大学物理习题课

合集下载

大学物理《光的偏振、衍射》习题课课件

大学物理《光的偏振、衍射》习题课课件

( AC BD) (a b)(sin sin ) k (2).
水平线下方的角度取负号即可。
11
6. 以波长为 = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为
d = 2.10 mm、缝宽为a = 0.700 mm的光栅上,入射角为i = 30.0°,求能看
成的半波带数目为
(A) 2 个. (B) 4 个. (C) 6 个. (D) 8 个.
答案:(B)
根据半波带法讨论,单缝处波阵面可分成的半波带数
目取决于asin 的大小,本题中
ቤተ መጻሕፍቲ ባይዱ
a 4, 300.
a sin 2 4 ,
2
满足单缝衍射暗条纹的公式: a sin 2k , (k 1,2...)
到哪几级光谱线.
解:(1) 斜入射时的光栅方程
光栅 透镜

G L2
C
d sin i
d sin d sin i k k = 0,±1,±2,…n
第k 级谱线
n
i
分析在900 < < 900 之间,可呈现的主极大:
i = 30°,设 = 90°, k = kmax1,则有
d sin
kmax1 (d / )(sin 90 d sin 30) 2.10
解: a b 1 mm 3.33μm 300
(1) (a + b) siny =k, ∴ k= (a + b) sin24.46°= 1.38 mm
∵ R=0.63─0.76 mm, B=0.43─0.49 mm,第二级开始会有谱线重叠。
对于红光,取k=2 , 则 R=0.69 mm; 对于蓝光,取k=3, 则 B=0.46 mm.

大学物理习题课2(1)

大学物理习题课2(1)

解: 两个载同向电流的长直导线在
I
I
b
如图坐标x处所产生的磁场为: B 0 (1 1 ) 2 x x r1 r2
r2
a
r1
O
x
选顺时针方向为线框回路正方向,则:

BdS

0
Ia
r1 b
(
d
x
r1 b

dx
)
2 r1 x
r1 x r1 r2
0 Ia ln( r1 b r2 b )
(C) 只适用于一个匝数很多,且密绕的螺绕环.
√ (D) 适用于自感系数L一定的任意线圈.
6 、两个质点各自作简谐振动,它们的振幅相同、周期相同.第
一个质点的振动方程为x1 = Acos(ωt + a).当第一个质
点从相对于其平衡位置的正位移处回到平衡位置时,第二个质
点正在最大正位移处.则第二个质点的振动方程为
之间的夹角.
16 (本题4分)如果从一池静水(n=1.33)的表面反射出
来的太阳光是线偏振的,那么太阳的仰角(见图)大致
等于______3_7_°________在这反射光中的矢量的
方向应_____垂_直__于_入__射_面________.
阳光
三、计算题:
17 (本题10分)AA‘和CC’为两个正交地放
初相一样为π/2。
合振动方程: y Acos(2t 1 )
2
(2) x =λl /4处质点的速度:
v d y /dt 2Asin(2t 1 )
2
2Acos(2t )
20 (本题10分)用波长为500 nm (1 nm=10-9 m)的单色光 垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反 射光的干涉现象中,距劈形膜棱边l = 1.56 cm的A处是从棱 边算起的第四条暗条纹中心. (1) 求此空气劈形膜的劈尖角q; (2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光 的干涉条纹,A处是明条纹还是暗条纹? (3) 在第(2)问的情形从棱边到A处的范围内共有几条明纹? 几条暗纹?

第一章质点运动学习题课

第一章质点运动学习题课
dv at c 1 2 ds dt s bt ct v b ct 2 2 ( b ct ) v 2 dt an R R R b 当at=an求得 t c c
质点运动学
30
物理学
第五版
第一章习题课
9 一质点在半径为0.10m的圆周上运动,设t=0时 质点位于x轴上,其角速度为ω=12t2。试求
质点运动学
23
物理学
第五版
第一章习题课 5 一小轿车作直线运动,刹车时速度为v0,刹车 后其加速度与速度成正比而反向,即a=-kv,k 为正常量。
试求
(1)刹车后轿车的速度与时间的函数关系
(2)刹车后轿车最多能行多远?
解:
dv 1 kt 由 a kv kv dv kdt v Ce (1) dt v
(3) v R 25 1 25m s
1
a R m s 2
质点运动学
29
物理学
第五版
第一章习题课 8 一质点沿半径为R的圆周运动,质点所经过的弧 长与时间的关系为s=bt+ct2/2,其中b,c为常量, 且Rc>b2。 求切向加速度与法向加速度大小相等之前所经历的 时间 解:
答案:B
质点运动学
4
物理学
第五版
第一章习题课
4 如图所示,湖中有一小船,有人用绳绕过岸上一 定高度处的定滑轮拉湖中的船向岸边运动.设该人 以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率 为v,则小船作( )
质点运动学
5
物理学
第五版
第一章习题课
v0 (A) 匀加速运动, v cos
(B) 匀减速运动,
第一章习题课

大学物理习题课1

大学物理习题课1
v0
v 0 与水平方向夹角
19.如图所示,小球沿固定的光滑的 1/4圆弧从A点由静止开始下滑,圆弧半 径为R,则小球在A点处的切向加速度 at =______________________,小球 在B点处的法向加速度 an =_______________________.
θ
A R
B
三.计算题
t 0 .96 0 mg , t 0 .20 1 9 .8 0 .96 1s
此后合力为 第2秒内冲量
I
t 0 .96 mg
t 0 .96 0 .14 1 9 .8 dt
2 1
1 t 0 .412 dt
2

1 2
t
2 2 1
(B)
(C)
a g sin

a g
a 4 g (1 cos ) g sin
2 2 2 2
(D) . [ ] 4. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现 在在绳端挂一质量为m的重物,飞轮的角加速度 为 .如果以拉力2mg代替重物拉绳时,飞轮的角加 速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ ]
二.填空题 13.如图所示,质量为m的小球系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O点.开始时弹 簧在水平位置A,处于自然状态,原长为l0.小球由 位置A释放,下落到O点正下方位置B时,弹簧的长度 为l,则小球到达B点时的速度大小为v=____
O l0 A k l m
O′
P
B m
Q R
R
F
F Ft
2 n
2
s 2 as 1 R

大学物理课后习题及答案(1-4章)含步骤解

大学物理课后习题及答案(1-4章)含步骤解
液面下降的速度,即
,根据流量守恒
,
(2)当
(3)当
时,
时,

,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =


= 2Ԧ − 2 Ԧ = −2Ԧ


1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,



= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+


≈ 0.04(m)
(1)角加速度 =
由 =




=
0−2×1500÷60
50
由 =


=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,

大学物理光学习题课

大学物理光学习题课

(1)子波,(2)子波干涉. 所缺级次为 k=k'(a+b)/a. 2.单缝衍射由半波带法得出 4.园孔衍射爱里斑的角半径: 中央明纹: =0.61/a=1.22/d 坐标 =0, x=0; 光学仪器的最小分辩角 宽度 02/(na), =0.61/a=1.22/d x2f/(na) 分辩率 R=1/=d/(1.22) 其他条纹: 5.x射线的衍射: 暗纹 asin=k/n 布喇格公式 2dsin=k 明纹 asin(2k+1)/(2n) (d为晶格常数,为掠射角) 条纹宽度/(na), 三光的偏振 xf/(na) 1.自然光,偏光,部分偏光; 3.光栅:单缝衍射与多光束干 偏振片,偏化方向,起偏, 涉乘积效果,明纹明亮,细锐. 检偏. 光栅方程式 2.马吕期定律 I=I0cos2. (a+b)sin=k 3.反射光与折射光的偏振 缺级 衍射角同时满足 一般:反射折射光为部分偏光 (a+b)sin=k 反射光垂直振动占优势; asin=k ' 折射光平行振动占优势.
n3
4. 在如图28.4所示的单缝夫琅和 费衍射实验装置中,s为单缝,L 为透镜,C为放在L的焦面处的屏 幕,当把单缝s沿垂直于透镜光轴 的方向稍微向上平移时,屏幕上 的衍射图样( C ) (A) 向上平移. (B) 向下平移. (C) 不动. (D) 条纹间距变大.
3. 如下图所示,平行单色光垂 直照射到薄膜上,经上下两表面 反射的两束光发生干涉,若薄膜 的厚度为e,并且n1<n2>n3,1 为入射光在折射率为n1 的媒质中 的波长,则两束反射光在相遇点 的位相差为( C ) (A) 2 n2 e / (n1 1 ). (B) 4 n1 e / (n2 1 ) +. (C) 4 n2 e / (n1 1 ) +. (D) 4 n2 e / (n1 1 ). n1 n2 λ e

长江大学《大学物理》习题课2

长江大学《大学物理》习题课2
.
3、有一半径为R的单匝圆线圈,通以电流I,若将 该导线弯成匝数N = 2的平面圆线圈,导线长度不 变,并通以同样的电流,则线圈中心的磁感强度 和线圈的磁矩分别是原来的
(A) (B) (C) (D) 4倍和1/8. 4倍和1/2. 2倍和1/4. 2倍和1/2.
4、如图所示的一细螺绕环,它由表面绝缘的导线 在铁环上密绕而成,每厘米绕10匝.当导线中的 电流I为2.0 A时,测得铁环内的磁感应强度的大小 B为1.0 T,则可求得铁环的相对磁导率 r 为(真空 7 1 磁导率 0 4 10 T m A ) (A) (B) (C) (D) 7.96×102 3.98×102 1.99×102 63.3
4、一根同轴线由半径为R1的长导线和套在它外面 的内半径为R2、外半径为R3的同轴导体圆筒组 成.中间充满磁导率为μ的各向同性均匀非铁磁绝
缘材料,如图.传导电流I沿导
线向上流去,由圆筒向下流回,
R3 R2 R 1 I
在它们的截面上电流都是均匀
分布的.求同轴线内外的磁感 强度大小B的分布.
I
B
A R O C D E
cos36°=0.8090)
2、如图所示,一无限长直导线通有电流I =10 A,在
一处折成夹角θ =60°的折线,求角平分线上与导线
的垂直距离均为r =0.1 cm的P点处的磁感强度.
( 0 4 107 T m A1 )
r P r
3、半径为R的无限长圆筒上有一层均匀分布的面电 流,这些电流环绕着轴线沿螺旋线流动并与轴线方向 成 角.设面电流密度(沿筒面垂直电流方向单位长 度的电流)为i,求轴线上的磁感强度
(A) 21 212
(B) 21 12 (C) 21 12 1 (D) 21 12 2

大学物理习题课答案

大学物理习题课答案

A O V1
B1 B2 B3
V2
A→B1等压过程 A→B2等温过程 V A→B3绝热过程
绝热过程:dQ0,T1V11
1
T2V2
V2 V1
6.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A的温度为TA= 300 K,求
(1) 气体在状态B、C的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).
循环中,传给低温热源的热量是从高温热源吸取热量的
[(C)]
(A) n 倍.
(B) n-1倍.
(C) 1 倍. n
(D) n 1 倍. n
高温热源的热力学温度为T1,高温热源的热力学温度为T2,则T1 nT2,
从高温热源吸收的热量为Q1
M Mmol
RT1
lnV2 V1
传给低温热源的热量为Q2
M Mmol
2p1 A
3 2
p 1V
p1
B
O V1 2V1 V
AB过程中系统作功,即是体积功:A=p1V112p1V1 32p1V
状态方程:pV= M RT,理想气体的内能为E= M i RT
Mmol
Mmol 2
E0
6. 0.02 kg的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积
Q=
M M mol
CP
(T2
T1 )
1.04103 J
理想气体的内能为E= M i RT,E 623J, M mol 2
A=Q E 417J
(3)绝热过程Q 0
E
M M mol
CV
(T2
T1)
623J
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理习题课 Prepared on 22 November 2020第5章 刚体的定轴转动2、(0116)一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间 3、(0979)一电唱机的转盘以n = 78 rev/min 的转速匀速转动.(1) 求转盘上与转轴相距r = 15 cm 的一点P 的线速度v 和法向加速度a B . (2) 在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,求转盘在停止转动前的角加速度及转过的圈数N . 4、(0115)有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)5、(0156)如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)6、(0157)一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示). 7、(0159)一定滑轮半径为 m ,相对中心轴的转动惯量为1×103 kg ·m 2.一变力F = (SI)沿切线方向作用在滑轮的边缘上,如果滑轮最初处于静止状态,忽略轴承的摩擦.试求它在1 s 末的角速度. 8、(0163)一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度. 9、(0307)长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来 10、(0131)有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为T 0.如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J =2mR 2 / 5,式中m 和R 分别为球体的质量和半径). 11、(0303)质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s 1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.第6章 狭义相对论基础1、(4170)一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少 2、(4364)一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少 (2) 宇航员测得船身通过观测站的时间间隔是多少 3、(4500)一电子以=v (c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少(2) 电子的经典力学的动能与相对论动能之比是多少(电子静止质量m e =×10-31 kg)第5章 刚体的定轴转动(答案)2、(0116)解:设在某时刻之前,飞轮已转动了t 1时间,由于初角速度=0则 1β=t 1 ① 1分而在某时刻后t 2 =5 s 时间内,转过的角位移为222121t t βωθ+= ② 2分 将已知量=θ100 rad , t 2 =5s , =β 2 rad /s 2代入②式,得1= 15 rad /s 1分从而 t 1 = 1/=β s即在某时刻之前,飞轮已经转动了 1分3、(0979)解:(1) 转盘角速度为602782π⨯=π=n ωrad/s= rad/s 1分P 点的线速度和法向加速度分别为v =r =×= m/s 1分 a n =2r =×=10 m/s 2 1分(2) 1517.800-=-=t ωβrad/s 2=- rad/s 2 1分 21517.821221⨯⨯π=π=t ωN = rev 1分 4、(0115)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ 3分 总摩擦力矩 mgR M M R μ32d 0==⎰ 1分故平板角加速度 =M /J 1分设停止前转数为n ,则转角 = 2n由 J /Mn π==422θβω 2分可得 g R MJ n μωωπ16/342020=π=1分 5、(0156)解:根据转动定律 f A r A = J AA ① 1分 其中221A A A r m J =,且 f B r B = J BB ② 1分其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r AA = r BB ③ 1分由①、②式,有 BB B A A A B A B A B A B A r m r m r J r J f f ββββ== ④由③式有 A / B = r B / r A将上式代入④式,得 f A / f B = m A / m B = 21 2分6、(0157)解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg -T =ma ① 2分 T r =J ② 2分 由运动学关系有: a = r ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分7、(0159)解:根据转动定律 M =J d / d t 1分 即 d =(M / J ) d t 1分 其中 M =Fr , r = m , F = t ,J =1×10-3 kg ·m 2, 分别代入上式,得d =50t d t 1分则1 s 末的角速度 1=⎰150t d t =25 rad / s 2分8、(0163)解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律M = J 1分其中 4/30sin 21mgl mgl M == 1分于是 2rad/s 35.743 ===l g J M β 1分 当棒转动到水平位置时, M =21mgl 1分那么 2rad/s 7.1423 ===lg J M β 1分解:当人爬到离地面x 高度处梯子刚要滑下,此时梯子与地面间为最大静摩擦,仍处于平衡状态 (不稳定的) .1分 N 1-f =0, N 2-P =0 1分 N 1h -Px ·ctg =0 1分f =N 2 1分 解得 222/tgh L h h x -=⋅=μθμ 1分 10、(0131)解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量守恒. 1分 设J 0和0、J 和分别为收缩前后球体的转动惯量和角速度, 则有J 00 = J ① 2分由已知条件知:J 0 = 2mR 2 / 5,J = 2m (R / 2)2 / 5代入①式得 = 40 1分即收缩后球体转快了,其周期442200T T =π=π=ωω 1分 周期减小为原来的1 / 4. 11、(0303)解:由人和转台系统的角动量守恒J 11 + J 22 = 0 2分其中 J 1=300 kg ·m 2,1=v /r = rad / s , J 2=3000 kgm 2∴ 2=-J 11/J 2=- rad/s 1分 人相对于转台的角速度 r =1-2= rad/s 1分 ∴ t =2 /r ω= s 1分 第6章 狭义相对论基础(答案)1、(4170)解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 t 1 = L /v =×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则t 2 = L 0/v =×10-7 s 2分3、(4500)解:(1) 222)/(1/c c m mc E e v -== =×10-13 J 2分(2) 20v 21e K m E == ×10-14 J22c m mc E e K -=22]1))/(1/1[(c m c e --=v = ×10-13 J∴ =K K E E /0×10-23分。

相关文档
最新文档