算题;压轴题.分析:根据题意得k≥0且(3)2﹣4×8≥0,而整数k<5,则k=4,方程变形为x2﹣6x+8=0,解得x1=2,x2=4,由于△ABC的边长均满足关于x的方程x2﹣6x+8=0,所以△ABC的边长可以为2、2、2或4、4、4或4、4、2,然后分别计算三角形周长.解答:解:根据题意得k≥0且(3)2﹣4×8≥0,解得k≥,∵整数k<5,∴k=4,∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4,∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,∴△ABC的边长为2、2、2或4、4、4或4、4、2.∴△ABC的周长为6或12或10.故答案为:6或12或10..点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了因式分解法解一元二次方程以及三角形三边的关系.18.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)考点:正多边形和圆.专题:计算题.分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.解答:解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.点评:此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.19.下图是用火柴棍摆放的1个、2个、3个…六边形,那么摆100个六边形,需要火柴棍501 根.考点:规律型:图形的变化类.分析:平面图形的有规律变化,要求学生通过观察图形.解答:解:根据题意分析可得:搭第1个图形需6根火柴;此后,每个图形都比前一个图形多用5根;那么摆100个六边形,需要火柴棍6+99×5=501根.故答案为:501.点评:此题考查了分析、归纳并发现其中的规律,并应用规律解决问题.20.在平面直角坐标系中,如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标为x1、x2,其中﹣2<x1<﹣1,0<x2<1,则下列结论:①abc>0,②4a﹣2b+c<0,③当x>0时,函数值随x的增长而减少,④当x1<x<x2时,则y>0.其中正确的是①②③④(写出你认为正确的所有结论序号).考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①如图所示,抛物线的对称轴在y轴的左侧,则a、b同号,即ab>0,.抛物线与y轴交于正半轴,则c>0,所以abc>0,故①正确;②如图所示,当x=﹣2时,y<0,则y=4a﹣2b+c<0,故②正确;③如图所示,当x>0时,函数值随x的增长而减少,故③正确;④如图所示,当x1<x<x2时,则y>0,故④正确;综上所述,正确的结论是:①②③④.故答案是:①②③④.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答题:(90分,共计9小题.)21.先化简,再求值:﹣÷+,其中x=﹣22++2(tan45°﹣cos30°)0.考点:分式的化简求值;零指数幂;特殊角的三角函数值.专题:计算题.分析:先把分式化简,再把x的值化简,最后代入求值.解答:解:原式==.∵,∴原式=.点评:考查了分式的混合运算以及实数的基本运算.22.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.考点:作图-轴对称变换.分析:(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.做BM⊥直线l 于点M,并延长到B1,使B1M=BM,同法得到A,C的对应点A1,C1,连接相邻两点即可得到所求的图形;(2)由图得四边形BB1 C1C是等腰梯形,BB1=4,CC1=2,高是4,根据梯形的面积公式进行计算即可.解答:解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=,==12.点评:此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.23.如图,已知反比例函数(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?考点:反比例函数与一次函数的交点问题.分析:(1)设OC=m.根据已知条件得,AC=2,则得出A点的坐标,从而得出反比例函数的解析式和一次函数的表达式;(2)易得出点B的坐标,反比例函数y1的图象在一次函数y2的图象的上方时,即y1大于y2.解答:解:(1)在Rt△OAC中,设OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1,m=﹣1(舍去).∴m=1,∴A点的坐标为(1,2).把A点的坐标代入中,得k1=2.∴反比例函数的表达式为.把A点的坐标代入y2=k2x+1中,得k2+1=2,∴k2=1.∴一次函数的表达式y2=x+1;(2)B点的坐标为(﹣2,﹣1).当0<x<1或x<﹣2时,y1>y2.点评:本题考查了一次函数和反比例函数的交点问题,以及用待定系数法求二次函数的解析式,是基础知识要熟练掌握.24.课外阅读是提高学生素养的重要途径,亚光初中为了了解学校学生的阅读情况,组织调查组对全校三个年级共1500名学生进行了抽样调查,抽取的样本容量为300.已知该校有初一学生600名,初二学生500名,初三学生400名.(1)为使调查的结果更加准确地反映全校的总体情况,应分别在初一年级随机抽取120 人;在初二年级随机抽取100 人;在初三年级随机抽取80 人.(请直接填空)(2)调查组对本校学生课外阅读量的统计结果分别用扇形统计图和频数分布直方图表示如下请根据上统计图,计算样本中各类阅读量的人数,并补全频数分布直方图.(3)根据(2)的调查结果,从该校中随机抽取一名学生,他最大可能的阅读量是多少本?为什么?考点:频数(率)分布直方图;扇形统计图.专题:压轴题.分析:(1)根据该校有初一学生600名,初二学生500名,初三学生400名,抽取的样本容量为300,分别求出各年级所占比例,即可得出答案;(2)求出其他占调查总数的百分比,进而得出各段人数画出条形图即可.(3)根据扇形图可知10本以上所占比例最大,即可得出从该校中随机抽取一名学生,他最大可能的阅读量是10本以上.解答:解:(1)∵该校有初一学生600名,初二学生500名,初三学生400名,抽取的样本容量为300,∴应分别在初一年级随机抽取300×=120人;在初二年级随机抽取300×=100人;在初三年级随机抽取300×=80人.故答案为:120,100,80;(2)根据扇形图得出:6~10本的有300×=60(人),300×(1﹣6%﹣22%﹣×100%)=156(人),0本的有300×6%=18(人),1~5本的有300×22%=66(人),补全频数分布直方图,如图所示:(3)根据扇形图可知10本以上所占比例最大,故从该校中随机抽取一名学生,他最大可能的阅读量是10本以上.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.考点:根的判别式;一元二次方程的解;勾股定理.分析:(1)根据关于x的方程x2﹣(m+2)x+(2m﹣1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,由勾股定理得斜边的长度为:;②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理得该直角三角形的另一直角边为;再根据三角形的周长公式进行计算.解答:(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.点评:本题综合考查了勾股定理、根的判别式、一元二次方程解的定义.解答(2)时,采用了“分类讨论”的数学思想.26.如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.(1)求⊙O的半径长;(2)求线段CF长.考点:切线的性质;垂径定理;解直角三角形.专题:计算题.分析:(1)过O作OH垂直于AC,利用垂径定理得到H为AC中点,求出AH的长为4,根据同弧所对的圆周角相等得到tanA=tan∠BDC,求出OH的长,利用勾股定理即可求出圆的半径OA的长;(2)由AB垂直于CD得到E为CD的中点,得到EC=ED,在直角三角形AEC中,由AC的长以及tanA的值求出CE与AE的长,由FB为圆的切线得到AB垂直于BF,得到CE与FB平行,由平行得比例列出关系式求出AF的长,根据AF﹣AC即可求出CF的长.解答:解:(1)作OH⊥AC于H,则AH=AC=4,在Rt△AOH中,AH=4,tanA=tan∠BDC=,∴OH=3,∴半径OA==5;(2)∵AB⊥CD,∴E为CD的中点,即CE=DE,在Rt△AEC中,AC=8,tanA=,设CE=3k,则AE=4k,根据勾股定理得:AC2=CE2+AE2,即9k2+16k2=64,解得:k=,则CE=DE=,AE=,∵BF为圆O的切线,∴FB⊥AB,又∵AE⊥CD,∴CE∥FB,∴=,即=,解得:AF=,则CF=AF﹣AC=.点评:此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.27.已知,如图,在笔山银子岩坡顶A处的同一水平面上有一座移动信号发射塔BC,笔山职中数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)移动信号发射塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.解答:解:(1)过点A作AH⊥PO,垂足为点H,∵斜坡AP的坡度为1:2.4,∴=,设AH=5k,则PH=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AH=10,答:坡顶A到地面PQ的距离为10米.。

2019-2020学年3月四川省巴中市平昌县中考数学模拟试卷((有标准答案))

2019-2020学年3月四川省巴中市平昌县中考数学模拟试卷((有标准答案))

四川省巴中市平昌县中考数学模拟试卷(3月份)一.选择题(共10小题,满分30分,每小题3分)1.下列等式正确的是( )A .()2=3 B .=﹣3 C .=3 D .(﹣)2=﹣3 2.若成立,则( ) A .a ≥0,b ≥0 B .a ≥0,b ≤0 C .ab ≥0 D .ab ≤03.若要得到函数y =(x +1)2+2的图象,只需将函数y =x 2的图象( )A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度4.已知⊙O 1与⊙O 2的半径分别是3cm 和5cm ,两圆的圆心距为4cm ,则两圆的位置关系是( )A .相交B .内切C .外离D .内含5.若一个圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为( )A .15πcm 2B .24πcm 2C .39πcm 2D .48πcm 26.若点B (a ,0)在以点A (﹣1,0)为圆心,2为半径的圆外,则a 的取值范围为( )A .﹣3<a <1B .a <﹣3C .a >1D .a <﹣3或a >17.在半径等于5cm 的圆内有长为5cm 的弦,则此弦所对的圆周角为( ) A .120° B .30°或120°C .60°D .60°或120° 8.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)9.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC =AB B .∠C =∠BOD C .∠C =∠B D .∠A =∠BOD10.如图,抛物线y 1=a (x +2)2﹣3与y 2=(x ﹣3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结沦:①无论x 取何值,y 2的值总是正数;②2a =1;③当x =0时,y 2﹣y 1=4;④2AB =3AC ;其中正确结论是( )A.①②B.②③C.③④D.①④二.填空题(共10小题,满分30分,每小题3分)11.若分式的值为0,则x=.12.当x时,二次根式有意义.13.某小组5名同学的身高(单位:cm)分别为:147,156,151,159,152,则这组数据的中位数是cm.14.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.15.如图所示,AB是⊙O的直径,CD是⊙O的弦,连接AC,AD,若∠CAB=36°,则∠ADC的度数为.16.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是.17.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是.A.①;B.①②;C.①②③;D.①②③④18.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=°.19.如图,将扇形AOC围成一个圆锥的侧面.已知围成的圆锥的高为12,扇形AOC的弧长为10π,则圆锥的侧面积为.20.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP =GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).三.解答题(共9小题,满分90分)21.计算题(1)|﹣|+(﹣1)2018﹣2cos45°+.(2)÷(a+2)22.解方程:(1)x2﹣3x=4(2)2x(x﹣3)=3﹣x23.先化简,再求值:(x﹣2+)÷,其中x=﹣.24.已知关于x的一元二次方程mx2﹣(m﹣1)x﹣1=0.(1)求证:这个一元二次方程总有两个实数根;(2)若二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,则m的值为;(3)若x 1、x 2是原方程的两根,且+=2x 1x 2+1,求m 的值.25.小颖为班级联欢会设计了“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成了面积相等的三个扇形.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出了蓝色,那么就配成紫色.(1)请你利用画树状图或者列表的方法计算配成紫色的概率.(2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?请说明理由.26.如图,为了测量电线杆的高度AB ,在离电线杆25米的D 处,用高1.20米的测角仪CD 测得电线杆顶端A 的仰角α=22°,求电线杆AB 的高.(精确到0.1米)参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751.27.如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB =8,CD =2,求⊙O的半径及EC 的长.28.如图,AB 是圆O 的直径,点C 、D 在圆O 上,且AD 平分∠CAB .过点D 作AC 的垂线,与AC 的延长线相交于E ,与AB 的延长线相交于点F .求证:EF 与圆O 相切.29.已知开口向上的抛物线y =ax 2+bx +c 与x 轴交于A (﹣3,0)、B (1,0)两点,与y 轴交于C 点,∠ACB不小于90°.(1)求点C的坐标(用含a的代数式表示);(2)求系数a的取值范围;(3)设抛物线的顶点为D,求△BCD中CD边上的高h的最大值.(4)设E,当∠ACB=90°,在线段AC上是否存在点F,使得直线EF将△ABC的面积平分?若存在,求出点F的坐标;若不存在,说明理由.四川省巴中市平昌县中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据二次根式的性质把各个二次根式化简,判断即可.【解答】解:()2=3,A正确;=3,B错误;==3,C错误;(﹣)2=3,D错误;故选:A.【点评】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.2.【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵成立,∴a≥0,b≤0.故选:B.【点评】此题主要考查了二次根式的乘除,正确掌握二次根式的性质是解题关键.3.【分析】找出两抛物线的顶点坐标,由a值不变即可找出结论.【解答】解:∵抛物线y=(x+1)2+2的顶点坐标为(﹣1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选:B.【点评】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.4.【分析】先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,∵5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选:A.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P.外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P<R﹣r.5.【分析】这个圆锥的全面积为底面积与侧面积的和,底面积为半径为3的圆的面积,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式求测面积.【解答】解:这个圆锥的全面积=•2π•3•5+π•32=24π(cm2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.【分析】熟记“设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内”即可解答【解答】解:以A(﹣1,0)为圆心,以2为半径的圆交x轴两点的坐标为(﹣3,0),(1,0),∵点B(a,0)在以A(1,0)为圆心,以2为半径的圆外,∴a<﹣3或a>1.故选:D.【点评】本题考查了对点与圆的位置关系的判断的知识点,解答本题的关键是理解点B在以A(1,0)为圆心,以2为半径的圆内的含义,本题比较简单.7.【分析】根据题意画出相应的图形,连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,过O作OD⊥AB,根据垂径定理得到D为AB的中点,由AB的长得出AD的长,再由OA=OB,OD与AB垂直,根据三线合一得到OD为角平分线,在直角三角形AOD中,利用锐角三角函数定义及AD与OA的长,求出∠AOD的度数,可得出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,可得出∠AEB的度数,再利用圆内接四边形的对角互补可得出∠AFB的度数,综上,得到此弦所对的圆周角的度数.【解答】解:根据题意画出相应的图形为:连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,过O作OD⊥AB,则D为AB的中点,∵AB=5cm,∴AD=BD=cm,又OA=OB=5,OD⊥AB,∴OD平分∠AOB,即∠AOD=∠BOD=∠AOB,∴在直角三角形AOD中,sin∠AOD===,∴∠AOD=60°,∴∠AOB=120°,又圆心角∠AOB与圆周角∠AEB所对的弧都为,∴∠AEB=∠AOB=60°,∵四边形AEBF为圆O的内接四边形,∴∠AFB+∠AEB=180°,∴∠AFB=180°﹣∠AEB=120°,则此弦所对的圆周角为60°或120°.故选:D.【点评】此题考查了圆周角定理,垂径定理,等腰三角形的性质,锐角三角函数定义,以及圆内接四边形的性质,是一道综合性较强的题.本题有两解,学生做题时注意不要漏解.8.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.【分析】根据垂径定理得出=,=,根据以上结论判断即可.【解答】解:A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴=,∵对的圆周角是∠C,对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选:B.【点评】本题考查了垂径定理的应用,关键是根据学生的推理能力和辨析能力来分析.10.【分析】利用二次函数的性质得到y2的最小值为1,则可对①进行判断;把A点坐标代入y1=a(x+2)2﹣3中求出a,则可对②进行判断;分别计算x=0时两函数的对应值,再计算y2﹣y1的值,则可对③进行判断;利用抛物线的对称性计算出AB和AC,则可对④进行判断.【解答】解:∵y2=(x﹣3)2+1,∴y2的最小值为1,所以①正确;把A(1,3)代入y1=a(x+2)2﹣3得a(1+2)2﹣3=3,∴3a=2,所以②错误;当x=0时,y1=(x+2)2﹣3=﹣,y2=(x﹣3)2+1=,∴y2﹣y1=+=,所以③错误;抛物线y1=a(x+2)2﹣3的对称轴为直线x=﹣2,抛物线y2=(x﹣3)2+1的对称轴为直线x=3,∴AB=2×3=6,AC=2×2=4,∴2AB=3AC,所以④正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.二.填空题(共10小题,满分30分,每小题3分)11.【分析】分式为零时:分子等于零且分母不等于零.【解答】解:依题意得:|x|﹣4=0且4﹣x≠0.解得x=﹣4.故答案是:﹣4.【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.12.【分析】根据二次根式的被开方数为非负数即可得出x的范围.【解答】解:由题意得:2x﹣3≥0,解得:x≥.故答案为:≥.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数这个知识点.13.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:由于此数据按照从小到大的顺序排列为147,151,152,156,159,最中间的数是152,所以这组数据的中位数是152cm,故答案为:152.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.14.【分析】第二次捕得200条所占总体的比例=标记的鱼25条所占有标记的总数的比例,据此直接解答.【解答】解:设湖里有鱼x条,则,解可得x=800.故答案为:800.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.15.【分析】连接BC,推出Rt△ABC,求出∠B的度数,即可得出结论.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=36°,∴∠B=54°,∴∠ADC=54°故答案为:54°.【点评】本题主要考查了圆周角的有关定理,作出辅助线,构建直角三角形,是解本题的关键.16.【分析】连接OE,由题意得:OE=OA=R,ED=DF=4,再解Rt△ODE即可求得半径的值.【解答】解:连接OE,如下图所示,则:OE=OA=R,∵AB是⊙O的直径,弦EF⊥AB,∴ED=DF=4,∵OD=OA﹣AD,∴OD=R﹣2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R﹣2)2+42,∴R=5.故答案为:5.【点评】本题考查了垂径定理和解直角三角形的运用.17.【分析】根据抛物线的开口方向确定a的取值范围;根据对称轴的位置确定b的取值范围;根据抛物线与y轴的交点确定c的取值范围;根据图象与x轴的交点坐标确定方程ax2+bx+c=0的根,也可以确定当y>0时x的取值范围;根据抛物线的开口方向和对称轴我的抛物线的增减性.【解答】解:∵抛物线的开口方向向下,∴a<0,∵对称轴在y轴的右边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①正确;根据图象知道抛物线与x轴的交点的横坐标分别为x=﹣1或x=3,∴方程ax2+bx+c=0的根为x1=﹣1、x2=3,故②正确;根据图象知道当x>1时,y随x值的增大而减小,故③正确;根据图象知道当y>0时,﹣1<x<3,故④正确.故选D.【点评】此题主要考查了抛物线的系数与图象的关系,其中二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.18.【分析】由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD 的度数.【解答】解:∵正方形ABCD,AF,AB,AD为圆A半径,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四边形ABFD内角和为360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°﹣90°=45°,∵∠EFD为△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案为:45【点评】此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.19.【分析】求出圆锥的底面半径,根据勾股定理求出圆锥的母线长,根据扇形面积公式计算即可.【解答】解:∵扇形AOC的弧长为10π,∴圆锥的底面半径为:=5,∴圆锥的母线长为:=13,则圆锥的侧面积为:×10π×13=65π,故答案为:65π.【点评】本题考查的是圆锥的计算,掌握弧长公式、扇形面积公式、圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.20.【分析】由于与不一定相等,根据圆周角定理可知①错误;连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可知②正确;先由垂径定理得到A为的中点,再由C 为的中点,得到=,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可知③正确;【解答】解:∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴=≠,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EPA+∠EAP=∠EAP+∠GPD=90°,∴∠GPD=∠GDP;∴GP=GD,故②正确;∵弦CF⊥AB于点E,∴A为的中点,即=,又∵C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故答案为:②③.【点评】此题是圆的综合题,其中涉及到切线的性质,圆周角定理,垂径定理,圆心角、弧、弦的关系定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,平行线的判定,熟练掌握性质及定理是解决本题的关键.三.解答题(共9小题,满分90分)21.【分析】(1)先计算绝对值、乘方、代入三角函数值和算术平方根,再计算乘法,最后计算加减即可得;(2)先计算括号内分式的减法、将被除式因式分解,再将除法转化为乘法,继而约分即可得. 【解答】解:(1)原式=+1﹣2×+4=+1﹣+4=5;(2)原式=÷(﹣)=÷=• = =.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及实数的混合运算顺序和运算法则.22.【分析】(1)先把方程化为一般式,然后利用因式分解法解方程; (2)先变形得到2x (x ﹣3)+x ﹣3=0,然后利用因式分解法解方程. 【解答】解:(1)x 2﹣3x ﹣4=0, (x ﹣4)(x +1)=0,x ﹣4=0或x +1=0,所以x 1=4,x 2=﹣1; (2)2x (x ﹣3)+x ﹣3=0, (x ﹣3)(2x +1)=0,x ﹣3=0或2x +1=0,所以x 1=3,x 2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【解答】解:原式=(+)•=•=2(x +2) =2x +4, 当x =﹣时, 原式=2×(﹣)+4 =﹣1+4 =3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24.【分析】(1)先计算判别式得到△=(m +1)2,根据非负数的性质即可得到△≥0,于是利用判别式的意义即可得到结论;(2)根据二次函数的性质得m <0且=0,然后解方程即可;(3)先根据根与系数的关系得到x 1+x 2=,x 1x 2=﹣,再把+=2x 1x 2+1变形得到=2x 1x 2+1,则=2•(﹣)+1,然后解关于m 的方程即可.【解答】(1)证明:m ≠0, △=(m ﹣1)2﹣4m ×(﹣1) =(m +1)2,∵(m +1)2≥0,即△≥0,∴这个一元二次方程总有两个实数根;(2)解:∵二次函数y =mx 2﹣(m ﹣1)x ﹣1有最大值0,∴m <0且=0,∴m =﹣1; 故答案为﹣1. (3)解:x 1+x 2=,x 1x 2=﹣,∵+=2x 1x 2+1,∴=2x 1x 2+1,∴=2•(﹣)+1,整理得m 2+m ﹣1=0, ∴m =或m =.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣,x 1x 2=.也考查了根的判别式和二次函数的性质.25.【分析】(1)用表格列出所有等可能结果,再根据概率公式计算可得; (2)分别计算出小红、小亮获胜的概率,比较大小即可得出结论. 【解答】解:(1)如下表所示:红 蓝1 蓝2 红 (红,红) (红,蓝1) (红,蓝2) 黄 (黄,红) (黄,蓝1) (黄,蓝2) 蓝(蓝,红)(蓝,蓝1)(蓝,蓝2)由表可知,共有9种等可能结果,其中配成紫色的有3种结果, 所以P (能配成紫色)=;(2)∵P (小红赢)=,P (小亮赢)= ∴P (小红赢)=P (小亮赢),因此,这个游戏对双方是公平的.【点评】本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.26.【分析】根据CE和α的正切值可以求得AE的长度,根据AB=AE+EB即可求得AB的长度,即可解题.【解答】解:在中Rt△ACE,∴AE=CE•tanα,=BD•tanα,=25×tan22°,≈10.10米,∴AB=AE+EB=AE+CD≈10.10+1.20≈11.3(米).答:电线杆的高度约为11.3米.【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算AE的值是解题的关键.27.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,在Rt△OAC中利用勾股定理求出r的值,连接BE,由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE.【解答】解:∵OD⊥弦AB,AB=8,∴AC===4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,连结BE,如图,∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了勾股定理、圆周角定理,作出恰当的辅助线是解答此题的关键.28.【分析】连接OD ,作出辅助线,只要证明OD ⊥EF 即可,根据题目中的条件可知,∠FOD 与∠FAD 的关系,由AD 平分∠CAB ,可知∠EAF 与∠FAD 之间的关系,又因为AE ⊥EF ,从而可以推出OD 垂直EF ,本题得以解决.【解答】证明:连接OD ,如右图所示, ∵∠FOD =2∠BAD ,AD 平分∠CAB , ∴∠EAF =2∠BAD , ∴∠EAF =∠FOD , ∵AE ⊥EF , ∴∠AEF =90°, ∴∠EAF +∠EFA =90°, ∴∠DFO +∠DOF =90°, ∴∠ODF =90°, ∴OD ⊥EF , 即EF 与圆O 相切.【点评】本题考查切线的判定,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.29.【分析】(1)由抛物线 y =ax 2+bx +c 过点A (﹣3,0),B (1,0),得出c 与a 的关系,即可得出C 点坐标;(2)利用已知得出△AOC ∽△COB ,进而求出OC 的长度,即可得出a 的取值范围;(3)作DG ⊥y 轴于点G ,延长DC 交x 轴于点H ,得出抛物线的对称轴为x =﹣1,进而求出△DCG ∽△HCO ,得出OH =3,过B 作BM ⊥DH ,垂足为M ,即BM =h ,根据h =HB sin ∠OHC 求出0°<∠OHC ≤30°,得到0<sin ∠OHC ≤,即可求出答案;(4)连接CE ,过点N 作NP ∥CD 交y 轴于P ,连接EF ,根据三角形的面积公式求出S △CAEF =S 四边形EFCB ,根据NP ∥CE ,求出,设过N 、P 两点的一次函数是y =kx +b ,代入N 、P 的左边得到方程组,求出直线NP 的解析式,同理求出A 、C 两点的直线的解析式,组成方程组求出即可. 【解答】解:(1)∵抛物线 y =ax 2+bx +c 过点A (﹣3,0),B (1,0), ∴消去b ,得 c =﹣3a .∴点C 的坐标为(0,﹣3a ),答:点C的坐标为(0,﹣3a).(2)当∠ACB=90°时,∠AOC=∠BOC=90°,∠OBC+∠BCO=90°,∠ACO+∠BCO=90°,∴∠ACO=∠OBC,∴△AOC∽△COB,,即OC2=AO•OB,∵AO=3,OB=1,∴OC=,∵∠ACB不小于90°,∴OC≤,即﹣c≤,由(1)得 3a≤,∴a≤,又∵a>0,∴a的取值范围为0<a≤,答:系数a的取值范围是0<a≤.(3)作DG⊥y轴于点G,延长DC交x轴于点H,如图.∵抛物线y=ax2+bx+c交x轴于A(﹣3,0),B(1,0).∴抛物线的对称轴为x=﹣1.即﹣=﹣1,所以b=2a.又由(1)有c=﹣3a.∴抛物线方程为y=ax2+2ax﹣3a,D点坐标为(﹣1,﹣4a).于是CO=3a,GC=a,DG=1.∵DG∥OH,∴△DCG∽△HCO,∴,即,得OH=3,表明直线DC过定点H(3,0).过B作BM⊥DH,垂足为M,即BM=h,∴h=HB sin∠OHC=2 sin∠OHC.∵0<CO≤,∴0°<∠OHC≤30°,0<sin∠OHC≤.∴0<h ≤1,即h 的最大值为1,答:△BCD 中CD 边上的高h 的最大值是1.(4)由(1)、(2)可知,当∠ACB =90°时,,,设AB 的中点为N ,连接CN ,则N (﹣1,0),CN 将△ABC 的面积平分,连接CE ,过点N 作NP ∥CE 交y 轴于P ,显然点P 在OC 的延长线上,从而NP 必与AC 相交,设其交点为F ,连接EF ,因为NP ∥CE ,所以S △CEF =S △CEN , 由已知可得NO =1,,而NP ∥CE ,∴,得,设过N 、P 两点的一次函数是y =kx +b ,则,解得:, 即,①同理可得过A 、C 两点的一次函数为,②解由①②组成的方程组得,,故在线段AC 上存在点满足要求.答:当∠ACB =90°,在线段AC 上存在点F ,使得直线EF 将△ABC 的面积平分,点F 的坐标是(﹣,﹣).【点评】本题主要考查对用待定系数法求二次函数、一次函数的解析式,三角形的面积,解二元一次方程,相似三角形的性质和判定,二次函数图象上点的坐标特征等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.。

2020年四川省巴中市中考数学试题及参考答案(word解析版)

2020年四川省巴中市中考数学试题及参考答案(word解析版)

巴中市2020年高招阶段教育学校招生统一考试数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的绝对值的相反数是()A.3 B.C.﹣3 D.2.下列四个算式中正确的是()A.a2+a3=a5B.(﹣a2)3=a6C.a2⋅a3=a6D.a3÷a2=a3.疫情期间,某口罩厂日生产量从原来的360万只增加到现在的480万只.把现在的口罩日生产量用科学记数法表示为()A.3.6×106B.3.6×107C.4.8×106D.4.8×1074.已知一个几何体由大小相等的若干个小正方体组成,其三视图如图所示,则组成该几何体的小正方体个数为()A.6 B.7 C.8 D.95.某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6 B.9 C.12.2 D.12.66.如图,在△ABC中,∠BAC=120°,AD平分∠BAC,DE∥AB,AD=3,CE=5,则AC的长为()A.9 B.8 C.6 D.77.关于x的一元二次方程x2+(2a﹣3)x+a2+1=0有两个实数根,则a的最大整数解是()A.1 B.﹣1 C.﹣2 D.08.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?“意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺9.如图,一次函数y1=ax+b(a≠0)与反比例函数(k≠0,x>0)的交点A坐标为(2,1),当y1≤y2时,x的取值范围是()A.0<x≤2 B.0<x<2 C.x>2 D.x≥210.如图,在⊙O中,点A、B、C在圆上,∠ACB=45°,AB=,则⊙O的半径OA的长是()A.B.2 C.D.311.定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125﹣log381=()A.﹣1 B.2 C.1 D.4412.如图,在矩形ABCD中,AB=4,对角线AC,BD交于点O,sin∠COD=,P为AD上一动点,PE⊥AC于点E,PF⊥BD于点F,分别以PE,PF为边向外作正方形PEGH和PFMN,面积分别为S1,S2.则下列结论:①BD=8;②点P在运动过程中,PE+PF的值始终保持不变,为;③S1+S2的最小值为6;④当PH:PN=5:6时,则DM:AG=5:6.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)13.分解因式:3a3﹣6a2+3a=.14.函数中自变量x的取值范围是.15.若关于x的分式方程有增根,则m=.16.如图,在实验桌上有完全相同的烧杯内装有体积相同且无色透明的3种液体,其中1杯酒精,3杯生理盐水,2杯白糖水,从中任取一杯为白糖水的概率是.17.如图,是中国象棋残局图的一部分,请用线段将图中棋子所在的格点按指定方向顺次连接,组成一个多边形.连接顺序为:将→象→炮→兵→马→車→将,则组成的多边形的内角和为度.18.现有一“祥云”零件剖面图,如图所示,它由一个半圆和左右两支抛物线的一部分组成,且关于y轴对称.其中半圆交y轴于点E,直径AB=2,OE=2;两支抛物线的顶点分别为点A、点B.与x轴分别交于点C、点D;直线BC的解析式为:.则零件中BD这段曲线的解析式为.三、解答题(本大题共7小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)19.(18分)(1)计算:.(2)解一元二次方程:x(x﹣4)=x﹣6.(3)先化简:,再从不等式﹣2≤x<3中选取一个合适的整数,代入求值.20.(12分)如图所示,△ABC在边长为1cm的小正方形组成的网格中.(1)将△ABC沿y轴正方向向上平移5个单位长度后,得到△A1B1C1,请作出△A1B1C1,并求出A1B1的长度;(2)再将△A1B1C1绕坐标原点O顺时针旋转180°,得到△A2B2C2,请作出△A2B2C2,并直接写出点B2的坐标;(3)在(1)(2)的条件下,求线段AB在变换过程中扫过图形的面积和.21.(10分)巴中某商场在6月份举行了“年中大促,好物网罗”集赞领礼品活动.为了解参与活动顾客的集赞情况,商场从参与活动的顾客中,随机抽取28名顾客的集赞数,调查数据如下(单位:个):36262938485948524333186140526455465645433755475266573645整理上面的数据得到如下频数分布表和频数分布直方图:礼品类别集赞数(a)频数一盒牙膏18≤a<28 2一条毛巾28≤a<38 5一提纸巾38≤a<48 m一件牛奶48≤a<58 9一桶食用油58≤a<68 n回答下列问题:(1)求频数分布表中m,n的值,并补全频数分布直方图;(2)求以上28个数据的中位数和众数;(3)已知参加此次活动的顾客有364人,领到礼品为“一件牛奶”的顾客大约有多少人?22.(12分)某果农为响应国家“乡村振兴”战略的号召.计划种植苹果树和桔子树共100棵.若种植40棵苹果树,60棵桔子树共需投入成本9600元;若种植40棵桔子树,60棵苹果树共需投入成本10400元.(1)求苹果树和桔子树每棵各需投入成本多少元?(2)若苹果树的种植棵数不少于桔子树的,且总成本投入不超过9710元,问:共有几种种植方案?(3)在(2)的条件下,已知平均每棵苹果树可产30kg苹果,售价为10元/kg;平均每棵桔子树可产25kg枯子,售价为6元/kg,问:该果农怎样选择种植方案才能使所获利润最大?最大利润为多少元?23.(10分)如图,海面上产生了一股强台风.台风中心A在某沿海城市B的正西方向,小岛C位于城市B北偏东29°方向上,台风中心沿北偏东60°方向向小岛C移动,此时台风中心距离小岛200海里.(1)过点B作BP⊥AC于点P,求∠PBC的度数;(2)据监测,在距离台风中心50海里范围内均会受到台风影响(假设台风在移动过程中风力保持不变).问:在台风移动过程中,沿海城市B是否会受到台风影响?请说明理由.(参考数:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,≈1.73)24.(10分)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,交AB的延长线于点E,AC平分∠DAB.且OA=3,AC=.(1)求证:AD⊥DE;(2)若点P为线段CE上一动点,当△PBE与△ACE相似时,求EP的长.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B左侧),交y 轴正半轴于点C,M为BC中点,点P为抛物线上一动点,已知点A坐标(﹣1,0),且OB=2OC=4OA.(1)求抛物线的解析式;(2)当△PCM≌△POM时,求PM的长;(3)当4S△ABC=5S△BCP时,求点P的坐标.参考答案与解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的绝对值的相反数是()A.3 B.C.﹣3 D.【知识考点】相反数;绝对值.【思路分析】首先根据绝对值的含义和求法,可得:﹣3的绝对值是3;然后在3的前面加上﹣,求出﹣3的绝对值的相反数是多少即可.【解答过程】解:﹣3的绝对值的相反数是:﹣|﹣3|=﹣3.故选:C.【总结归纳】此题主要考查了绝对值的含义和求法,以及相反数的含义和求法,要熟练掌握.2.下列四个算式中正确的是()A.a2+a3=a5B.(﹣a2)3=a6C.a2⋅a3=a6D.a3÷a2=a【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,同底数幂的除法逐个判断即可.【解答过程】解:A.a2和a3不能合并,故本选项不符合题意;B.(﹣a2)3=﹣a6,故本选项不符合题意;C.a2•a3=a5,故本选项不符合题意;D.a3÷a2=a,故本选项符合题意;故选:D.【总结归纳】本题考查了幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,同底数幂的除法等知识点,能熟记知识点是解此题的关键.3.疫情期间,某口罩厂日生产量从原来的360万只增加到现在的480万只.把现在的口罩日生产量用科学记数法表示为()A.3.6×106B.3.6×107C.4.8×106D.4.8×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:480万=480×104=4.8×106.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。

2020年四川省巴中市中考数学(5月份)模拟试卷 (解析版)

2020年四川省巴中市中考数学(5月份)模拟试卷 (解析版)

2020年四川省巴中市中考数学模拟试卷(5月份)一、选择题(共12小题).1.在﹣22,﹣2,0,2这四个数中,最小的数是()A.﹣22B.﹣2C.0D.22.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A.B.C.D.3.下列运算正确的是()A.x14+x7=x2B.(2a2b)2=4a2b2C.5a4•2a=7a5D.2x(x﹣3)=2x2﹣6x4.2020年2月14日,电影《刺猬索尼克》在美国上映,据悉,该片仅在首映当日就轻松将2100万美元票房收入囊中.数据“2100万”用科学记数法表示为()A.2.1×103B.0.21×104C.0.21×108D.2.1×1075.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式6.已知Rt△ABC中,∠C=90°,AB=2,tan A=,则BC的长是()A.2B.8C.2D.47.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2B.2C.3D.﹣38.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣5n+m)=10,则a 的值是()A.﹣5B.5C.﹣9D.99.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则NM:MC等于()A.1:2B.1:3C.1:4D.1:510.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣12.如图,已知点A在第一象限,点C的坐标为(1,0),△AOC是等边三角形,现把△AOC按如下规律进行旋转:第1次旋转,把△AOC绕点C按顺时针方向旋转120°后得到△A1O1C,点A1、O1分别是点A、O的对应点,第2次旋转,把△A1O1C绕着点A1按顺时针方向旋转120°后得到△A1O2C1,点O2、C1分别是点O1、C的对应点,第3次旋转,把△A1O2C1绕着点O2按顺时针方向旋转120°后得到△A2O2C2,点A2、C2分别是点A1、C1的对应点,……,依此规律,第6次旋转,把△A3O4C3绕着点O4按顺时针方向旋转120°后得到△A4O4C4,点A4、C4分别是点A3、C3的对应点,则点A4的坐标是()A.(,)B.(6,0)C.(,)D.(7,0)二、填空题(每题4分,满分24分,将答案填在答题纸上)13.函数y=中,自变量x的取值范围是.14.一组数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数为.15.当a=3时,代数式的值是16.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.17.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA的延长线于点E,则AE的长为.18.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM <AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:|1﹣2cos30°|+﹣(﹣)﹣1﹣(5﹣π)020.现有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同.(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?21.为了解我县中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,根据成绩分成如下四个组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,并制作出如下的扇形统计图和直方图.请根据图表信息解答下列问题:(1)扇形统计图中的m=,并在图中补全频数分布直方图;(2)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A,C两组学生的概率是多少?请列表或画树状图说明.22.如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)23.如图,在等腰三角形PAD中,PA=PD,以AB为直径的⊙O经过点P,点C是⊙O上一点,连接AC,PC,PC交AB于点E,已知∠ACP=60°.(1)求证:PD是⊙O的切线;(2)连接OP,PB,BC,OC,若⊙O的直径是4,则:①当DE=,四边形APBC是矩形;②当DE=,四边形OPBC是菱形.24.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B(4,n)两点,延长AO交反比例函数的图象于点C,连接OB.(1)求k和b的值.(2)根据图象直接写出﹣(﹣x+6)>0的解集.(3)在y轴上是否存在一点P,使得S△PAC=S△AOB?若存在,请求出点P的坐标;若不存在,请说明理由.25.如图,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)求出二次函数表达式;(2)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请求出此时点N的坐标.参考答案一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在﹣22,﹣2,0,2这四个数中,最小的数是()A.﹣22B.﹣2C.0D.2【分析】根据正数大于零,负数小于零,两个负数比较大小绝对值大的负数反而小,可得答案.解:﹣22=﹣4,∴﹣22<﹣2<0<2.∴最小的数是﹣22.故选:A.2.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.解:它的主视图是:故选:C.3.下列运算正确的是()A.x14+x7=x2B.(2a2b)2=4a2b2C.5a4•2a=7a5D.2x(x﹣3)=2x2﹣6x【分析】直接利用积的乘方运算法则以及单项式乘以单项式和单项式乘以多项式进而分别计算得出答案.解:A、x14、x7不是同类项无法合并,故此选项错误;B、(2a2b)2=4a4b2,故此选项错误;C、5a4•2a=10a5,故此选项错误;D、2x(x﹣3)=2x2﹣6x,正确.故选:D.4.2020年2月14日,电影《刺猬索尼克》在美国上映,据悉,该片仅在首映当日就轻松将2100万美元票房收入囊中.数据“2100万”用科学记数法表示为()A.2.1×103B.0.21×104C.0.21×108D.2.1×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:2100万用科学记数法表示为2.1×107.故选:D.5.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选:B.6.已知Rt△ABC中,∠C=90°,AB=2,tan A=,则BC的长是()A.2B.8C.2D.4【分析】根据题意可以设出BC和AC的长度,然后根据勾股定理可以求得BC的长,本题得以解决.解:∵Rt△ABC中,∠C=90°,AB=2,tan A=,∴设BC=a,则AC=2a,∴,解得,a=2或a=﹣2(舍去),∴BC=2,故选:A.7.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2B.2C.3D.﹣3【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选:B.8.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣5n+m)=10,则a 的值是()A.﹣5B.5C.﹣9D.9【分析】由一元二次方程的解及根与系数的关系可得出m2﹣2m=1,n2﹣2n=1,m+n=2,结合(7m2﹣14m+a)(3n2﹣5n+m)=10,可求出a的值,此题得解.解:∵m,n是方程x2﹣2x﹣1=0的两根,∴m2﹣2m=1,n2﹣2n=1,m+n=2.∵(7m2﹣14m+a)(3n2﹣5n+m)=10,即(7+a)(3+2)=10,∴a=﹣5.故选:A.9.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则NM:MC等于()A.1:2B.1:3C.1:4D.1:5【分析】根据中位线定理证明△NDM∽△NBC后求解.解:∵DE是△ABC的中位线,M是DE的中点,∴DM∥BC,DM=ME=BC.∴△NDM∽△NBC,==.∴=.故选:B.10.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)【分析】根据函数图象中的信息,利用数形结合及求相关线段的解析式解答即可.解:A、25min~50min,王阿姨步行的路程为2000﹣1200=800m,故A没错;B、设线段CD的函数解析式为s=kt+b,把(25,1200),(50,2000)代入得,解得:,∴线段CD的函数解析式为s=32t+400(25≤t≤50),故B没错;C、在A点的速度为=105m/min,在B点的速度为==45m/min,故C错误;D、当t=20时,由图象可得s=1200m,将t=20代入s=﹣3(t﹣20)2+1200(5≤t≤20)得s=1200,故D没错.故选:C.11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.解:如图连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×﹣(﹣×32)=﹣π.故选:A.12.如图,已知点A在第一象限,点C的坐标为(1,0),△AOC是等边三角形,现把△AOC按如下规律进行旋转:第1次旋转,把△AOC绕点C按顺时针方向旋转120°后得到△A1O1C,点A1、O1分别是点A、O的对应点,第2次旋转,把△A1O1C绕着点A1按顺时针方向旋转120°后得到△A1O2C1,点O2、C1分别是点O1、C的对应点,第3次旋转,把△A1O2C1绕着点O2按顺时针方向旋转120°后得到△A2O2C2,点A2、C2分别是点A1、C1的对应点,……,依此规律,第6次旋转,把△A3O4C3绕着点O4按顺时针方向旋转120°后得到△A4O4C4,点A4、C4分别是点A3、C3的对应点,则点A4的坐标是()A.(,)B.(6,0)C.(,)D.(7,0)【分析】分别求出A1A2,A3,A4的坐标即可判断.解:由题意A1(2,0),A2(,),A4(5,),A4(,),故选:A.二、填空题(每题4分,满分24分,将答案填在答题纸上)13.函数y=中,自变量x的取值范围是x≤2且x≠﹣2.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.14.一组数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数为6.【分析】先根据中位数的定义求出x的值,再根据众数的定义求出答案.解:∵这组数据按从小到大排列为1,2,4,x,6,9,又∵这组数据的中位数为5,∴(4+x)÷2=5,解得:x=6,∴这组数据为1,2,4,6,6,9,∴这组数据的众数为6;故答案为:6.15.当a=3时,代数式的值是2【分析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.解:原式=÷=•=,当a=3时,原式==2,故答案为:2.16.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是150°.【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.17.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA的延长线于点E,则AE的长为3.【分析】根据题意可以求得CD和DF的长,从而可以得到AF的长,再根据平行线的性质可以得到∠AEF和∠DCF的关系,从而可以得到AE和AF的关系,进而得到AE的长,本题得以解决.解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EFA=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EFA,∴AE=AF=3,故答案为:3.18.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM <AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH,即可得到△DHM是等腰直角三角形,进而得出DM =HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt△ADM 中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点,且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∠EAH是△AMH的外角,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:|1﹣2cos30°|+﹣(﹣)﹣1﹣(5﹣π)0【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.解:原式=2×﹣1+2﹣(﹣2)﹣1=3.20.现有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同.(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?【分析】(1)设A商品每件x元,则B商品每件(30+x)元,根据“160元全部购买A 商品的数量与用400元全部购买B商品的数量相同”列方程求解可得;(2)设购买A商品a件,则购买B商品共(10﹣a)件,列不等式组:300≤20•a+50•(10﹣a)≤380,解之求出a的整数解,从而得出答案.解:(1)设A商品每件x元,则B商品每件(30+x)元,根据题意,得:,经检验:x=20是原方程的解,所以A商品每件20元,则B商品每件50元.(2)设购买A商品a件,则购买B商品共(10﹣a)件,列不等式组:300≤20•a+50•(10﹣a)≤380,解得:4≤a≤6.7,a取整数:4,5,6.有三种方案:①A商品4件,则购买B商品6件;费用:4×20+6×50=380,②A商品5件,则购买B商品5件;费用:5×20+5×50=350,③A商品6件,则购买B商品4件;费用:6×20+4×50=320,所以方案③费用最低.21.为了解我县中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,根据成绩分成如下四个组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,并制作出如下的扇形统计图和直方图.请根据图表信息解答下列问题:(1)扇形统计图中的m=144,并在图中补全频数分布直方图;(2)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在C组;(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A,C两组学生的概率是多少?请列表或画树状图说明.【分析】(1)先利用A组的频数与它所占的百分比计算出调查的总人数,再计算出C 组人数,然后用360乘以C组所占的百分比得到m的值,最后补全频数统计图;(2)利用中位数的定义进行判断;(3)通过列表展示所有12种等可能结果,再找出抽到A、C组人的结果数,然后根据概率公式求解.解:(1)调查的总人数为30÷=300(人),C组人数为300﹣30﹣90﹣60=120(人),所以m=360×=144;补全图形如下:(2)第150个数据和第151个数据在C组,所以数据的中位数在C组,所以他的成绩在C组故答案为144,C;(3)列表如下:BD CDDADC AC BC DCB AB CB DBA BA CA DAA B C D由表可知共有12种等可能结果,抽到A、C组人的共有两种结果,∴P(AC)==.22.如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)【分析】延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,根据勾股定理得到EH=5,DH=12根据三角函数的定义列方程即可得到结论.解:延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,∵斜坡DE的坡长为13米,坡度i=1:2.4,∴设EH=5x,DH=12x,∵EH2+DH2=DE2,∴(5x)2+(12x)2=132,∴x=1,∴EH=5,DH=12,∵EB∥DC,∴∠ABE=∠AGH=90°,∵∠AEB=45°,∴AB=BE,∴HG=AB,∴FG=5+12+AB,AG=AB+5,∵∠F=31°,∴tan F=tan31°===0.6,∴AB=13米,答:铁塔AB的高度是13米.23.如图,在等腰三角形PAD中,PA=PD,以AB为直径的⊙O经过点P,点C是⊙O上一点,连接AC,PC,PC交AB于点E,已知∠ACP=60°.(1)求证:PD是⊙O的切线;(2)连接OP,PB,BC,OC,若⊙O的直径是4,则:①当DE=2,四边形APBC是矩形;②当DE=3,四边形OPBC是菱形.【分析】(1)连OP,根据圆周角定理得到∠AOP=2∠ACP=120°,则∠PAO=∠APO =30°,利用PA=PD得到∠D=∠PAD=30°,则∠APD=180°﹣30°﹣30°=120°,于是得到∠OPD=120°﹣30°=90°,根据切线的判定定理即可得到PD是⊙O的切线;(2)①由四边形APBC是矩形知∠PAC=∠PBC=90°,从而得PC是⊙O的直径,据此知点O与点E重合,再证△APB≌△DPE,从而得AB=DE=2;②由四边形OPBC是菱形知PC、OB互相垂直平分,据此得OE=BE=2,AE=3,再由PA=PD即可知DE=AE=3.解:(1)如图1,连接OP,∵∠ACP=60°,∴∠AOP=120°,而OA=OP,∴∠PAO=∠APO=30°,∵PA=PD,∴∠D=∠PAD=30°,∴∠APD=180°﹣30°﹣30°=120°,∴∠OPD=120°﹣30°=90°,∵OP为半径,∴PD是⊙O的切线;(2)①如图2,∵四边形APBC是矩形,∴∠ACB=∠APB=∠PAC=∠PBC=90°,∴PC是⊙O的直径,∴点O与点E重合,在△APB和△DPE中,∵∠PAB=∠D,AP=DP,∠APB=∠DPE=90°,∴△APB≌△DPE(ASA),∴AB=DE=2;故答案为:2;②如图3,∵四边形OPBC是菱形,∴PC、OB互相垂直平分,∴OE=BE=2,∴AE=3,∵PA=PD,∴DE=AE=3,故答案为:3.24.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B(4,n)两点,延长AO交反比例函数的图象于点C,连接OB.(1)求k和b的值.(2)根据图象直接写出﹣(﹣x+6)>0的解集.(3)在y轴上是否存在一点P,使得S△PAC=S△AOB?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)将A点坐标分别代入y=﹣x+b和中可求出k、b的值;(2)结合函数图象,写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可;(3)直线AB与x轴的交点为D,则D(5,0),利用三角形面积公式先计算出S△OAB =S△OAD﹣S△OBD=,则S△PAC=3,由于OA=OC,所以S△OPA=S△OCP=,设P(0,t),根据三角形面积公式得到×|t|×1=,然后求出t得到P点坐标.解:(1)将A(1,4)分别代入y=﹣x+b和得4=﹣1+b,,解得b=5,k=4;(2)﹣(﹣x+6)>0的解集为x>4或0<x<1;(3)存在.直线AB与x轴的交点为D,由(1)知,b=5,k=4,∴直线y=﹣x+b的表达式为y=﹣x+5,当y=0时,﹣x+5=0,解得x=5,则D(5,0),∴S△OAB=S△OAD﹣S△OBD=×5×4﹣×5×1=,∴S△PAC=S△AOB=×=3,∵点C与点A关于原点对称,∴OA=OC,∴S△OPA=S△OCP=S△PAC=,设P(0,t),∴×|t|×1=,解得t=3或t=﹣3,∴P点坐标为(3,0)或(﹣3,0).25.如图,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)求出二次函数表达式;(2)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请求出此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),构建二次函数,根据函数解析式求得即可;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标.解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0).又∵A(0,4),C(8,0),∴AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣=∵S△AMN=AM•MN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).(3)由(2)知,AC=4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线交AC于P,交x轴于N,∴△AOC∽△NPC.∴=,即=.∴CN=5.∴此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N 的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).。

2020年四川省巴中市中考数学模拟试卷及答案解析

2020年四川省巴中市中考数学模拟试卷及答案解析

2020年四川省巴中市中考数学模拟试卷
一.选择题(共10小题,满分40分,每小题4分)
1.下列运算错误的是()
A.a8÷a4=a4B.(a2b)4=a8b4
C.a2+a2=2a2D.(a3)2=a5
2.在平面直角坐标系中,点A与点B关于原点对称,点A坐标为(1,﹣2),则点B坐标为()
A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,﹣2)3.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()
A.0.26×103B.2.6×103C.0.26×104D.2.6×104
4.如图所示的某零件左视图是()
A .
B .
C .
D .
5.已知是方程组的解,则a,b间的关系是()A.a+b=3B.a﹣b=﹣1C.a+b=0D.a﹣b=﹣3 6.下列命题是假命题的是()
A.四个角是直角的四边形为矩形
B.有一组邻边相等的矩形是正方形
C.正方形的面积等于两条对角线的乘积
D.有一个角是直角的菱形是正方形
第1页(共29页)。

巴中市2020年中考数学模拟试题及解析

巴中市2020年中考数学模拟试题及解析

巴中市2020年中考数学模拟试题及解析本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

)1.下列运算正确的是( )A .a 3+a 3=2a 6B .a 6÷a ﹣3=a 3C .a 3•a 2=a 6D .(﹣2a 2)3=﹣8a 62.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法确定3. 已知x+y=﹣4,xy=2,则x 2+y 2的值( )A.10B.11C.12D.134.人类的遗传物质是DNA,人类的DNA 是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108B.3×107C.3×106D.0.3×1085.如图1是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( )A .200 cm 2B .600 cm 2C .100πcm 2D .200πcm 26.如图2,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =3,AC =4,则sin ∠ABD 的值是( )A .B .C .D .7.如图3,ABCD 为平行四边形,BC =2AB ,∠BAD 的平分线AE 交对角线BD 于点F ,若△BEF 的面积为1,则四边形CDFE 的面积是( )A .3B .4C .5D .68.已知x =2是关于x 的方程x 2﹣(m +4)x +4m =0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 的两条边长,则△ABC 的周长为( )A .6B .8C .10D .8或109.如图4,A 、B 两地被池塘隔开,小康通过下列方法测出了A 、B 间的距离:先在AB 外选一他点C ,然后测出AC ,BC 的中点M 、N ,并测量出MN 的长为18m ,由此他就知道了A 、B 间的距离.下列有关他这次探究活动的结论中,错误的是( )A .AB =36m B .MN ∥ABC .MN =CBD .CM =AC10.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )A .平均数、中位数B .众数、中位数C .平均数、方差D .众数、方差11.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关图1 图2 图3 图4系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个 B.2个 C.3个 D.4个12.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A. B.C. D.二、填空题(本题共6小题,满分18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年四川省巴中市平昌县中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在,,,sin30°,tan30°,(﹣)0,,这八个数中,整数和无理数分别有()A.3个,2个B.2个,2个C.2个,3个D.3个,3个2.下列运算正确的是()A.π0=1B.=C.(2A2)3=6A6D.(a+b)2=a2+b23.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形,正四边形,正六边形,则另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形4.小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这10次成绩的()A.众数B.方差C.平均数D.频数5.下列x的值不是不等式﹣2x+4<0的解,答案是()A.﹣2B.3C.3.5D.106.如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为()A.∠AIB=∠AOB B.∠AIB≠∠AOBC.4∠AIB﹣∠AOB=360°D.2∠AOB﹣∠AIB=180°7.已知AB是圆O的直径,AC是弦,若AB=4,AC=2,则sin∠C等于()A.B.C.D.8.如图,已知直线MN:y=kx+2交x轴负半轴于点A,交y轴于点B,∠BAO=30°,点C是x 轴上的一点,且OC=2,则∠MBC的度数为()A.75°B.165°C.75°或45°D.75°或165°9.如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.4B.﹣2C.2D.无法确定10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③8a+c>0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共10小题,满分30分,每小题3分)11.64的立方根为.12.函数y=的自变量x的取值范围是.13.已知x2+y2=10,xy=3,则x+y=.14.若,则(b﹣a)2015=.15.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx ﹣1的解集.16.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=17.已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为,面积为.18.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于.19.在实数范围内分解因式:x2y﹣3y=.20.如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CE、BD交于点G,连接AG,那么∠AGD的底数是度.三.解答题(共11小题,满分90分)21.(6分)计算sin45°+3tan30°﹣(π﹣1)022.(7分)已知关于x的一元二次方程x2﹣mx﹣3=0…①.(1)对于任意的实数m,判断方程①的根的情况,并说明理由.(2)若x=﹣1是这个方程的一个根,求m的值和方程①的另一根.23.(7分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.24.(8分)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.25.(8分)“宜居襄阳”是我们的共同愿景,空气质量备受人们关注.我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)统计图共统计了天的空气质量情况;(2)请将条形统计图补充完整;空气质量为“优”所在扇形的圆心角度数是;(3)从小源所在环保兴趣小组4名同学(2名男同学,2名女同学)中,随机选取两名同学去该空气质量监测站点参观,则恰好选到一名男同学和一名女同学的概率是.26.(6分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.(1)画出△A1OB1;(2)直接写出点A1和点B1的坐标;(3)求线段OB1的长度.27.(8分)甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元,(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?28.(8分)如图,以AB为直径的⊙O经过点C,过点C作⊙O的切线交AB的延长线于点P,D是⊙O上于点,且=,弦AD的延长线交切线PC于点E,连接AC.(1)求∠E的度数;(2)若⊙O的直径为5,sin P=,求AE的长.29.(10分)如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数(x>0)与一次函数y =ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.30.(10分)如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751.31.(12分)如图,在平面直角坐标系中,直线y=kx﹣4k+4与抛物线y=x2﹣x交于A、B两点.(1)直线总经过定点,请直接写出该定点的坐标;(2)点P在抛物线上,当k=﹣时,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.2020年四川省巴中市平昌县中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用无理数是无限不循环小数,得出无理数的个数,利用整数的概念得出整数的个数即可.【解答】解:整数有=7,=1,﹣=﹣3,三个;无理数有tan30°=,=2,三个,故选:D.【点评】此题主要考查了无理数、有理数的定义,无理数、有理数的辨别一直是学生易混淆的难点,关键是根据无理数、整数的定义解答.2.【分析】直接利用实数运算法则以及零指数幂的性质和积的乘方运算法则分别化简得出答案.【解答】解:A、π0=1,正确,符合题意;B、+,无法计算,故此选项错误;C、(2A2)3=8A6,故此选项错误;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:A.【点评】此题主要考查了实数运算以及零指数幂的性质和积的乘方运算,正确掌握运算法则是解题关键.3.【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明才可能进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正三角形、正四边形、正六边形的内角分别为60°、90°、120°,又∵360°﹣60°﹣90°﹣120°=90°,∴另一个为正四边形,故选:B.【点评】本题考查平面密铺的知识,难度一般,解决此类题,可以记住几个常用正多边形的内角,及能够用多种正多边形镶嵌的几个组合.4.【分析】根据众数、平均数、频数、方差的概念分析.【解答】解:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选:B.【点评】此题考查统计学的相关知识.注意:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.【分析】求出不等式的解集,即可作出判断.【解答】解:不等式﹣2x+4<0,解得:x>2,则﹣2不是不等式的解.故选:A.【点评】此题考查了不等式的解集,求出不等式的解集是解本题的关键.6.【分析】根据圆周角定义,以及内心的定义,可以利用∠C表示出∠AIB和∠AOB,即可得到两个角的关系.【解答】解:∵点O是△ABC的外心,∴∠AOB=2∠C,∴∠C=∠AOB,∵点I是△ABC的内心,∴∠IAB=∠CAB,∠IBA=∠CBA,∴∠AIB=180°﹣(∠IAB+∠IBA)=180°﹣(∠CAB+∠CBA),=180°﹣(180°﹣∠C)=90°+∠C,∴2∠AIB=180°+∠C,∵∠AOB=2∠C,∴∠AIB=90°+∠AOB,即4∠AIB﹣∠AOB=360°.故选:C.【点评】本题考查了圆周角定理以及三角形的内心的性质,正确利用∠C表示∠AIB的度数是关键.7.【分析】如图,连接BC.求出∠A,再证明∠A=∠ACO即可解决问题.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴cos A==,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴sin∠OCA=sin30°=.故选:B.【点评】本题考查圆周角定理,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【分析】分两种情况考虑:①C点在x轴正半轴;②C点在x轴负半轴.分别计算出∠MBO、∠OBC度数,两个角的和差即为所求度数.【解答】解:由已知可得∠MBC=120°.如图,分两种情况考虑:①当点C在x轴正半轴上时,∠C1BO=45°,∠MBC1=120°﹣45°=75°;②当点C在x轴负半轴上时,∠MBC2=120°+45°=165°.故选:D.【点评】本题主要考查了一次函数图象的性质以及分类讨论思想.9.【分析】根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.即可求解.【解答】解:△ABO的面积是:×|﹣4|=2.故选:C.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.10.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由对称轴可知:<0,∴ab>0,由抛物线与y轴的交点可知:c<0,∴abc<0,故①正确;②由图象可知:=﹣1,∴b=2a,∴2a﹣b=0,故②正确;③(﹣3,0)关于直线x=﹣1的对称点为(1,0),∴令x=1,y=a+b+c=0,∴c=﹣3a,∵a>0,∴8a+c=5a>0,故④正确;④(﹣5,y1)关于直线x=﹣1的对称点(3,y1),∴若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2,故④正确;故选:D.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.二.填空题(共10小题,满分30分,每小题3分)11.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故答案为:4.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.12.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.【点评】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为0.13.【分析】根据完全平方公式即可求出答案.【解答】解:由完全平方公式可得:(x+y)2=x2+y2+2xy,∵x2+y2=10,xy=3∴(x+y)2=16∴x+y=±4,故答案为:±4【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.14.【分析】根据已知等式,利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵+|2a﹣b+1|=0,∴,①+②得:3a=﹣6,即a=﹣2,把a=﹣2代入①得:b=﹣3,则原式=(﹣3+2)2015=(﹣1)2015=﹣1.故答案为:﹣1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.【分析】观察函数图象得到,当x>﹣1,函数y=x+b的图象都在函数y=kx﹣1图象的上方,于是可得到关于x的不等式x+b>kx﹣1的解集.【解答】解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为:﹣1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.【分析】根据同弧所对的圆周角相等,求出∠DCB=∠A=32°,再根据直径所对的圆周角为90°,求出∠ABD的度数.【解答】解:∵∠DCB=32°,∴∠A=32°,∵AB为⊙O直径,∴∠ADB=90°,在Rt△ABD中,∠ABD=90°﹣32°=58°.故答案为:58°【点评】本题考查了圆周角定理,知道同弧所对的圆周角相等和直径所对的圆周角是90°是解题的关键.17.【分析】根据已知可求得菱形的边长及其两内角的度数,根据勾股定理可求得其对角线的长,根据菱形的面积等于两对角线乘积的一半求得其面积.【解答】解:根据已知可得,菱形的边长AB=BC=CD=AD=10cm,∠ABC=60°,∠BAD=120°,∴△ABC为等边三角形,∴AC=AB=10cm,AO=CO=5cm,在Rt△AOB中,根据勾股定理得:BO==5,∴BD=2BO=10(cm),=×AC×BD=×10×10=50(cm2);则S菱形ABCD故答案为:10cm,50cm2.【点评】本题考查的是菱形的面积求法及菱形性质的综合.菱形的面积有两种求法(1)利用底乘以相应底上的高(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.18.【分析】恒星的面积=边长为4的正方形面积﹣半径为2的圆的面积,依此列式计算即可.【解答】解:如图.2+2=4,恒星的面积=4×4﹣4π=16﹣4π.故答案为16﹣4π.【点评】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积﹣半径为2的圆的面积.19.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=y(x2﹣3)=y(x+)(x﹣),故答案为:y(x+)(x﹣)【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.20.【分析】根据已知可求得∠BEC的度数,根据三角形外角定理可求得∠AGD的度数.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD,∠ABC=90°,∠ADG=∠CDG,∠ABD=45°,∵GD=GD,∴△ADG≌△CDG,∴∠AGD=∠CGD,∵∠CGD=∠EGB,∴∠AGD=∠EGB,∵△ABE是等边三角形,∴AB=BE,∠ABE=60°,∴BE=BC,∠EBC=150°,∴∠BEC=∠ECB=15°,∴∠BGE=180°﹣∠BEC﹣∠EBG=180°﹣15°﹣60°﹣45°=60°,∴∠AGD=60°故答案为60.【点评】本题考查等边三角形的性质及正方形的性质的运用.三.解答题(共11小题,满分90分)21.【分析】将特殊锐角的三角函数值代入、计算零指数幂,再计算乘法,最后计算加减可得.【解答】解:原式===.【点评】本题主要考查实数的运算,解题的关键是熟记特殊锐角的三角函数值,掌握零指数幂的规定及实数的运算顺序.22.【分析】(1)计算判别式得到△=m2+12,由于m2≥0,则△>0,然后根据判别式的意义判断根的情况;(2)设方程另一根为x2,根据根与系数的关系先利用两根之积求出x2,然后利用两根之和求出m.【解答】解:(1)△=m2﹣4×1×(﹣3)=m2+12,∵m2≥0,∴△>0,∴方程有两个不相等的实根;(2)设方程另一根为x2,∴﹣1•x2=﹣3,解得x2=3,∵﹣1+3=m,∴m=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.24.【分析】根据平行四边形的性质和已知条件易证△EBC是等腰三角形,由等腰三角形的性质:三线合一即可证明CH=EH.【解答】证明:∵在▱ABCD中,BE∥CD,∴∠E=∠2,∵CE平分∠BCD,∴∠1=∠2,∴∠1=∠E,∴BE=BC,又∵BH⊥BC,∴CH=EH(三线合一).【点评】本题考查了平行四边形的性质、角平分线的定义以及等腰三角形的判定和性质,证题的关键是得到△EBC是等腰三角形.25.【分析】(1)由良有70天,占70%,即可求得统计图共统计了几天的空气质量情况;(2)由条形统计图中,可得空气质量为“良”的天数为100×20%=20(天),空气质量为“优”所在扇形的圆心角度数是:20%×360°=72°,(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选到一名男同学和一名女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)∵良有70天,占70%,∴统计图共统计了的空气质量情况的天数为:70÷70%=100(天);(2)如图:条形统计图中,空气质量为“优”的天数为100×20%=20(天),空气质量为“优”所在扇形的圆心角度数是:20%×360°=72°,(3)画树状图得:∵共有12种等可能情况,其中符合一男一女的有8种,∴恰好选到一名男同学和一名女同学的概率是=.故答案为:(1)100,(2)72°,(3).【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.26.【分析】(1)分别作出点A和点B绕点O逆时针旋转90°所得对应点,再与点O首尾顺次连接即可得;(2)由所得图形可得点的坐标;(3)利用勾股定理可得答案.【解答】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点评】本题主要考查作图﹣旋转变换,解题的关键是掌握旋转变换的定义和性质,并据此得出变换后的对应点.27.【分析】(1)设调价百分率为x,根据售价从原来每件40元经两次调价后调至每件32.4元,可列方程求解.(2)根据的条件从而求出多售的件数,从而得到两次调价后,每月可销售该商品数量.【解答】解:(1)设这种商品平均降价率是x,依题意得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(舍去);故这个降价率为10%;(2)设降价y元,根据题意得(40﹣20﹣y)(500+50y)=10000解得:y=0(舍去)或y=10,答:在现价的基础上,再降低10元.【点评】考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.28.【分析】(1)连接OC.根据等腰三角形的性质得到∠OAC=∠OCA.∠OAC=∠CAD.推出OC∥AE.根据平行线的性质得到∠E=∠OCP.根据切线的性质即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)连接OC.∵OA=OC,∴∠OAC=∠OCA.∵BC=CD,∴∠OAC=∠CAD.∴∠OCA=∠CAD,∴OC∥AE.∴∠E=∠OCP.∵PE是的切线,C为切点,∴∠OCP=90°.∴∠E=90°;(2)在Rt△ABD中,OC=2.5,sin∠P==,∴OP=,在Rt△APE中,AP=+2.5=,sin∠P==,∴AE=4.【点评】本题考查了切线的性质,解直角三角形,正确的作出辅助线是解题的关键.29.【分析】(1)根据反比例函数的特点k=xy为定值,列出方程,求出m的值,便可求出反比例函数的解析式;根据m的值求出A、B两点的坐标,用待定实数法便可求出一次函数的解析式.(2)根据函数图象可直接解答.【解答】解:(1)由题意可知,m(m+1)=(m+3)(m﹣1).解,得m=3.(2分)∴A(3,4),B(6,2);∴k=4×3=12,∴.∵A点坐标为(3,4),B点坐标为(6,2),∴,∴,∴y=﹣x+6.(5分)(2)根据图象得x的取值范围:0<x<3或x>6.(7分)【点评】此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式,比较简单.30.【分析】根据CE和α的正切值可以求得AE的长度,根据AB=AE+EB即可求得AB的长度,即可解题.【解答】解:在中Rt△ACE,∴AE=CE•tanα,=BD•tanα,=25×tan22°,≈10.10米,∴AB=AE+EB=AE+CD≈10.10+1.20≈11.3(米).答:电线杆的高度约为11.3米.【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算AE的值是解题的关键.31.【分析】(1)变形为不定方程k(x﹣4)=y﹣4,然后根据k为任意不为0的实数得到x﹣4=0,y﹣4=0,然后求出x、y即可得到定点的坐标;(2)通过解方程组得A(6,3)、B(﹣4,8);①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2﹣x),则Q(x,﹣x+6),则PQ==﹣(x﹣1)2+=20,然后解(﹣x+6)﹣(x2﹣x),利用三角形面积公式得到S△PAB方程求出x即可得到点P的坐标;②设P(x,x2﹣x),如图2,利用勾股定理的逆定理证明∠AOB=90°,根据三角形相似的判定,由于∠AOB=∠PCO,则当=时,△CPO∽△OAB,即=;当=时,△CPO∽△OBA,即=,然后分别解关于x的绝对值方程即可得到对应的点P的坐标.【解答】解:(1)∵y=kx﹣4k+4=k(x﹣4)+4,即k(x﹣4)=y﹣4,而k为任意不为0的实数,∴x﹣4=0,y﹣4=0,解得x=4,y=4,∴直线过定点(4,4);(2)当k=﹣时,直线解析式为y=﹣x+6,解方程组得或,则A(6,3)、B(﹣4,8);①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2﹣x),则Q(x,﹣x+6),∴PQ=(﹣x+6)﹣(x2﹣x)=﹣(x﹣1)2+,=(6+4)×PQ=﹣(x﹣1)2+=20,∴S△PAB解得x1=﹣2,x2=4,∴点P的坐标为(4,0)或(﹣2,3);②设P(x,x2﹣x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=,整理得4|x2﹣x|=3|x|,解方程4(x2﹣x)=3x得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2﹣x)=﹣3x得x1=0(舍去),x2=1,此时P点坐标为(1,﹣);当=时,△CPO∽△OBA,即=,整理得3|x2﹣x|=4|x|,解方程3(x2﹣x)=4x得x1=0(舍去),x2=,此时P点坐标为(,);解方程3(x2﹣x)=﹣4x得x1=0(舍去),x2=﹣,此时P点坐标为(﹣,)综上所述,点P的坐标为:(7,)或(1,﹣)或(﹣,)或(,).【点评】本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和相似三角形的判定方法;会利用待定系数法求抛物线解析式,通过解方程组求两函数图象的交点坐标,会解一元二次方程;理解坐标与图形性质;会运用分类讨论的思想解决思想问题.。

相关文档
最新文档