人教版高中数学必修1《函数》

合集下载

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。

人教版高中数学必修1《函数y=Asin(ωx+φ)》PPT课件

人教版高中数学必修1《函数y=Asin(ωx+φ)》PPT课件

[方法技巧] 1.正弦、余弦型函数奇偶性的判断方法 正弦型函数 y=Asin(ωx+φ)和余弦型函数 y=Acos(ωx+φ)不一定具备奇 偶性.对于函数 y=Asin(ωx+φ),当 φ=kπ(k∈Z )时为奇函数,当 φ=kπ±π2(k
[解析] (1)将函数 f(x)=2sinωx+π6的图象向右平移23π个单位长度后,可 得 y=2sinωx-2ω3π+π6的图象,因为所得图象与原图象重合,
所以-2ω3π=2kπ,k∈Z ,
所以 ω=-3k,k∈Z ,故当正数 ω 最小时,ω=3, 答案:3 (2)由 f(x)是偶函数,得 f(-x)=f(x),即函数 f(x)的图象关于 y 轴对称, ∴f(x)在 x=0 时取得最值,即 sin φ=1 或-1.结合 0≤φ<π,可得 φ=π2.
[解析] [答案] f(x)=-12cos 2x
• [方法技巧]
• 三角函数图象平移变换问题的关键及解题策略
• (1)确定函数y=sin x的图象经过平移变换后图象对应的 解析式,关键是明确左右平移的方向,即按“左加右减” 的原则进行.
• (2)已知两个函数解析式判断其图象间的平移关系时,首 先要将解析式化为同名三角函数形式,然后再确定平移方 向和单位.
f(x)பைடு நூலகம்0
2 0 -2 0
描点连线:用平滑的曲线顺次连接各点,所得图象 为函数 f(x)在一个周期内的图象,如图所示. (2)由 2kπ-π2≤x2+π3≤2kπ+π2,k∈Z ,

4kπ

5π 3
≤x≤4kπ

π 3

k

Z
.




f(x) 的 单 调 递 增 区 间 为

人教版高中数学必修一第一章函数的概念课件PPT

人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念

人教版高中数学-必修1(函数)知识点总结

人教版高中数学-必修1(函数)知识点总结

(4)若 A B 且 B A ,则 A B
A(B)
BA

真子集
集合 相等
AB
(或 B A)
A B ,且 B 中至
少有一元素不属于 A
(1) A (A 为非空子集)
(2)若 A B 且 B C ,则 AC
A 中的任一元素都属 于 B,B 中的任一元素 都属于 A
(1)A B (2)B A
如果对于函数 f(x)定义域内 任意一个 x,都有 .f.(-.x..)=.f.(.x.)., 那么函数 f(x)叫做偶.函.数..
(1)利用定义(要先 判断定义域是否关于 原点对称) (2)利用图象(图象 关于原点对称) (1)利用定义(要先 判断定义域是否关于 原点对称) (2)利用图象(图象 关于 y 轴对称)

(5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间 的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
①设 A 、 B 是两个集合,如果按照某种对应法则 f ,对于集合 A 中任何一个元素,在集合 B 中都
的定义域应由不等式 a g(x) b 解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是 提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的 值域或最值.

最新人教版高中数学必修第一册第3章 函数的概念与性质3.1.2 函数的表示法

最新人教版高中数学必修第一册第3章  函数的概念与性质3.1.2 函数的表示法
当x=2时,f(g(2))=f(2)=3,g(f(2))=g(3)=1,符合题意;
当x=3时,f(g(3))=f(1)=1,g(f(3))=g(1)=3,不合题意;
综上,x的值等于2.

探究二 函数的图象及其画法
【例 2】 画出下列函数的图象:
(1)y=1-x,x∈Z;

(2)y=,x≥2;
, ≤ ≤ ,
基本水费1.3×5(元),第二部分由基本水费与加价水费组成,即
1.3(x-5)+1.3(x-5)×200%=1.3(x-5)(1+200%),
则y2=1.3×5+1.3(x-5)(1+200%)=3.9x-13.
当6<x≤7时,
同理y3=1.3×5+1.3×(6-5)×(1+200%)+1.3(x-6)(1+400%)

【变式训练2】 画出下列函数的图象,并求出定义域和值域:
,- ≤ ≤ ,
(1)f(x)=
, < -或 > ;
(2)g(x)=|2x+3|-1.
解:(1)画出f(x)的图象,如图所示.
观察函数图象可知,函数f(x)的定义域为R,值域为[0,1].

(2)g(x)=

+ , ≥ - ,
--, ≤ -或 ≥ ,
故 h(x)=
--,- < < .
(2)因为g(-2)=2×(-2)+4=0,
所以h(h(g(-2)))=h(h(0)),
而h(0)=2×02-2×0-2=-2,
所以h(h(g(-2)))=h(-2)=(-2)2-4×(-2)-7=5.

人教版高中数学必修1《函数的单调性》PPT课件

人教版高中数学必修1《函数的单调性》PPT课件
k(x1 x2 ).
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)

高中数学必修一人教版课件:2.1.1函数的解析式 (共11张PPT)

高中数学必修一人教版课件:2.1.1函数的解析式 (共11张PPT)

解:设 f (x) = kx + b
则 f [ f (x) ] = f ( kx + b ) = k ( kx + b ) + b
= k 2 x + kb + b = 4x -1
则有k
k2 b
4 b 1

2b
k
2 b
1或
k 2b
2 b
1
bfk(x2)13或2xkb112或f ( x) 2x 1
2.1.1函数的解析式
函数解析式的求法 (1)代入法 (2)换元法 (3)待定系数法 (4)解方程组法 (5)配凑法
(1)代入法
例1:已知f (x) x2,求f (3), f (a), f (x 1), f [ f (3)].
变式习12::f (x) 3x 1, g(x) 2x 3,求f [g(x)], g[ f (x)].
变式习12::已知f (x) 2 f (x) 2x,求f (x).
(5)配凑法
例:fx-1x=x2+x12+1,求 f(x).
解:fx-1x=x-1x2+1+2=x-1x2+3, ∴f(x)=x2+3.
习:已知f (x 1) (x 1)2,求f (x).
x≠0,a 为常数,且 a≠±1,则 f(x)=________.
习2:一次函数 f (x), 使f { f [ f (x)]} 27 x 65. 习3、已知 f ( 4x + 1 ) = 4 x 6 ,求 f (x)
16x2 1
习4、已知 f ( x + 1 ) = x + 2 x , 求 f (x)
(2)换元法
例2:f (x 1) x2,求f (x).

人教版高中数学必修一1.2.1函数的的概念_ppt课件

人教版高中数学必修一1.2.1函数的的概念_ppt课件

题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档