大学物理上册习题课
大学物理第一章习题《上册》

解答提示
光从齿轮到镜面,再反射回到齿轮所用的时间为
t
500 3108
v N
A
rO
B
mg
C
由牛顿第二定律得:
D
切向 F ma
mg sin m dv
dt
①
法向 Fn man
N mg cos m v2
r
②
dv dv d dv dv v dt d dt d d r
由①式得 mg sin m dv v d r
dv dv dx kv2 (1) dt dx dt
dx v (2) dt
分离变量积分,得 ln v ln v0 kx
v v0ekx,
1-10 飞机 A 以 vA = 103 km/s 速率 (相对地面)向南行,同时另一 架飞机 B 以 vB = 800 km/s 速率 (相对地面 ) 向东偏南 30o 角方向飞行。 求 A 机相对 B 机的速度和 B 机相对 A 机的速度。
1-9 一艘正在沿直线行驶的汽艇,在发动机关闭后,其加速度方向与
速度方向相反,满足 dv kv2 , dt
式中 k 为常数。试证明汽艇在关闭发动机
后又行驶 x 距离时的速度为 v v0ekx , 其中 v0 是关闭发动机时的速度。
解答提示
对题中所给关系式 dv kv2 作一数学处理如下: dt
N N 3mg cos
大学物理2-1习题课五,六章

E Exi Eyj Ezk
电荷元 表达式
线电荷 面电荷 体电荷
d q d l
dq dS dq dV
有用的结论
(1)一均匀带电直2
sin
1)
Ey
4 0a
(cos1
cos2 )
特例:无限长均匀带电直线的场强
E 2 0a
(2)一均匀带电圆环轴线上任一点 x处的电场
Q E1 2 0 2 0S
C
B C
E dl
0
E0
d /2
E1 dx
d 2
d
Q
2 0 S
2
Qd
4 0 S
P36 10 10.一电偶极子由电荷q的两个异号点电荷组成,两电
荷相距为l.把这电偶极子放在场强大小为E的均匀电场
中。试求:1) 电场作用于电偶极子的最大力矩;2) 电偶
极子从受最大力矩的位置转到平衡位置过程中,电场力
a
3. 电势叠加原理
(1)点电荷的电势分布:
q
U P 4 0r
(2)点电荷系的电势分布: U
Ui
i
qi
4 0ri
(3)连续带电体的电势分布: U dU 1 dq
V
V 4 0 r
P31 7
7. 如图所示,边长为l的正方形,在其四个顶点上各放
有等量的点电荷.若正方形中心O处的场强值和电势值
UC
U C
q (1 40 rB
1
rC
)
15(V
)
U C 15(V )
P33 11
11.有三个点电荷Q1、Q2、Q3沿一条直线等间距分布,已知其中任一点电荷
所中受点合移力至均无为穷零远, 处且 外力Q1所=Q作3=的Q。功在固Q定2Q1、. Q3的情况下,将Q2从Q1、Q3连线
大学物理重点知识习题课解答-光学7

d = kλ / sin ϕ =1.03×10−6 m
λ′ = d sin ϕ′ / k 因第一级明纹出现在27 的方向上, 因第一级明纹出现在 0的方向上 = 468nm
对这单色光,最多可看到第几级明条纹 对这单色光 最多可看到第几级明条纹? 最多可看到第几级明条纹
若用另一种波长的光照射此光栅, 若用另一种波长的光照射此光栅
分析: 分析:迈克耳逊干涉仪中 的干涉现象可以 等效为薄 膜干涉, 膜干涉,在干涉仪一臂中 插入介质片后, 插入介质片后,两束相干 光的光程差改变了, 光的光程差改变了,
d
的介质片后, 解:插入厚度为 d的介质片后,两相干光的光程差的 的介质片后 改变量为2(n-1)d,从而引起 条条纹的移动,根据劈尖 从而引起N条条纹的移动 改变量为 从而引起 条条纹的移动, 干涉加强的条件有2(n-1)d=Nλ,得: 干涉加强的条件有 ,
l
明纹暗纹 ∆d
θ
dk
劈尖条纹的形状
dk+1 A
棱边处是第一条暗纹中心,在膜厚度为e 解:(1) 棱边处是第一条暗纹中心,在膜厚度为 2=
1 λ 2
处是第二条暗纹中心,依此可知第四条暗纹中心处, 处是第二条暗纹中心,依此可知第四条暗纹中心处,即A处膜厚度 e4= 处膜厚度
× θ = e4 / l = 3λ /(2l )=4.8×10-5 rad
1
解:因为 n1 < n2 < n3 ,所以反射光 经历两次半波损失。 经历两次半波损失。反射光相干相 消的条件是: 消的条件是:
n2 =1.38
d
2n2d = (2k +1)λ / 2
n3 =1.52
d = (2k +1)λ / 4n2 λ 550×10−9 = = 99.3nm 求得: 代入k=0 和 n2 求得: d = 4n2 4×1.38
大学物理学第四版课后习题答案全解(赵近芳)上册

(3) 一质点沿半径为 R 的圆周作匀速率运动,每 t 秒转一圈,在 2t 时间间隔中,其平均 速度大小和平均速率大小分别为 (A)
2R 2R , t t
(B) 0,
(C) 0,0 [答案:B] 1.2 填空题
2R t 2R (D) ,0 t
(1) 一质点,以 m s 1 的匀速率作半径为 5m 的圆周运动,则该质点在 5s 内,位移的大小 是 ;经过的路程是 [答案: 10m; 5πm] 。
故 所以 t 10 s 时
1 x 2t 2 t 3 5 2
v10 4 10
3 10 2 190 m s 1 2 1 x10 2 10 2 10 3 5 705 m 2
1.11 一质点沿半径为1 m 的圆周运动,运动方程为
=2+3 t 3 ,式中 以弧度计, t 以秒
2 2
dx dy v v v dt dt
2 x 2 y 2 2 x 2 y
d2x d2 y a a a dt 2 2 dt
2
而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作
vdv adx (2 6 x 2 )dx 1 2 v 2x 2x3 c 2
由题知, x 0 时, v 0 10 ,∴ c 50 ∴
v 2 x 3 x 25 m s 1
1.10 已知一质点作直线运动, 其加速度为 a =4+3 t m s 2 , 开始运动时,x =5 m,v =0, 求该质点在 t =10s 时的速度和位置. 解:∵ 分离变量,得 积分,得 由题知, t 0 , v 0 0 ,∴ c1 0 故 又因为 分离变量, 积分得
大学物理光学习题课

(1)子波,(2)子波干涉. 所缺级次为 k=k'(a+b)/a. 2.单缝衍射由半波带法得出 4.园孔衍射爱里斑的角半径: 中央明纹: =0.61/a=1.22/d 坐标 =0, x=0; 光学仪器的最小分辩角 宽度 02/(na), =0.61/a=1.22/d x2f/(na) 分辩率 R=1/=d/(1.22) 其他条纹: 5.x射线的衍射: 暗纹 asin=k/n 布喇格公式 2dsin=k 明纹 asin(2k+1)/(2n) (d为晶格常数,为掠射角) 条纹宽度/(na), 三光的偏振 xf/(na) 1.自然光,偏光,部分偏光; 3.光栅:单缝衍射与多光束干 偏振片,偏化方向,起偏, 涉乘积效果,明纹明亮,细锐. 检偏. 光栅方程式 2.马吕期定律 I=I0cos2. (a+b)sin=k 3.反射光与折射光的偏振 缺级 衍射角同时满足 一般:反射折射光为部分偏光 (a+b)sin=k 反射光垂直振动占优势; asin=k ' 折射光平行振动占优势.
n3
4. 在如图28.4所示的单缝夫琅和 费衍射实验装置中,s为单缝,L 为透镜,C为放在L的焦面处的屏 幕,当把单缝s沿垂直于透镜光轴 的方向稍微向上平移时,屏幕上 的衍射图样( C ) (A) 向上平移. (B) 向下平移. (C) 不动. (D) 条纹间距变大.
3. 如下图所示,平行单色光垂 直照射到薄膜上,经上下两表面 反射的两束光发生干涉,若薄膜 的厚度为e,并且n1<n2>n3,1 为入射光在折射率为n1 的媒质中 的波长,则两束反射光在相遇点 的位相差为( C ) (A) 2 n2 e / (n1 1 ). (B) 4 n1 e / (n2 1 ) +. (C) 4 n2 e / (n1 1 ) +. (D) 4 n2 e / (n1 1 ). n1 n2 λ e
【精品】大学物理习题课——狭义相对论

2 L0 v / c 2 1 v / c 1 v / c 2Tv / c tB t A T T 2 2 1 v / c 1 v / c 1 v / c 1 v2 / c2 t B t A 0 光脉冲先到达车厢后端A,后到达车厢前端B。
5. 宇宙射线与大气相互作用时能产生π 介子衰变,在大气层上 层放出μ子。这些μ子的速度接近光速(u=0.998c) 。如果在实 验室中测得静止μ子的平均寿命为 2.2×10-6 s ,试问在8000米 高空由π介子放出的μ子能否飞到地面? 解: μ子速度
2E0 Eki 2 E3
c 2 p12 E12 E02 ( Eki E0 ) 2 E02 Eki (2 E0 Eki ) 1 1 2 2 2 2 2 2 c p3 E3 E0 [ (2 E0 Eki ) E0 ] Eki ( Eki 4 E0 ) 42 4 2 E0 Eki p1 2 于是 cos 2 4 p3 4 E0 Eki
27宇宙飞船相对于地面以速度v做匀速直线飞行某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号经过t船上的钟时间后被尾部的接受器收到则由此可知飞船的固有长度为c表示真空中光速一宇航员要到离地球为5光年的星球去旅行如果宇航员希望把这路程缩短为3光年则他所乘的火箭相对地球的速度应是c表示真空中光速在某地发生两件事静止位于该地的甲测得时间间隔为4s若相对甲做匀速直线运动的乙测得时间间隔为5s相对于甲的运动速度是c表示真空中光速表示真空中光速的速度飞行
m0, u0
M0
m0, -u0
解:
按照相对论观点,碰撞前,两个质点有动能,每个质点的能量为
tg 0 1 v2 / c2
l l0 , 0
大学物理上册(湖南大学出版社-陈曙光)-课后习题答案全解

大学物理上册课后习题答案第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t -=+,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t -=+.计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =. 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).图1.3人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其它问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变数得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变数得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n -=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =.由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+. 即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .v[注意]选择不同的坐标系,如x方向沿着a的方向或者沿着v0的方向,也能求出相同的结果.1.7一个半径为R= 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A.在重力作用下,物体A从静止开始匀加速地下降,在Δt = 2.0s内下降的距离h = 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A下落加速度.由于212th a t=∆,所以a t = 2h/Δt2 = 0.2(m·s-2).物体下降3s末的速度为v = a t t = 0.6(m·s-1),这也是边缘的线速度,因此法向加速度为2nvaR== 0.36(m·s-2).1.8一升降机以加速度1.22m·s-2上升,当上升速度为2.44m·s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at=+;螺帽做竖直上抛运动,位移为22012h v t gt=-.由题意得h = h1 - h2,所以21()2h a g t=+,解得时间为t=.算得h2 = -0.716m,即螺帽相对于升降机外固定柱子的下降距离为0.716m.[注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程h = (a + g)t2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A处向东飞到B处,然后又向西飞回到A处.已知气流相对于地面的速度为u,AB之间的距离为l,飞机相对于空气的速率v保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为2ltv=;(2)如果气流的速度向东,证明来回飞行的总时间为01221/ttu v=-;(3)如果气流的速度向北,证明来回飞行的总时间为2t=.[证明](1)飞机飞行来回的速率为v,路程为2l,所以飞行时间为t0 = 2l/v.(2)飞机向东飞行顺风的速率为v + u,向西飞行逆风的速率为v - u,所以飞行时间为1222l l vltv u v u v u=+=+--022222/1/1/tl vu v u v==--.(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB方向的速度大小为V=,所以飞行时间为图1.7A BA Bvv + uv - uA Bv uuvv22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律 2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、图1.101h lα图2.1与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m ga m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆12图2.32 图2.4线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T ==.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求:(1)小球通过竖直位置时的速度为多少?此时绳的张力多大?(2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大? [解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此(2)图2.6d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C=+,当h = 0时,v = 0,所以C = 0,因此速率为v =图2.72.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x 处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程222d d k xf ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv Cx =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k kmv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C=-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =. (2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101nk C x n -=--, 因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d v f mg kv mt =--=,分离变数得d d()d v m mg kv t m mg kv k mg kv +=-=-++, 积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+,当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得001/k v v v t R μ=+. 由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosgR θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,mg图2.11积分得冲量为/20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作向量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆=s -1). 棒给球冲量为I = m Δv = 7.3(N·s),对球的作用力为(不计重力):F = I/t = 366.2(N).2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma , 联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;t =.此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45° = 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πv xΔv v y图2.17sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为4520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR =+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因子为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理习题课答案

A O V1
B1 B2 B3
V2
A→B1等压过程 A→B2等温过程 V A→B3绝热过程
绝热过程:dQ0,T1V11
1
T2V2
V2 V1
6.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A的温度为TA= 300 K,求
(1) 气体在状态B、C的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).
循环中,传给低温热源的热量是从高温热源吸取热量的
[(C)]
(A) n 倍.
(B) n-1倍.
(C) 1 倍. n
(D) n 1 倍. n
高温热源的热力学温度为T1,高温热源的热力学温度为T2,则T1 nT2,
从高温热源吸收的热量为Q1
M Mmol
RT1
lnV2 V1
传给低温热源的热量为Q2
M Mmol
2p1 A
3 2
p 1V
p1
B
O V1 2V1 V
AB过程中系统作功,即是体积功:A=p1V112p1V1 32p1V
状态方程:pV= M RT,理想气体的内能为E= M i RT
Mmol
Mmol 2
E0
6. 0.02 kg的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积
Q=
M M mol
CP
(T2
T1 )
1.04103 J
理想气体的内能为E= M i RT,E 623J, M mol 2
A=Q E 417J
(3)绝热过程Q 0
E
M M mol
CV
(T2
T1)
623J
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的瞬间,摆球相对地面的速度为多大?
解 设摆球和车相对地面
的速度分别为 vm , vM . 以车和摆球为系统,机械能
l m
守恒,水平方向动量守恒.
mvm MvM 0
M
mgl
1 2
mvm2
1 2
MvM 2
vm
试说明此过程为什么机械能守恒 ?
2gl 1m M
把单摆和一等长的匀质直杆悬挂在同一点,杆
2000 v / m s1
m(O2 ) 32 4 m(H2 ) 2
vp (H2 ) vp (O2 )
vp (H2 ) 2000m/s vp (O2 ) 500m/s
一定量理想气体的循 P
A 等温
环过程如 P-V 图所示,请
B 绝热
填写表格中的空格.
D
o
C V
过程 内能增量ΔE/J 作功W/J 吸热Q/J
A→B
0
50
50
B→C
-50
50
0
C→D
-100
-50
-150
D→A
150
0
150
ABCD
循环效率η= 25%
图示两同轴圆筒形导体,
长为 l ,其半径分别为 R1 和 R2, 通过它们的电流均为 I ,但相反
流动,若两筒间充满磁导率为 的磁介质,
求其自感
R2 R1
I
d
B
ds
Bldr
习题课
质点沿 x 轴运动,其加速度 a 与位置坐标的关系
为 a = 3 + 6x2 (SI),如果质点在原点处的速度为零,试
求其在任意位置处的速度。
解: 设质点在 x 处的速度为v
a dv dv dx v dv 3 6x2 dt dx dt dx
v
vdv
x (3 6x2 )dx
个原来不带电的且半径 RB的金属球B(厚度不计)同 心的罩在A球的外面.
(1)求距球心rp 的P点的电势,以
及距球心 rQ 的Q点的电势.
(2)用导线把A和B连接起来,再
求P点和Q点的电势.
RA P
RB
Q
RA P RB Q
在点电荷 +2q 的电场中,如果取图中P点处 为电势零点,则 M点的电势为
2q P M
A→B
0
50
50
B→C
-50
50
0
C→D
-100
-50
-150
D→A
150
0
150
ABCD
循环效率η= 25%
有两个相同的容器,容积不变. 一个盛有氦气 ,
另一个盛有氢气(看成刚性分子), 它们的压强和温度
都相等, 现将 5J 的热量传给氢气, 使氢气的温度升高,
如果使氦气也升高同样的温度, 则应向氦气传递的热量
中,则该载流导线所受的安培力大小为多少?
c
B
aI
oab
LB dl _____________
I1
I2 I3
I1
L
I1
边长为 a 的等边三角形
载于流 均线 匀圈 磁,场通B 中以B,电若流以I ,o位o'
为轴线圈受到的磁力矩如何?
o I
M
m
B
M mBsin I (1 ha)B
上数据求出氢气和氧气的最可几速率。
f (v)
vp
2kT m
m(H2 ) m(O2 )
o
vp (H2 ) vp (O2 )
2000 v / m s1
m(O2 ) 32 4 m(H2 ) 2
vp (H2 ) vp (O2 )
4π 0r 4π 0r
(C)4πQ 01 R1
Q2
4π 0 R2
(D) Q1
4π 0 R1
Q2
4π 0r
两个半径相同的金属球,一为空心,一为实 心,两者的电容值相比较
(A)空心球电容值大 (B)实心球电容值大 (C)两球电容值相等 (D)大小关系无法确定
如图所示, 球形电容器的内、外半径分别为 R1
B
3 a2IB
2
( )
4
2
方向:沿oo轴向下
o
两个均匀带电同心球面,半径分别为 R1 和 R2 ,所带电量分别为 Q1 和 Q2 ,设无穷远处为电势零 点,则距球心 r 的 P 点(R1 < r < R2)电势为
(A) Q1 Q2
(B) Q1 Q2
4π 0r 4π 0 R2
1N
2
Am
2
3 2
RT
R NAk
T m 2
3k
如图示两条 f (v) ~ v 曲线分别表示氢气和
氧气在同一温度下的麦克斯韦速率分布曲线, 从图
上数据求出氢气和氧气的最可几速率。
f (v)
vp
2kT m
m(H2 ) m(O2 )
o
vp (H2 ) vp (O2 )
0
0
v (6x 4x3 )1 2
一质点从静止出发沿半径 r 3m 的圆周运 动,切向加速度 at 3m/s2 求: 1)t ? 时,
at 解0va:dnv;at2)0t在dd(3vt上m述3时sm间2)内sdt,2 质点所经ra过no的路aa程t .et
O
A
(C)电动势在直导线和曲线
B 中都产生,且两者大小相等.
(D)直导线中的电动势小于 弯曲的导线.
长为 L 的铜棒在均匀
磁场 B 中,以角速度 绕一
端转动,求感应电动势
B
o
p
L
系数自感L=0.3H的螺线管中通一I=4A的 电流时,螺线管存储的磁场能量W=______
一无限长载流 I 的导线,中部弯成如图所示的 四分之一圆周 AB,圆心为O,半径为R,则在O点处的 磁感应强度的大小为
a
a
(A) q
2π 0a
(C)
q
8π
0
a
q
(B)
4π 0a
(D) q
4π 0a
某电场的电力线分布如图,一负电荷从 A 点移至 B 点,则正确的说法为
(A)电场强度的大小 E A EB
(B)电势 VA VB
B
(C)电势能 E pA E pB
A •
•
(D)电场力作的功 W 0
I
dr r
两同轴长直密绕螺线管的互感 : 有两个长度
均为l,半径分别为r1和r2( r1<r2 ),匝数分别为N1和N2 的同轴长直密绕螺线管.求它们的互感 M .
在磁导率为 的均匀无限大的磁介质中,
一无限长直导线与一宽长分别为 b 和 l 的矩形线圈共
面,直导线与矩形线圈的一侧平行,且初始时刻t=0相距
(A)高斯面上场强处处为零
(B)对封闭曲面有 E dS 0 S
(C)对封闭曲面有 E dS 0 S
q • •q
•q
(D)高斯面上场强不为零,但仅与面内电荷有关
一定量理想气体的循 P
A 等温
环过程如 P-V 图所示,请
B 绝热
填写表格中的空格.
D
o
C V
过程 内能增量ΔE/J 作功W/J 吸热Q/J
在相同半径的圆周上:一种时无规则地分布,另一种是
均匀分布.比较这两种情况下在过圆心 o 并垂直于平面
的 z 轴上任一点 P(如图所示)的场强与电势,则有()
(1)场强相等,电势相等.
z
(2)场强不等,电势不等.
P
(3)场强分量 Ez 相等,电势相等.
oy
(4)场强分量 Ez 相等,电势不等.
x
一封闭高斯面内有两个点电荷,电量为 +q 和 -q,封闭面外也有一带电 q 的点电荷(如图),则下 述正确的是
是
(A) 6J ;
(B) 6J;
(C) 3J ;
(D) 2J .
p nkT 因 p、T 、V 同,所以 n 和 同.
Q E W, W 0 E i RT
2
氦 i = 3 , 氢气 i = 5 , 所以 Q = 3J.
如图示两条 f (v) ~ v 曲线分别表示氢气和
氧气在同一温度下的麦克斯韦速率分布曲线, 从图
如图所示的电场,点电荷 q0从 D 点沿弧形路
径 DCO 到达 0 点,求电场力所做的功.
解 V0 0
C
VD
q
4π0 (3l)
q
4π0l
q
Al
l lB
q 0 q
D
q0
6π0l
WD0
(q0V0
q0VD )
q0U D0
qq0
6 π 0l
有 N个电荷均为q 的点电荷,以两种方式分布
数为k的轻弹簧相连,放在水平光滑的桌面
上,如图所示,今以等值反向的力分别作
用于两球,则两物体和弹簧这m系A 统
动量是否守恒
F1
A
mB
B
F2
机械能是否守恒
静止于光滑水平面上的一质量为 M 的车上悬挂
一长为l ,质量为m的小球, 开始时, 摆线水平, 摆球静
止于A,后突然放手,当摆球运动到摆线呈铅直位置
和 R2 ,所带电荷为 Q .若在两球壳间充以电容率
为 的电介质,问此电容器电容和贮存的电场能量为多 少?
R1 dr
r
R2
面积为 s的平板电容器,