04greedy算法设计与分析 贪心算法

合集下载

算法设计与分析中的贪心算法与回溯法

算法设计与分析中的贪心算法与回溯法

算法设计与分析中的贪心算法与回溯法算法设计与分析领域中,贪心算法和回溯法是两种常用的解题方法。

本文将介绍这两种算法,并比较它们在不同场景下的优势和劣势。

一、贪心算法贪心算法是一种在每一步都选择当前最优解的策略,希望通过局部最优解的选择最终达到全局最优解。

贪心算法的实现较为简单,时间复杂度较低,适用于解决一些最优化问题。

贪心算法的基本思想是每次都选择当前状态下的最优解,并将其加入到解集中。

例如,在求解最小生成树的问题中,贪心算法会选择当前具有最小权值的边,并将其添加到最终结果中,直到生成树完成。

然而,贪心算法的局限性在于它只考虑了当前的最优解,无法保证找到全局最优解。

在某些问题中,贪心算法可能会陷入局部最优解而无法跳出。

因此,需要在具体问题中综合考虑问题的性质和约束条件来确定是否适合采用贪心算法。

二、回溯法回溯法是一种通过不断尝试可能的步骤来寻找问题解的方法。

它通常基于递归的思想,在每一步都尝试所有的可能选择,并逐步构建解空间,直到找到解或确定无解。

回溯法的核心思想是深度优先搜索,通过遍历解空间树来寻找解。

在每一步,回溯法都会考虑当前状态下的所有可能选择,并递归地进入下一步。

如果某一步的选择无法达到目标,回溯法会回退到上一步进行其他可能的选择。

回溯法常用于解决一些全排列、子集和组合等问题。

例如,在解决八皇后问题时,回溯法通过逐个放置皇后并进行合法性判断,直到找到所有解或遍历完所有可能的情况为止。

然而,回溯法的缺点在于其时间复杂度较高,其搜索过程包含了大量的重复计算。

因此,在使用回溯法解决问题时,需注意适当剪枝以减少搜索空间,提高算法效率。

三、贪心算法与回溯法的比较贪心算法和回溯法都是常用的算法设计与分析方法,但其适用场景和效果有所差异。

贪心算法在解决问题时能够快速找到局部最优解,并且具有较低的时间复杂度。

它适用于一些满足最优子结构性质的问题,例如最小生成树、单源最短路径等。

然而,贪心算法无法保证一定能找到全局最优解,因此需根据具体问题的特点来判断是否使用。

贪心算法的基本原理

贪心算法的基本原理

贪心算法的基本原理贪心算法(Greedy Algorithm)是一种常用的算法思想,它在求解最优化问题时通常能够得到较好的近似解。

贪心算法的基本原理是:每一步都选择当前状态下的最优解,从而希望最终能够得到全局最优解。

在实际应用中,贪心算法常常用于解决一些最优化问题,如最小生成树、最短路径、任务调度等。

一、贪心算法的特点贪心算法具有以下特点:1. 简单:贪心算法通常比较简单,易于实现和理解。

2. 高效:贪心算法的时间复杂度通常较低,能够在较短的时间内得到结果。

3. 局部最优:每一步都选择当前状态下的最优解,但不能保证最终能够得到全局最优解。

4. 适用范围:贪心算法适用于一些特定类型的问题,如无后效性、最优子结构等。

二、贪心算法的基本原理贪心算法的基本原理可以概括为以下几个步骤:1. 初始状态:确定问题的初始状态,定义问题的输入和输出。

2. 状态转移:根据当前状态,选择局部最优解,并更新状态。

3. 筛选解:判断当前状态下是否满足问题的约束条件,若满足则保留该解,否则舍弃。

4. 终止条件:重复以上步骤,直至满足终止条件,得到最终解。

三、贪心算法的应用举例1. 找零钱:假设有 25、10、5、1 四种面额的硬币,需要找零 41 元,如何使得找零的硬币数量最少?贪心算法可以先选择面额最大的硬币,然后逐步选择面额较小的硬币,直至找零完毕。

2. 区间调度:给定一组区间,如何选择最多的互不重叠的区间?贪心算法可以先按照区间的结束时间排序,然后依次选择结束时间最早的区间,直至所有区间都被覆盖。

3. 最小生成树:在一个连通的带权无向图中,如何选择边使得生成树的权值最小?贪心算法可以按照边的权值从小到大排序,然后依次选择权值最小且不构成环的边,直至所有顶点都被连接。

四、贪心算法的优缺点1. 优点:贪心算法简单高效,适用于一些特定类型的问题,能够在较短的时间内得到近似最优解。

2. 缺点:贪心算法不能保证一定能够得到全局最优解,可能会出现局部最优解不是全局最优解的情况。

贪心算法在优化问题中的运用

贪心算法在优化问题中的运用

贪心算法在优化问题中的运用贪心算法(Greedy Algorithm)是一种常用的算法思想,它在解决一些优化问题时具有很高的效率和实用性。

贪心算法的核心思想是每一步都选择当前状态下最优的解决方案,以期望最终能够得到全局最优解。

在实际应用中,贪心算法常常被用来解决一些最优化问题,如最短路径问题、背包问题、任务调度等。

本文将介绍贪心算法在优化问题中的运用,并通过具体案例来说明其应用场景和解决方法。

一、贪心算法的基本原理贪心算法是一种在每一步选择当前状态下最优解决方案的算法思想。

它与动态规划不同,贪心算法并不会保存之前的计算结果,而是根据当前状态做出最优选择。

贪心算法的优势在于简单、高效,适用于一些特定类型的问题。

贪心算法的基本原理可以总结为以下几点:1. 每一步都选择当前状态下的最优解决方案;2. 不考虑未来的结果,只关注当前状态的最优选择;3. 最终期望通过每一步的最优选择达到全局最优解。

二、贪心算法在优化问题中的应用1. 最短路径问题最短路径问题是图论中的经典问题,贪心算法可以用来解决一些简单的最短路径问题。

例如,在无权图中,从起点到终点的最短路径可以通过贪心算法来求解,每次选择距离最近的节点作为下一步的目标节点,直到到达终点为止。

2. 背包问题背包问题是一个经典的优化问题,贪心算法可以用来解决一些特定类型的背包问题。

例如,在分数背包问题中,每种物品可以取任意比例,贪心算法可以按照单位价值最高的顺序选择物品放入背包,直到背包装满为止。

3. 任务调度问题任务调度问题是一个常见的优化问题,贪心算法可以用来解决一些简单的任务调度问题。

例如,在单处理器任务调度中,每个任务有一个开始时间和结束时间,贪心算法可以按照结束时间的先后顺序对任务进行调度,以最大化处理器的利用率。

三、案例分析:活动选择问题活动选择问题是一个经典的优化问题,通过贪心算法可以高效地解决。

问题描述如下:假设有n个活动,每个活动都有一个开始时间和结束时间,活动之间不能交叉进行,问如何安排活动才能使参加的活动数量最多。

贪心算法程序设计

贪心算法程序设计

贪心算法程序设计贪心算法程序设计1. 什么是贪心算法贪心算法(Greedy Algorithm)是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。

贪心算法的核心思想是局部最优解能导致全局最优解。

2. 贪心算法的基本步骤贪心算法的基本步骤如下:1. 定义问题的优化目标。

2. 将问题分解成子问题。

3. 选择当前最优的子问题解,将子问题的解合并成原问题的解。

4. 检查是否达到了问题的优化目标,如果没有达到,则回到第二步,继续寻找下一个最优子问题解。

5. 在所有子问题解合并成原问题解后,得到问题的最优解。

3. 贪心算法的应用场景贪心算法的应用非常广泛,几乎可以用于解决各种优化问题。

以下几个常见的应用场景:1. 零钱找零问题:给定一定面额的纸币和硬币,如何找零使得所需纸币和硬币的数量最小?2. 区间调度问题:给定一些活动的开始时间和结束时间,如何安排活动使得可以办理的活动数量最大?3. 背包问题:给定一些具有重量和价值的物品,如何选择物品使得背包的总价值最大?4. 最小树问题:给定一个带权无向图,如何找到一棵树,使得它的边权之和最小?5. 哈夫曼编码问题:给定一组字符和相应的频率,如何构造一个满足最低编码长度限制的二进制编码?4. 贪心算法的优缺点贪心算法的优点是简单、高效,可以快速得到一个近似最优解。

而且对于一些问题,贪心算法能够得到全局最优解。

贪心算法的缺点在于它不一定能够得到全局最优解,因为在每一步只考虑局部最优解,无法回溯到之前的选择。

5. 贪心算法的程序设计在使用贪心算法进行程序设计时,通常需要以下几个步骤:1. 定义问题的优化目标。

2. 将问题分解成子问题,并设计子问题的解决方案。

3. 设计贪心选择策略,选择局部最优解。

4. 设计贪心算法的递推或迭代公式。

5. 判断贪心算法是否能够得到全局最优解。

6. 编写程序实现贪心算法。

6.贪心算法是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。

贪心算法知识点总结

贪心算法知识点总结

贪心算法知识点总结1. 基本原理贪心算法的基本原理是每一步都选择当前状态下的最优解,以期望最终得到全局最优解。

具体来说,贪心算法通常可以分为以下几个步骤:1)从问题的某个初始解出发2)采用一种迭代的方式,逐步将初始解进行优化3)每一步都是基于当前状态的最优选择来进行优化4)直到无法再进行优化,得到问题的最优解由于贪心算法每一步都要选择局部最优解,因此贪心算法通常具有高效性。

然而,贪心算法并不适用于所有问题,其结果不一定是全局最优解。

因此,在使用贪心算法时需要注意问题的特性和约束条件,以免得到错误的结果。

2. 适用情况贪心算法通常适用于满足以下条件的问题:1)问题的最优解满足“最优子结构”性质:即问题的最优解包含了其子问题的最优解2)问题的求解过程具有“贪心选择性”:即每一步都选择当前状态下的最优解,并不需要考虑未来的后果3)问题的约束条件可以通过局部最优选择满足全局最优解:即问题的解空间中存在一些局部最优解,可以通过一系列的局部最优解构建全局最优解在实际应用中,贪心算法通常用于求解最优化问题,如最小生成树、最短路径、任务调度等问题。

由于贪心算法的高效性,它通常能够在较短的时间内得到较为接近最优解的结果。

然而,贪心算法并不适用于所有问题,对于一些问题,贪心算法将得到错误的结果。

因此,在使用贪心算法时需要谨慎选择问题类型和约束条件,以避免错误的结果。

3. 贪心算法实例在下面的部分,我们将介绍一些常见的贪心算法实例,包括背包问题、活动安排问题、霍夫曼编码等。

3.1 背包问题背包问题是一个经典的优化问题,它包括0-1背包问题、分数背包问题等多种类型。

在0-1背包问题中,给定n种物品和一个容量为C的背包,每种物品i的重量为w[i],价值为v[i],求在不超过背包容量的情况下,如何选择物品放入背包,可以使得背包中的总价值最大。

对于0-1背包问题,贪心算法通常不能得到最优解。

然而,在分数背包问题中,贪心算法通常可以得到近似的最优解。

4-贪心法

4-贪心法

应用实例
活动安排问题—算法设计与分析
template<class Type> void GreedySelector(int n, Type s[], Type f[], bool A[]) { A[1] = true; int j = 1; for (int i=2;i<=n;i++) { if (s[i]>=f[j]) { A[i]=true; j=i; } else A[i]=false; } }
贪心法的正确性问题
针对具体问题不同,贪心策略的选择可能有多种 ,如何选择合适的贪心策略并证明该策略的正确 性是贪心算法设计中的一个关键问题。 一般可以通过对算法步数的归纳或通过对问题规 模的归纳来证明贪心法的正确性。
应用实例
活动安排问题
有n个活动申请使用同一个礼堂,每项活动有一个开始时间和一 个截止时间,如果任何两个活动不能同时举行,问如何选择这 些活动,从而使得被安排的活动数量达到最多? 设S={1, 2, …, n}为活动的集合,si和fi分别为活动i的开始和截止 时间,i=1, 2, …, n。定义 活动i与j相容:si ≥ fj或sj ≥fi, i≠j 求S最大的两两相容的活动子集。 蛮力法 动态规划方法
若硬币的面值改为一角一分、五分和一分,要找给顾客的 是一角五分,情况如何?
贪心算法的基本思想
顾名思义,贪心算法总是作出在当前看来最好的 选择。也就是说贪心算法并不从整体最优考虑, 它所作出的选择只是在某种意义上的局部最优选 择。 贪心算法不能对所有问题都得到整体最优解,但 对许多问题它能产生整体最优解。 在一些情况下,即使贪心算法不能得到整体最优 解,其最终结果却是最优解的很好近似。
4—贪心法 Greedy Approach

贪心算法的概念和适用条件

贪心算法的概念和适用条件

贪心算法的概念和适用条件什么是贪心算法?贪心算法(Greedy Algorithm)是一种以局部最优解为导向的算法思想,通过每一步选择当前状态下的最佳操作来达到整体最优解的目标。

贪心算法的核心思想是每次都做出当前看来最优的选择,以期望能够达到整体的最优解。

贪心算法通常用于一些问题中,即每一步的选择只依赖于当前状态,而不考虑将来可能出现的情况。

贪心算法的适用条件:1. 贪心选择性质:贪心算法每一步都选择一个当前的最优解,此处的“最优”指的是局部最优。

这种最优选择可以确保问题能够被拆解,并且进行下一步求解。

2. 最优子结构性质:当问题的整体最优解能够通过局部最优解得到时,可以采用贪心算法求解。

这种情况下,问题的最优解可以由子问题的最优解推导出来。

3. 无后效性:贪心算法选择某一步操作时,只考虑当前状态,不会改变以前的操作,并且不关心未来的操作。

这种无后效性使得贪心算法在实际应用中操作简单、效率高。

贪心算法的基本步骤:1. 确定问题的局部最优解:贪心算法的核心是每一步都选择在当前情况下的最优解。

因此,需要确定问题如何拆解以及如何进行局部最优选择。

2. 定义问题的子问题:根据问题的最优子结构性质,将问题拆解为较小规模的子问题。

子问题应该是原问题的一个更小、更简单的实例。

3. 定义贪心选择策略:根据问题的特性,确定当前步骤下的最优选择策略。

这个选择应该是局部最优的,可以在不考虑子问题和整体未来状态的情况下得出。

4. 重复执行步骤2和3,直至求解出全局最优解。

贪心算法的优缺点:贪心算法具有简单易懂、快速高效的特点,适用于许多实际问题。

它可以避免穷举所有可能性,节省了计算时间。

此外,贪心算法常常能够找到近似最优解,尽管不一定能够保证全局最优解。

在实际问题中,近似最优解也往往可以满足实际需求。

然而,贪心算法并非适用于所有问题。

由于贪心算法只考虑当前状态的最优选择,而不考虑未来的影响,因此可能会导致局部最优解与全局最优解不一致。

贪心法

贪心法

贪心法贪心法(Greedy Approach)又称贪婪法, 在对问题求解时,总是做出在当前看来是最好的选择,或者说是:总是作出在当前看来最好的选择。

也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。

当然,希望贪心算法得到的最终结果也是整体最优的。

虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。

如单源最短路经问题,最小生成树问题等。

在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。

贪心法的设计思想当一个问题具有以下的性质时可以用贪心算法求解:每一步的局部最优解,同事也说整个问题的最优解。

如果一个问题可以用贪心算法解决,那么贪心通常是解决这个问题的最好的方法。

贪婪算法一般比其他方法例如动态规划更有效。

但是贪婪算法不能总是被应用。

例如,部分背包问题可以使用贪心解决,但是不能解决0-1背包问题。

贪婪算法有时也用用来得到一个近似优化问题。

例如,旅行商问题是一个NP难问题。

贪婪选择这个问题是选择最近的并且从当前城市每一步。

这个解决方案并不总是产生最好的最优解,但可以用来得到一个近似最优解。

让我们考虑一下任务选择的贪婪算法的问题, 作为我们的第一个例子。

问题:给出n个任务和每个任务的开始和结束时间。

找出可以完成的任务的最大数量,在同一时刻只能做一个任务。

例子:下面的6个任务:start[] = {1, 3, 0, 5, 8, 5};finish[] = {2, 4, 6, 7, 9, 9};最多可完成的任务是:{0, 1, 3, 4}贪婪的选择是总是选择下一个任务的完成时间至少在剩下的任务和开始时间大于或等于以前选择任务的完成时间。

我们可以根据他们的任务完成时间,以便我们总是认为下一个任务是最小完成时间的任务。

1)按照完成时间对任务排序2)选择第一个任务排序数组元素和打印。

3) 继续以下剩余的任务排序数组。

……a)如果这一任务的开始时间大于先前选择任务的完成时间然后选择这个任务和打印。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ex: This schedule uses only 3.
3 2 1
c b a
9 9:30 10 10:30 11
d
f g e h
1 1:30 2 2:30 3 3:30
j
i
11:30
12
12:30
4
4:30
Time
11
Interval Partitioning: Lower Bound on Optimal Solution
Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom. Theorem. Greedy algorithm is optimal. Pf. Let d = number of classrooms that the greedy algorithm allocates. Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms. These d jobs each end after sj. Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than sj. Thus, we have d lectures overlapping at time sj + . Key observation all schedules use d classrooms. ▪

job ir+1 finishes before jr+1
Greedy:
i1
i2
ir
ir+1
OPT:
j1
j2
jr
ir+1
...
solution still feasible and optimal, but contradicts maximality of r.
8
4.1 Interval Partitioning



4
Interval Scheduling: Greedy Algorithms
Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of sj. [Earliest finish time] Consider jobs in ascending order of fj. [Shortest interval] Consider jobs in ascending order of fj - sj. [Fewest conflicts] For each job j, count the number of conflicting jobs cj. Schedule in ascending order of cj.
Chapter 4
Greedy Algorithms
Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
1
4.1 Interval Scheduling
Interval Scheduling
Def. The depth of a set of open intervals is the maximum number that contain any given time. Key observation. Number of classrooms needed depth. Ex: Depth of schedule below = 3 schedule below is optimal.
a, b, c all contain 9:30
Q. Does there always exist a schedule equal to depth of intervals?
3 2 1
c b a
9 9:30 10 10:30 11
d
f g e h
1 1:30 2 2:30 3 3:30
j
i
11:30

job ir+1 finishes before jr+1
Greedy:
i1
i2
ir
ir+1
OPT:
j1
j2
jr
jr+1
why not replace job jr+1 with job ir+1?
...
7
Interval Scheduling: Analysis
Theorem. Greedy algorithm is optimal. Pf. (by contradiction) Assume gree39;s see what happens. Let i1, i2, ... ik denote set of jobs selected by greedy. Let j1, j2, ... jm denote set of jobs in the optimal solution with i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.
Implementation. O(n log n). For each classroom k, maintain the finish time of the last job added. Keep the classrooms in a priority queue.

13
Interval Partitioning: Greedy Analysis

a
b c d e
f
g h
0 1 2 3 4 5 6 7 8 9 10 11
Time
3
Interval Scheduling: Greedy Algorithms
Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.
Interval scheduling. Job j starts at sj and finishes at fj. Two jobs compatible if they don't overlap. Goal: find maximum subset of mutually compatible jobs.
Interval Partitioning
Interval partitioning. Lecture j starts at sj and finishes at fj. Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.
4
e c b a
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30
j g h f
2 2:30 3 3:30
3 2 1
d
i
4 4:30
Time
10

14
4.2 Scheduling to Minimize Lateness
Scheduling to Minimizing Lateness
Minimizing lateness problem. Single resource processes one job at a time. Job j requires tj units of processing time and is due at time dj. If j starts at time sj, it finishes at time fj = sj + tj. Lateness: j = max { 0, fj - dj }. Goal: schedule all jobs to minimize maximum lateness L = max j.
counterexample for earliest start time
counterexample for shortest interval
counterexample for fewest conflicts
5
Interval Scheduling: Greedy Algorithm
Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.
Interval Partitioning
相关文档
最新文档