(整理)6种方法测定蛋白质含量.
常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1)2nh3+h2so4——(nh4)2so4 (2)(nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。
为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。
收集氨可用硼酸溶液,滴定则用强酸。
实验和计算方法这里从略。
计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。
如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
二、双缩脲法(biuret法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。
在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。
凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。
测定范围为1-10mg蛋白质。
干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。
蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理蛋白质是生物体内重要的基础结构和功能分子,其含量的测定对于生物学和医学研究具有重要意义。
目前常用的蛋白质含量测定方法主要包括生物化学法、生物物理法和免疫学法等。
下面将对这几种方法的原理进行详细介绍。
1. 生物化学法:生物化学法通过酶促反应或化学反应,将蛋白质转化成可以测定的可溶物或在一定条件下呈现特定吸光度的产物,从而测定蛋白质的含量。
常用的生物化学法有Lowry法、Bradford法和BCA法。
(1) Lowry法:Lowry法是1969年由Lowry等人开发的一种蛋白质定量方法。
该方法利用蛋白质与Folin-Ciocalteu试剂在碱性条件下发生氧化反应,生成具有最大吸收峰的蓝色产物,通过测定产物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。
(2) Bradford法:Bradford法是Bradford于1976年提出的一种测定蛋白质含量的方法。
该方法基于蛋白质与染料(Coomassie Brilliant Blue G-250)之间的特异结合,蛋白质和染料形成一个蛋白质-染料复合物,该复合物的吸光度变化与蛋白质的浓度呈正相关。
通过测定复合物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。
(3) BCA法:BCA法是一种在碱性条件下,将蛋白质还原成具有强吸收的蓝色离子的方法。
BCA试剂(含有琥珀酸铜II配合物和增强剂)能与蛋白质中的酸性氨基酸残基(尤其是含有两个以上连续胺基的肽键)发生氧化还原反应,生成具有强吸收的蓝色离子。
利用光密度测定产生的蓝色离子与一系列标准溶液进行比较,即可确定蛋白质的含量。
2. 生物物理法:生物物理法是通过光学原理,利用蛋白质溶液对光的吸收、散射或旋光等性质进行测定,来间接推算蛋白质的含量。
常用的生物物理法有紫外吸收光谱法、比色法和荧光法等。
(1) 紫外吸收光谱法:紫外吸收光谱法是通过蛋白质在紫外光区域的吸收特性来测定蛋白质的含量。
蛋白质含量的测定方法

蛋白质含量的测定方法蛋白质是生物体内重要的营养成分,对于人体的生长发育和健康维护起着重要的作用。
因此,准确测定食品、药物、生物样品中的蛋白质含量,对于保障食品安全和科学研究具有重要意义。
本文将介绍几种常用的蛋白质含量测定方法,供大家参考。
首先,常用的蛋白质含量测定方法之一是比色法。
比色法是通过蛋白质与某种试剂发生化学反应,产生有色产物,再利用光度计测定产物的吸光度来间接测定蛋白质含量。
其中,最常用的试剂是布拉德福试剂和伯尼斯试剂。
这种方法操作简便,测定结果准确,因此被广泛应用于食品、生物样品的蛋白质含量测定。
其次,还有一种常用的蛋白质含量测定方法是比浊法。
比浊法是通过蛋白质与某种试剂发生沉淀反应,根据沉淀的浑浊度来测定蛋白质含量。
常用的试剂有硫酸铵和三氯乙醛。
比浊法操作简便,成本低廉,适用于大批量样品的测定。
另外,还有一种常用的蛋白质含量测定方法是氨基酸分析法。
氨基酸分析法是通过水解蛋白质,然后利用色谱仪或氨基酸分析仪测定水解产物中各种氨基酸的含量,从而计算出蛋白质的含量。
这种方法对于蛋白质的成分分析非常准确,但操作复杂,需要专业设备和技术支持。
最后,还有一种常用的蛋白质含量测定方法是生物素标记法。
生物素标记法是将生物素标记在蛋白质分子上,然后利用生物素与酶的特异性结合来测定蛋白质含量。
这种方法对于高灵敏度的蛋白质测定非常有效,但需要专门的标记试剂和设备支持。
总之,蛋白质含量的测定方法有很多种,每种方法都有其适用的场合和特点。
在实际应用中,需要根据样品的特点和实验条件选择合适的测定方法,以确保测定结果的准确性和可靠性。
希望本文介绍的几种常用方法能够为大家在蛋白质含量测定方面提供一些帮助。
临床常用蛋白检测方法

测定蛋白质含量的方法有凯氏定氮法、双缩脲法、考马斯亮蓝法等。
1、凯氏定氮法:准备4个50mL凯氏烧瓶并标号,向1、2号烧瓶中加入定量的蛋白质样品,另外两个烧瓶作为对照,在每个烧瓶中加入硫酸钾-硫酸铜混合物,再加入浓硫酸,将4个烧瓶放到消化架上进行消化,之后进行蒸馏。
全部蒸馏完毕后用标准盐酸滴定各烧瓶中收集的氨量,直至指示剂混合液由绿色变回淡紫红色,即为滴定终点,结算出蛋白质含量。
2、双缩脲法:是一种用于鉴定蛋白质的分析方法。
双缩脲试剂呈蓝色,是一种碱性含铜测试溶液,它由几滴1%硫酸铜,1%氢氧化钾和酒石酸钾钠制成。
3、考马斯亮蓝法:基本原理是基于蛋白质可以与考马斯亮蓝G-250定量结合。
蛋白质定量的五种方法

蛋白质定量的五种方法方法一双缩脲法测定蛋白质浓度[目的]掌握双缩脲法测定蛋白质浓度的原理和标准曲线的绘制。
[原理]双缩脲(NH2CONHCONH2)在碱性溶液中与硫酸铜反应生成紫红色化合物,称为双缩脲反应,蛋白质分子中含有许多肽键(-CONH-)在碱性溶液中也能与Cu2+反应产生紫红色化合物。
在一定范围内,其颜色的深浅与蛋白质浓度成正比。
因此,可以利用比色法测定蛋白质浓度。
双缩脲法是测定蛋白质浓度的常用方法之一。
操作简便、迅速、受蛋白质种类性质的影响较小,但灵敏度较差,而且特异性不高。
除-CONH-有此反应外,-CONH2、-CH2NH2、-CS-NH2等基团也有此反应。
[操作]取中试管7支,按下表操作。
各管混匀、放置37℃水浴中保温20分钟。
用540nm比色,以空白管调零点,读取各管光密度值。
[计算](一)在座标纸上以光密度为纵座标,以蛋白质浓度为横座标绘制标准曲线。
(二)从标准曲线中查出待测血清样本的蛋白质浓度(g/L),并求出人血清样本的蛋白质浓度。
(三)再从标准管中选择一管与测定管光密度相接近者,求出人血清样本的蛋白质浓度(g/L)。
[器材]中试管7支,l毫升刻度吸管3支,10毫升刻度吸管1支,水浴箱,721型分光光度计、坐标纸。
[试剂](—)6N NaOH:称取240g氢氧化钠溶于1000ml水中。
(二)双缩脲试剂:称取CuS04·5H2O 3.0克,酒石酸钾9.0 克和碘化钾5.0克,分别溶解后混匀,加6N NaOH l00ml,最后加水至1000ml,贮于棕色瓶中,避光,可长期保存。
如有暗红色沉淀出现,即不能使用。
(三)0.9%NaCl。
(四)蛋白质标准液(10mg/m1),称取干燥的牛血清蛋白100.0mg,以少量生理盐水溶解后倒入l0ml容量瓶中,淋洗称量瓶数次,一并倒入容量瓶中,最后加生理盐水至刻度线,或用凯氏定氮法测定血清蛋白质含量,然后稀释成l0mg /m1作为蛋白质标准液。
标准曲线制作考马斯亮蓝法测蛋白质含量(精)

标准曲线制作—考马斯亮蓝法测蛋白质含量一、标准曲线一般用分光光度法测物质的含量,先要制作标准曲线,然后根据标准曲线查出所测物质的含量。
因此,制作标准曲线是生物检测分析的一项基本技术。
二、蛋白质含量测定方法1、凯氏定氮法2、双缩脲法3、Folin-酚试剂法4、紫外吸收法5、考马斯亮蓝法三、考马斯亮蓝法测定蛋白质含量—标准曲线制作(一)、试剂:1、考马斯亮蓝试剂:考马斯亮蓝G—250 100mg溶于50ml 95%乙醇,加入100ml 85% H3PO4,雍蒸馏水稀释至1000ml,滤纸过滤。
最终试剂中含0.01%(W/V)考马斯亮蓝G—250,4.7%(W/V)乙醇,8.5%(W/V)H3PO4。
2、标准蛋白质溶液:纯的牛血清血蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度同0.15mol/LNaCl配制成100ug/ml蛋白溶液。
(二)、器材:1、722S型分光光度计使用及原理()。
2、移液管使用()。
(三)、标准曲线制作:1、2、以A595nm为纵坐标,标准蛋白含量为横坐标(六个点为10ug、20 ug、30 ug、40 ug、50 ug、60 ug),在坐标轴上绘制标准曲线。
1)、利用标准曲线查出回归方程。
2)、用公式计算回归方程。
3)、或用origin作图,测出回归线性方程。
即A595nm=a×X( )+6一般相关系数应过0.999以上,至少2个9以上。
4)、绘图时近两使点在一条直线上,在直线上的点应该在直线两侧。
(四)、蛋白质含量的测定:样品即所测蛋白质含量样品(含量应处理在所测范围内),依照操作步骤1操作,测出样品的A595nm,然后利用标准曲线或回归方程求出样品蛋白质含量。
一般被测样品的A595nm值在0.1—0.05之间,所以上述样品如果A595nm值太大,可以稀释后再测A595nm值,然后再计算。
(五)、注意事项:1、玻璃仪器要洗涤干净。
2、取量要准确。
3、玻璃仪器要干燥,避免温度变化。
蛋白质测定方法

蛋白质的定量测定——微量凯氏定氮法(microKjeldahlmethod) 生物材料的含氮量测定在生物化学研究中具有一定的意义,如蛋白质的含氮量约为16%,测出含氮量则可推知蛋白含量。
生物材料总氮量的测定,通常采用微量凯氏定氮法。
凯氏定氮法由于具有测定准确度高,可测定各种不同形态样品等两大优点,因而被公认为是测定食品、饲料、种子、生物制品、药品中蛋白质含量的标准分析方法.实验原理生物材料的含氮量测定在生物化学研究中具有一定的意义,如蛋白质的含氮量约为16%,测出含氮量则可推知蛋白含量。
生物材料总氮量的测定,通常采用微量凯氏定氮法。
凯氏定氮法由于具有测定准确度高,可测定各种不同形态样品等两大优点,因而被公认为是测定食品、饲料、种子、生物制品、药品中蛋白质含量的标准分析方法。
其原理如下:1.消化:有机物与浓硫酸供热,使有机氮全部转化为无机氮——硫酸铵。
为加快反应,添加硫酸铜和硫酸钾的混合物;前者为催化剂,后者可提高硫酸沸点。
这一步约需30min至1h,视样品的性质而定。
2.加碱蒸馏:硫酸铵与NaOH(浓)作用生成(NH4)OH,加热后生成NH3,通过蒸馏导入过量酸中和生成NH4Cl而被吸收。
3.滴定:用过量标准HCl吸收NH3,剩余的酸可用标准NaOH滴定,由所用HCl摩尔数减去滴定耗去的NaOH摩尔数,即为被吸收的NH3摩尔数。
此法为回滴法,采用甲基红卫指示剂。
HCl+NaOHNaCl+H2O本法适用于0.2~2.0mg的氮量测定。
1.热源2.烧瓶3.玻璃管4.橡皮管5.玻璃杯6.棒状玻塞7.反应室8.反应室外壳9.夹子10.反应室中插管11.冷凝管12.锥形瓶13.石棉网微量凯氏蒸馏装置示意图试剂和器材一、试剂浓硫酸;30%过氧化氢溶液;10M氢氧化钠;0.01M的标准盐酸;标准硫酸铵(0.3mg氮/mL)催化剂:硫酸铜:硫酸钾=1:4混合,研细。
指示剂:0.1%甲基红乙醇溶液。
二、测试样品牛血清白蛋白。
欧洲药典蛋白含量测定方法

《欧洲药典》中蛋白含量的测定方法1.《欧洲药典》第7版2.5.33,USP<1057>Biotechnology-derived articles-Total protei n assay。
EP2.5.33收录了7种检测方法,即扫描法、Lowry 法、Bradford 法、BCA法、Biuret 法、荧光法和氮分析法。
1.1 扫描法:原理:依据蛋白质结构中含有芳香族氨基酸(如酪氨酸、色氨酸),其在280nm处有吸光值。
检测时,如果溶解蛋白质的溶剂也有高吸光度,则采用干扰对照液进行补偿消除。
但如果干扰对照液吸光值也很高,则检测结果误差大。
此外,低浓度蛋白质溶液会因蛋白质吸附至检测池上而影响浓度,后者可使用高浓度或用去离子去污剂处理样品。
待测品:蛋白质溶液浓度一般为0.2mg/mL~2 mg/mL。
对照品:选择合适的对照品,用溶解待测品蛋白质的溶剂配制,浓度与待测品溶液一致。
检测:检测过程中,将待测蛋白溶液、对照品溶液和干扰对照液保持在相同温度。
使用石英比色皿检测280nm处吸光值,并使用规定的溶液进行补偿。
溶液浓度应尽可能保持在适宜范围内以便获取准确结果。
光散射影响:样品引起的光散射会导致蛋白质检测结果准确度降低。
如果蛋白质溶液中存在颗粒大小与检测波长(250nm到300nm)相当的颗粒,光散射将导致样品的吸光值大大增加。
为了校正光散射引起的在280nm处的吸光值,则可检测待测样品在320nm、325 nm、330 nm、335 nm、340 nm和350 nm处的吸光值,以所得的吸光值对数值为纵坐标,以检测波长对数值为横坐标作图,并通过线性回归确定标准曲线,将曲线延伸到280nm,得到280nm处吸光值的对数,再通过反对数计算获得280nm处由光散射引起的吸光值。
从检测的总吸光值中扣除光散射引起的吸光值即为样品吸光值。
用0.2μm滤膜过滤或离心可减少光散射作用,特别是明显浑浊的蛋白溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
若以甘氨酸为例,其反应式如下:NH2CH2COOH+3H2SO4――2CO2+3SO2+4H2O+NH3(1)2NH3+H2SO4――(NH4)2 SO4(2)(NH4)2 SO4+2NaOH――2H2O+Na2SO4+2NH3(3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。
为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。
收集氨可用硼酸溶液,滴定则用强酸。
实验和计算方法这里从略。
计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。
如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
二、双缩脲法(biuret法)(一)实验原理双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。
在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。
凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。
测定范围为1-10mg蛋白质。
干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
(二)试剂与器材1.试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。
如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。
牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。
(2)双缩脲试剂:称以1.50克硫酸铜(CuSO4•5H2O)和6.0克酒石酸钾钠(KNaC4H4O6•4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。
此试剂可长期保存。
若贮存瓶中有黑色沉淀出现,则需要重新配制。
2.器材:可见光分光光度计、大试管15支、旋涡混合器等。
(三)操作方法1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。
充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。
用未加蛋白质溶液的第一支试管作为空白对照液。
取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。
2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。
注意样品浓度不要超过10mg/ml。
三、folin―酚试剂法(lowry法)(一)实验原理这种蛋白质测定法是最灵敏的方法之一。
过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。
此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即folin―酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。
这两种显色反应产生深兰色的原因是:在碱性条件下,蛋白质中的肽键与铜结合生成复合物。
folin―酚试剂中的磷钼酸盐―磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。
在一定的条件下,兰色深度与蛋白的量成正比。
folin―酚试剂法最早由lowry确定了蛋白质浓度测定的基本步骤。
以后在生物化学领域得到广泛的应用。
这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。
对双缩脲反应发生干扰的离子,同样容易干扰lowry反应。
而且对后者的影响还要大得多。
酚类、柠檬酸、硫酸铵、tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。
浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。
含硫酸铵的溶液,只须加浓碳酸钠―氢氧化钠溶液,即可显色测定。
若样品酸度较高,显色后会色浅,则必须提高碳酸钠―氢氧化钠溶液的浓度1~2倍。
进行测定时,加folin―酚试剂时要特别小心,因为该试剂仅在酸性ph条件下稳定,但上述还原反应只在ph=10的情况下发生,故当folin一酚试剂加到碱性的铜―蛋白质溶液中时,必须立即混匀,以便在磷钼酸―磷钨酸试剂被破坏之前,还原反应即能发生。
此法也适用于酪氨酸和色氨酸的定量测定。
此法可检测的最低蛋白质量达5mg。
通常测定范围是20~250mg。
二)试剂与器材1.试剂(1)试剂甲:(a)10克Na2CO3,2克NaOH和0.25克酒石酸钾钠(KNaC4H4O6•4H2O)。
溶解于500毫升蒸馏水中。
(b)0.5克硫酸铜(CuSO4•5H2O)溶解于100毫升蒸馏水中,每次使用前,将50份(a)与1份(b)混合,即为试剂甲。
(2)试剂乙:在2升磨口回流瓶中,加入100克钨酸钠(Na2WO4•2H2O),25克钼酸钠(Na2MO O4•2H2O)及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克硫酸锂(Li2SO4),50毫升蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。
冷却后溶液呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。
稀释至1升,过滤,滤液置于棕色试剂瓶中保存。
使用时用标准NaOH滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1n左右。
(3)标准蛋白质溶液: 精确称取结晶牛血清清蛋白或g―球蛋白,溶于蒸馏水,浓度为250mg/ml 左右。
牛血清清蛋白溶于水若混浊,可改用0.9%NaCl溶液。
2.器材(1)可见光分光光度计(2)旋涡混合器(3)秒表(4)试管16支(三)操作方法1.标准曲线的测定:取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250mg/ml)。
用水补足到1.0毫升,然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25℃)放置10分钟。
再逐管加入0.5毫升试剂乙(folin―酚试剂),同样立即混匀。
这一步混合速度要快,否则会使显色程度减弱。
然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm处测定各管中溶液的吸光度值。
以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。
注意:因lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。
全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余此类推。
待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。
每分钟测一个样品。
进行多试管操作时,为了防止出错,每位学生都必须在实验记录本上预先画好下面的表格。
表中是每个试管要加入的量(毫升),并按由左至右,由上至下的顺序,逐管加入。
最下面两排是计算出的每管中蛋白质的量(微克)和测得的吸光度值。
folin―酚试剂法实验表管号 1 2 3 4 5 6 7 8 9 10标准蛋白质0 0.1 0.2 0.4 0.6 0.8 1.0(250mg/ml)未知蛋白质0.2 0.4 0.6(约250mg/ml)蒸馏水 1.0 0.9 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4试剂甲 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0试剂乙0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5每管中蛋白质的量(mg)吸光度值(a700)2.样品的测定:取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。
通常样品的测定也可与标准曲线的测定放在一起,同时进行。
即在标准曲线测定的各试管后面,再增加3个试管。
如上表中的8、9、10试管。
根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。
注意:由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显色的深浅往往随不同的蛋白质而变化。
因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。
四、改良的简易folin―酚试剂法(一)试剂1.试剂甲:碱性铜试剂溶液中,含0.5n NaOH、10%Na2CO3、0.1%酒石酸钾和0.05%硫酸铜,配制时注意硫酸铜用少量蒸馏水溶解后,最后加入。
2.试剂乙:与前面的基本法相同。
临用时加蒸馏水稀释8倍。
3.标准蛋白质溶液:同基本法。
(二)操作步骤测定标准曲线与样品溶液的操作方法与基本法相同。
只是试剂甲改为1毫升,室温放置10分钟后,试剂乙改为4毫升。
在55℃恒温水浴中保温5分钟。
用流动水冷却后,在660nm下测定其吸光度值。
改良的快速简易法,可获得与folin―酚试剂法(即lowry基本法)相接近的结果。
五、考马斯亮兰法(bradford法)(一)实验原理双缩脲法(biuret法)和folin—酚试剂法(lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。
1976年由bradford建立的考马斯亮兰法(bradford法),是根据蛋白质与染料相结合的原理设计的。
这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。
这一方法是目前灵敏度最高的蛋白质测定法。
考马斯亮兰g-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置(lmax),由46 5nm变为595nm,溶液的颜色也由棕黑色变为兰色。
经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。
在595nm下测定的吸光度值a595,与蛋白质浓度成正比。