精馏塔课程设计
苯和氯苯精馏塔课程设计

苯和氯苯精馏塔课程设计一、引言苯和氯苯是常见的有机化合物,它们在工业生产中有广泛的应用。
苯和氯苯精馏塔是一种有效的分离方法,可以将两者分离出来。
本课程设计旨在探究苯和氯苯精馏塔的原理、设计方法、操作技巧和安全注意事项。
二、原理1. 精馏塔原理精馏是一种利用液体混合物中各组分沸点差异进行分离的物理过程。
精馏塔是一种基于精馏原理设计的设备,通常由填料层和板层组成。
填料层通常由多孔性材料制成,可增加液体与气体之间的接触面积,促进挥发性组分从液相向气相转移;板层则通过板孔将液体和气体分开,使得液体在不同板层之间反复蒸发和凝结,从而实现组分之间的分离。
2. 苯和氯苯之间的沸点差异苯(C6H5)的沸点为80.1℃,而氯苯(C6H5Cl)的沸点为131℃。
因此,在适当温度下,苯和氯苯可以通过精馏塔进行分离。
三、设计方法1. 精馏塔的选择根据物料性质和生产要求,选择合适的精馏塔类型。
常见的精馏塔类型有平板式、填料式、螺旋板式等。
2. 填料的选择填料是影响精馏效果的重要因素之一。
常用的填料有金属网、陶瓷球、聚合物球等。
填料的选取应考虑到其表面积、孔径大小、耐腐蚀性和可再生性等因素。
3. 操作参数的控制在操作过程中,应根据实际情况控制温度、压力和进出料量等参数。
通常情况下,应将温度控制在苯和氯苯沸点之间,并适当增加进出料量以提高分离效率。
4. 填充率的控制填充率是指填料所占据空间与总容积之比。
填充率过高会导致液体无法顺畅流动,从而影响分离效果;而填充率过低则会导致液体在塔内停留时间不足,也会影响分离效果。
一般来说,填充率应控制在50%~70%之间。
四、操作技巧1. 开始操作前应检查设备是否正常运转,并进行必要的维护保养。
2. 在进料前,应先将塔内空气排出,以避免氧化反应和爆炸事故。
3. 操作过程中应注意控制温度、压力和进出料量等参数,并及时调整。
4. 如果发现液位过高或过低,应及时采取措施调整液位。
5. 操作结束后,应清洗设备并进行必要的维护保养。
化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。
一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。
苯甲苯板式精馏塔课程设计

课程设计:苯甲苯板式精馏塔操作一、课程介绍苯甲苯板式精馏塔是一种利用热量和物理分离的设备,可以有效地将混合物中的不同成分分离出来,从而获得高纯度的产品。
苯甲苯板式精馏塔是一种常见的精馏设备,它主要由精馏塔、热交换器、热源、液位控制器、压力表、温度计、液位计、流量计等组成。
本课程主要介绍苯甲苯板式精馏塔的操作,包括精馏塔的结构、工作原理、操作流程等。
本课程旨在帮助学员了解苯甲苯板式精馏塔的操作,使学员能够熟练操作苯甲苯板式精馏塔,从而获得更高的精馏效率。
二、课程内容1.精馏塔结构苯甲苯板式精馏塔由上下两个容器组成,上部容器用于装载混合物,下部容器用于收集分离出来的混合物。
精馏塔内部装有多层苯甲苯板,苯甲苯板上有多个孔,孔的大小可以根据混合物的不同而定制,以保证混合物的有效分离。
2.工作原理苯甲苯板式精馏塔的工作原理是将混合物在精馏塔内部的苯甲苯板上分离,当混合物通过苯甲苯板时,由于不同成分的沸点不同,热量的作用下,混合物中的不同成分会在苯甲苯板上分离出来,分离出来的不同成分会流入上下两个容器,从而实现混合物的有效分离。
3.操作流程(1)检查精馏塔:检查精馏塔内部的苯甲苯板是否完好,检查精馏塔的连接件是否完好,检查精馏塔的控制系统是否正常。
(2)操作热源:操作热源,使混合物在苯甲苯板上面的温度达到预定的温度,以保证混合物的有效分离。
(3)操作精馏塔:操作精馏塔,使混合物在苯甲苯板上分离,分离出来的不同成分会流入上下两个容器,从而实现混合物的有效分离。
(4)检查分离效果:检查分离出来的混合物是否符合要求,如果不符合要求,可以根据实际情况调整操作参数,以获得更好的分离效果。
三、课程结束苯甲苯板式精馏塔的操作是一项复杂的工作,需要经过系统的培训和实践,才能熟练操作。
本课程的主要内容是介绍苯甲苯板式精馏塔的操作,包括精馏塔的结构、工作原理、操作流程等,帮助学员了解苯甲苯板式精馏塔的操作,使学员能够熟练操作苯甲苯板式精馏塔,从而获得更高的精馏效率。
精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

第一章绪论1.1精馏的特点与分类精馏是分离液体混合物的典型单元操作。
它是通过加热造成气液两相物系,利利用物系中各组分挥发度的不同的特性来实现分离的。
按精馏方式分为简单精馏、平衡精馏、精馏和特殊精馏。
1.1.1蒸馏分离具有以下特点(1)通过蒸馏分离,可以直接获得所需要的产品。
(2)适用范围广,可分离液态、气态或固态混合物。
(3)蒸馏过程适用于各种浓度混合物的分离。
(4)蒸馏操作耗能较大,节能是个值得重视的问题。
1.1.2平衡蒸馏将混合液在压力p1下加热,然后通过减压阀使压力降低至p2后进入分离器。
过热液体混合物在分离器中部分汽化,将平衡的气、液两相分别从分离器的顶部、底部引出,即实现了混合液的初步分离。
1.1.3简单蒸馏原料液在蒸馏釜中通过间接加热使之部分汽化,产生的蒸气进入冷凝器中冷凝,冷凝液作为馏出液产品排入接受器中。
在一批操作中,馏出液可分段收集,以得到不同组成的馏出液。
1.1.4连续精馏操作流程化工生产以连续精馏为主。
操作时,原料液连续地加入精馏塔内,连续地从再沸器取出部分液体作为塔底产品(称为釜残液);部分液体被汽化,产生上升蒸气,依次通过各层塔板。
塔顶蒸气进入冷凝器被全部冷凝,将部分冷凝液用泵(或借重力作用)送回塔顶作为回流液体,其余部分作为塔顶产品(称为馏出液)采出。
1-精馏塔 2-全凝器3-储槽 4-冷却器5-回流液泵 6-再沸器 7-原料液预热器图1连续精馏装置示意图1.2精馏塔的踏板分类1.2.1塔板的结构形式1.泡罩塔板泡罩塔板是工业上应用最早的塔板,它由升气管与泡罩构成。
泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。
泡罩有φ80mm、φ100mm和φ150mm三种尺寸,可根据塔径大小选择。
泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。
泡罩在塔板上为正三角形排列。
它的优点是操作弹性适中塔板不易堵塞。
缺点是生产能力与板效率较低结构复杂、造价高。
图2泡罩塔板(a)操作示意图 (b)塔板平面图 (c)圆形泡罩2.筛孔塔板筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一般为3~8mm。
乙酸乙酯-乙醇精馏塔的设计课程设计

乙酸乙酯-乙醇精馏塔的设计课程设计引言这份课程设计旨在设计一个乙酸乙酯-乙醇精馏塔,以实现有效的分离和提纯乙酸乙酯和乙醇混合物。
本文档将提供有关该塔的设计和操作参数的详细信息。
设计目标该精馏塔的设计目标有以下几点:1. 提供足够的塔高和塔板数以实现充分的分离效果。
2. 最小化能源消耗,提高操作效率。
3. 保证设备的稳定性和安全性。
设计参数1. 塔高:根据所需的分离效果和流量要求,确定合适的塔高。
通常,较高的塔高可以提供更好的分离效果,但也增加了设备成本和能源消耗。
2. 塔板数:根据乙酸乙酯和乙醇混合物的成分和所需的分离效果,确定合适的塔板数。
较多的塔板数可提供更充分的分离效果。
3. 进料温度:通过调整进料温度,可以控制乙酸乙酯和乙醇的沸点差异,从而实现有效的分离。
4. 冷凝器温度:通过调整冷凝器温度,可以控制乙酸乙酯和乙醇的沸点差异,从而实现有效的分离。
5. 塔板压力:通过调整塔板压力,可以控制乙酸乙酯和乙醇的汽液平衡,从而实现有效的分离。
6. 冷却介质的选择:根据操作要求选择合适的冷却介质,以实现对乙酸乙酯和乙醇的冷凝。
操作参数在设计乙酸乙酯-乙醇精馏塔时,需要考虑以下操作参数:1. 进料流量:根据生产需求确定进料流量。
2. 乙酸乙酯产品纯度:根据生产要求确定所需的乙酸乙酯产品纯度。
3. 乙醇产品纯度:根据生产要求确定所需的乙醇产品纯度。
4. 乙酸乙酯回收率:根据生产要求确定所需的乙酸乙酯回收率。
结论通过合理的设计和操作参数选择,乙酸乙酯-乙醇精馏塔可以实现有效的分离和提纯乙酸乙酯和乙醇混合物。
必须充分考虑分离效果、能源消耗和操作安全,以实现最佳的设备性能和生产效益。
以上是乙酸乙酯-乙醇精馏塔的设计课程设计的内容。
谢谢!。
苯和甲苯精馏塔课程设计

苯和甲苯精馏塔课程设计一、引言在化工工艺中,精馏是一种常用的方法,用于将混合物中的不同组分分离。
在本课程设计中,我们将研究苯(C6H6)和甲苯(C7H8)的精馏过程。
苯和甲苯都是重要的化工原料,在许多工业领域有广泛的应用。
本文将从以下几个方面对苯和甲苯精馏塔进行课程设计:1.塔板设计2.塔顶和塔底的操作条件3.塔的热力设计4.塔的操作优化二、塔板设计苯和甲苯的分离需要高效的塔板设计。
塔板是精馏塔中的一个关键部件,用于增加气液接触面积,实现组分的分离。
在塔板设计中,需要考虑以下几个因素:1.塔板间距:塔板间距的选择应考虑到塔内液相流动的良好性,通常为0.5-1.0米。
2.塔板孔径:塔板孔径的选择需要满足固液分离要求,并尽可能减小液体在孔中的停留时间。
通常为2-5毫米。
3.塔板孔位:塔板孔位的布置应使液体能均匀地流过塔板,并实现气液混合。
常见的孔位布置有正交孔位和方孔位。
4.塔板活性高度:塔板活性高度的选择应满足组分分离的要求,并考虑到不同塔板间液位的变化。
三、塔顶和塔底的操作条件在塔顶和塔底的操作条件设计中,我们需要确定适当的温度和压力,以便实现苯和甲苯的分离。
1.塔顶:在塔顶,通过降低温度和增加压力,可以将甲苯从苯中分离出来。
一般情况下,塔顶的温度应低于塔底的温度,以保证甲苯的净蒸发。
同时,通过适当的塔顶压力调节,可以控制甲苯的回流比例。
2.塔底:在塔底,苯和甲苯的混合物会进行分馏。
通过增加温度和降低压力,可以将苯从甲苯中分离出来。
塔底的温度应高于塔顶的温度,以保证苯的净蒸发。
同时,通过适当的塔底压力调节,可以控制苯的回流比例。
四、塔的热力设计塔的热力设计是保证苯和甲苯精馏效果的关键。
在热力设计中,需要考虑以下几个方面:1.热稳定性:苯和甲苯在精馏塔中的热稳定性要求较高,避免产生不稳定的产物,影响产品质量。
2.能量平衡:通过热交换器对塔内液体和气体进行能量平衡,提高塔的热效率。
3.冷却方式:选择合适的冷却方式,如水冷却或气冷却,以控制塔顶和塔底的温度。
丙酮水精馏塔课程设计

丙酮水精馏塔课程设计一、课程目标知识目标:1. 让学生掌握丙酮与水的精馏原理,理解精馏塔的基本结构和操作流程;2. 学会运用化学平衡和相平衡知识,分析丙酮-水体系的精馏过程;3. 掌握精馏塔的物料与能量平衡计算方法,能进行简单精馏塔的设计与优化。
技能目标:1. 培养学生运用所学知识解决实际化学工程问题的能力,能独立进行精馏塔的实验操作;2. 提高学生的实验数据分析与处理能力,能够利用实验数据优化精馏操作;3. 培养学生的团队协作和沟通能力,能在小组讨论中提出建设性意见。
情感态度价值观目标:1. 培养学生对化学工程学科的兴趣,激发他们探索科学问题的热情;2. 培养学生严谨的科学态度,注重实验数据的真实性和客观性;3. 增强学生的环保意识,让他们认识到化学工艺在环保方面的重要性。
课程性质:本课程为高中化学选修课程,以化学工程实践为基础,结合理论知识,培养学生的实践操作能力和科学素养。
学生特点:高中学生具备一定的化学基础知识和实验操作技能,但化学工程知识相对薄弱,需要通过实践操作和理论学习相结合的方式进行教学。
教学要求:教师应注重理论与实践相结合,充分调动学生的主观能动性,引导学生主动参与实验和讨论,提高学生的实践能力和科学素养。
同时,注重培养学生的团队协作能力和环保意识。
通过本课程的学习,使学生能够将所学知识应用于实际化学工程问题,为未来的学习和工作打下坚实基础。
二、教学内容本节教学内容主要包括以下三个方面:1. 精馏原理与精馏塔结构- 理解丙酮与水的精馏原理,掌握精馏过程中物质的相变和分离机制;- 学习精馏塔的基本结构,包括塔板、填料、加热器、冷凝器等部件的作用和设计要求;- 结合教材相关章节,分析实际精馏塔操作流程。
2. 化学平衡与相平衡- 掌握丙酮-水体系的气液平衡和液液平衡关系;- 学习化学平衡常数、相平衡图等概念,分析影响精馏效果的因素;- 引导学生运用所学知识,进行精馏塔的物料与能量平衡计算。
化工原理 课程设计 精馏塔

化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。
该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。
乙醇的浓度要求为95%(质量分数),水含量要求低于5%。
二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。
同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。
3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。
4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。
三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。
2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。
3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。
4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。
5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。
6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、概述二、设计方案和工艺流程的确定三、塔的物料衡算四、回流比确定五、塔板数的确立六、塔的工艺条件及物性数据计算七:塔和塔板主要工艺尺寸计算八、塔板的流体力学验算十、热量衡算十一、筛板塔的设计结果总表十二、辅助设备选型及接管尺寸十三、精馏塔机械设计计算十四、设计中的心得体会一、概述:塔设备是炼油、化工、石油化工等生产广泛应用的气液传质设备。
根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。
板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上液层进行质,热传递,气液相组成呈阶梯变化,属逐渐接触逆流操作过程。
填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流而上(也有并流向下者)与液体接触进行质热传递,气液组成沿塔高连续变化,属微分接触操作过程。
工业上对塔设备的要求:(1)生产能力大;(2)传质传热效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量小(6)制作安装容易,维修方便。
(7)设备不易堵塞,耐腐蚀。
其中板式塔又可分为有降液管的塔板(如泡罩塔,浮阀塔,筛板塔,舌型,S型等)和无降液管的(如穿流式筛板,穿流式波纹板)该课程涉及到的是板式塔中的浮阀塔,其广泛用于精馏、吸收、和解吸等过程。
其主要特点是再塔板的开孔上装有可浮动的浮阀,气流从浮阀的周边以稳定的速度水平地进入塔板上液层进行两相接触,浮阀课根据气流流速地大小上下浮动,自行调节。
浮阀有盘式、条式等多种。
国内多采用盘式,其优点为生产能力大,操作弹性大,分离效率较大,塔板结构较简单。
此型中的F-1型结构简单,已经列入部颁标准,因此型号的重阀操作稳定性好,一般采用重阀。
二、设计方案和工艺流程的确定:在此次课程涉及中主要介绍浮阀塔在精馏中的应用,精馏装置包括精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器、和产品冷却器等设备。
热量自塔釜输入,物料再塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器的冷却物质将余热带走。
此过程中因考虑节能。
另外,为保持塔的稳定性,流程除用泵直接送入塔原料外,也可采用高位槽送料以受泵操作波动影响。
塔顶冷凝器装置根据生产情况以决定采用全凝器和分凝器。
一般,塔顶分凝器对上升蒸汽虽由一定的增浓作用,当在石油等工业中获取液相产品时往往采用全凝器,以便于准确的控制回流比。
若后继装置使用气态物料,则宜用分凝器操作压强由常压、低压和高压操作,其取决于冷凝温度,一般都采用常压,对于热敏性物质或混合液沸点过高的物质则宜采用减压操作,而常压下为气态的物质采用高压操作。
对于物料的进料,一般情况下采用冷进料,但是为了考虑塔的操作稳定性,则一把采用泡点进料。
蒸馏一般采用间接蒸汽加热,设置再沸器。
对于本次的课程因为乙醇的挥发度较高,宜采用间接蒸汽加热,其优点时可以利用压强较低的加热蒸汽以节省操作费用,并省掉间接加热设备选择回流比主要从经济的角度来考虑,力使操作费用和设备费用之和最低。
这个将在下面详细的介绍。
本设计采用混合原料经原料余热至泡点,送入精馏塔。
塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。
塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。
(流程图见后面附录)三、塔的物料衡算:(一)料液及塔顶、塔底产品含苯摩尔分率。
X F =35/46.070.174035/46.0765/18.02=+;X D =94/46.070.8694/46.076/18.02=+; X W =0.05/46.070.0001970.05/46.0799.95/18.02=+; (二)平均分子量。
M F =0.17446.07(10.174)18.0222.9⨯+-⨯=; M D =0.86046.07(10.860)18.0242.143⨯+-⨯=; M W =0.00019746.07(10.000197)18.0218.026⨯+-⨯=;(三)物料衡算 。
总物料衡算: D ,+W ,=F ,=4166.7;易挥发组分物料衡算: 0.94D ,+0.005 W ,=0.35⨯4166.7=1458.345; 联立上面两式得: F ,=4166.7 kg/h=181.95 kmol/h; D ,=1550.04 kg/h=36.78 kmol/h; W ,=2616.66 kg/h=145.17 kmol/h四、回流比确定。
由(附录-1)得出最小理论回流比为R min =2.217五、塔板数的确立。
(一)全塔效率E tE t =0.250.49()1.10.4481 1.10.493αμ-⨯=⨯=;(其中α=4.03,μ=0.35747)(二)由后面的(附录-3)的程序得出理论塔板数N 理=54; 实际塔板数:N 实=N 理/ E t =54/0.493=109.53; 所以实际塔板数等于110块;六、塔的工艺条件及物性数据计算。
(一)操作压强P m精馏段平均操作压强P m =101.3250.7104174.125+⨯= kp a(二)温度t m ,精=(83.75+78.2)/2 =81.0℃(三)平均分子量x d =y 1=0.860 ; x 1=0.710 ;塔顶: M VDM =0.860⨯46.07+(1-0.860)⨯18.02=42.14 kg/kmol ; M LDM =0.710⨯46.07+(1-0.710)⨯18.02=37.94 kg/kmol ; 进料塔:M VFM =0.183⨯46.07+(1-0.183) ⨯18.02=23.15 kg/kmol; M VFM =0.174⨯46.07+(1-0.174) ⨯18.02=22.90 kg/kmol; 则精馏段分子量:M VM 精=(42.14+37.94)/2=40.04 kg/kmol; M LM 精=(23.15+22.90)/2=23.03 kg/kmol; (四)精馏段气液负荷计算Vs V =⨯M VM 精/(3600⨯ρVM 精)=0.59 m 3/s ;L=R ⨯D=2.38⨯36.78=87.54 kmol/h ;L S =L ⨯ M LM 精/(3600⨯ρLM 精)=0.0007 m 3/s ; L H = L S ⨯3600=2.52 m 3/s ;七:塔和塔板主要工艺尺寸计算。
(一) 塔径:初选板间距H T =0.35 m ; 取板上液层高度h l =0.06 m ; H T -h l =0.35-0.06=0.29 m ;(L S /V S )⨯(ρL /ρV )0.5=(0.007/0.59)⨯(777.96/2.35)0.5=0.0218 ; 查图得:C 20=0.059 ; C =C 20⨯()20δ0.2=0.059⨯38.86()200.2=0.0674 ; U max = C ⨯sqrt{(ρL ⨯ρV )/ρV }=1.22 m/s ; 取安全系数为0.70 ;则U=0.70⨯U max =0.70⨯1.22=0.854 m/s ;D =sqrt{(4⨯Vs )/(π⨯U)}= sqrt{(4⨯0.59)/(3.14⨯0.854)}=0.938 m ; 按标准,塔径园整为1.0m ,则空塔气速为0.75 m/s ; (二)溢流装置:采用单溢流,弓形降液管,平形受液盘及平形溢流堰,不设进口堰。
各项计算如下:1.溢流堰长l W =0.6⨯D=0.6⨯1=0.6 m;2.出口堰高l W /D =0.60/1 =0.60 ; l h /(l h )3.5=9.04 ;查图知: E =1.03 ;h OW =(2.84/1000)⨯E ⨯(l h /l W )2/3=(2.84/1000)⨯1.03⨯(2.52/0.60)2/3=0.008 m ; h W =h L -h OW =0.06-0.008=0.052 m ; 3.降液管的宽度W d 与移液管的宽度A fl W /D =0.60/1 =0.60 ;查图知:W d /D =0.100 ; A f /A t =0.052;得: W d =0.100⨯D =0.10⨯1.0=0.10 m ;A f =0.052⨯4π⨯D 2=0.052⨯0.78⨯1.02=0.041 m 2 ; 4.停留时间检验降液管面积 5。
降液管底隙高度h取液体通过降液管底隙的流速u o 、为0.09 m/s ;h o =h o /(l W ⨯u o 、)=0.0007/(0.60⨯0.09)=0.93 m ; (三):塔板布置1。
取边缘区宽度W c =0.035 m ;安定区宽度W b =0.070 m ; 2.计算开孔区面积A ax=D/2-(W s +W b )=0.5-(0.1+0.070)=0.330 m ; R=D/2-W c =0.5-0.050=0.450 m ; A a=212[sin ]0.572180xR Rπ-⨯⨯= m 2 ; (四)筛孔数与开孔率取筛孔的孔径d 0为5mm ; 正三角形排列,一般炭钢的板厚δ为3mm ; 取t/d 0=3.0 故空中心距:t=3.0⨯5.0=15.0 mm ;1.筛孔数:33221158101158100.572294415u n A t ⨯⨯=⨯=⨯=孔 ; 2.开孔率:200.9070.90710.1%9()o a A t A u ϕ===%= ;3.开孔面积:o A =ϕ⨯a A =0.101⨯0.572=0.0578 m 2;4.气体通过筛孔的气速:00/0.59/0.05810.21s u V A === /m s ; (五)塔有效高度(1041)0.3536.05z =-⨯= m ; (六) 塔高计算32.90.28.4445.5=+++= m ;其中H :塔高 ; F H :进料板处板间距 ; p H :人孔处板间距 ; D H :塔顶空间;B H :塔底空间;n :实际塔板数;F n :进料板数; p n :人孔数 ; T H :板间距 ;八、塔板的流体力学验算(一)气体通过塔板的压降p ∆相当于液柱高度p h p c l h h h h δ=++ ; 1.干板压降相当于液体高度c hc h =0.051200()v l u c ρρ=0.051⨯211.55 2.92()0.84802.9⨯=0.0351 m ; 其中由0/d δ=5/3=1.67 ; 查图得0C =0.84 ; 2.气体穿过板上液层压降相当得液柱高度l h 0.590.7900.7880.041s a T F V u A A ===-- m/s ;a F =au=1.46 ; 由图查得上液层充气系数00.625ε=00()0.625(0.0520.008)0.0375l L W ow h h h h εε=⨯=⨯+=⨯+= m ; 3.克服液体表面张力压降相当的液柱高度304438.86100.00407777.99.80.005l h gd σσρ-⨯⨯===⨯⨯ m ;由p c l h h h h δ=++=0.0228+0.0375+0.00407=0.064 m ; 故单板压降:0.064777.99.814910.7p p l p h g pa kp ρ∆==⨯⨯=〈 在设计允许范围内。