22.1.2 二次函数y=a(x-h)2+k(a不等以0)的图象和性质(3)
03-第二十二章22.1.3二次函数y=a(x-h)2 k的图象和性质

确的是 ( )
A.开口向下
B.对称轴是x=-1
C.顶点坐标是(-1,2) D.与x轴没有交点
答案 D ∵y=(x-1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为 (1,2),故A、B、C均不正确.∵抛物线开口向上,顶点(1,2)在第一象限, ∴抛物线与x轴没有交点,故D正确.
22.1.3 二次函数y=a(x-h)2+k的图象和性质
的面积为16,则抛物线l2的函数表达式为
.
图22-1-3-2
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
解析 当y=0时,有 1 (x-2)2-2=0,
2
解得x1=0,x2=4,∴OA=4.
∵S阴影=OA·AB=16,∴AB=4,
∴抛物线l2的函数表达式为y= 1 (x-2)2-2+4= 1 (x-2)2+2.
当x=0时,y有最大值,y最大值=k
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
例1 (2017湖南邵阳模拟)关于二次函数y=-2x2+1的图象,下列说法中,正 确的是 ( ) A.对称轴为直线x=1 B.顶点坐标为(-2,1) C.可以由二次函数y=-2x2的图象向左平移1个单位得到 D.在y轴的左侧,图象上升,在y轴的右侧,图象下降
当x=h时,y有最大值,y最大值=0
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
例2 (2017广东潮州潮安期中)二次函数y=3x2+1和y=3(x-1)2,以下说法:
①它们的图象都是开口向上;②它们的图象的对称轴都是y轴,顶点坐标
都是原点(0,0);③当x>0时,它们的函数值y都是随着x的增大而增大;④它
22. 二次函数y=a(x-h)2+k的图象和性质第1课时 二次函数y=ax2+k的图象和性质

解析式是( C )
A.y=(x-1)2+2 B.y=(x+1)2+2
C.y=x2+1
D.y=x2+3
10.(202X·德州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+ a的图象可能是( C )
11.若抛物线y=ax2+c与抛物线y=-4x2+3关于x轴对称,则a=__4__, c=_-__3_.
15.已知抛物线y=-x2+4交x轴于A,B两点,顶点是C. (1)求△ABC的面积; (2)在抛物线y=-x2+4上是否存在点Q,使∠AQB=90°,若存在,要求出 点Q的坐标;若不存在,请说明理由.
解:(1)S△ABC=12×4×4=8 (2)存在.设 Q(m,-m2+4),连接 OQ,易知 OQ=12AB=2,∴m2+(4-m2)2=4,解得 m=±2,m=± 3. 但 m=±2 时,点 Q 在 x 轴上,不合题意,∴点 Q 坐标为( 3,1)或(-
练习2:抛物线y=- 1 x2-3的顶点坐标是___(_0_,__-__3_)_____,对称轴 2
是__y_轴_____.
知识点1:二次函数y=ax2+k的图象和性质
1.已知点(x1,y1),(x2,y2)均在抛物线y=x2-1上,下列说法中正 确的是( D )
A.若y1=y2,则x1=x2 B.若x1=-x2,则y1=-y2 C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2
练 习 1 : 将 抛 物 线 y = x2 向 上 平 移 两 个 单 位 后 的 函 数 解 析 式 为 _______________.
y=x2+2
2 . 对 于 抛 物 线 y = ax2 + k , 当 a > 0 时 , 开 口 _向__上____ , 对 称 轴 是 ___y_轴___,顶点为__(_0_,__k_)__;当x>0时,y随x的增大而_增__大_____;当x <0时,y随x的增大而__减__小____.当a<0时,开口_向__下_____,对称轴是 __y_轴___,顶点为___(_0_,__k_)__;当x>0时,y随x的增大而___减__小___;当x <0时,y随x2个单位得到抛物线y=-3x2+2,则a =____-,3c=____4.
人教版九年级数学上册22、1、3二次函数y=a(x-h)2 k的图像和性质 教案

二次函数y=ax2+k的图像性质教学设计【教学目标】知识与能力: 1、使学生能利用描点法正确作出函数y=ax2+k的图象,掌握它的图象特征,并会总结它的性质。
2、理解二次函数y=ax2+k与y=ax2的的图像和性质的异同,能用平移的方法解决图象间关系。
过程与方法:经历操作、研究、归纳和总结二次函数y=ax2+k的图像性质及它与函数y=ax2的关系,让学生进一步体尝试去发现二次函数的图象特征;体会其性质;渗透由特殊到一般的辩证唯物主义观点和数形结合的数学思想,培养观察能力和分析问题、解决问题的能力。
情感态度与价值观:1、培养学生探索、观察、发现的良好品质以及克服困难的毅力,并学会归纳总结自己的结论,体会成功的喜悦,加强继续学习的兴趣。
2、通过细心画图,培养学生严谨细致的学习态度。
【教学重难点】教学重点:会用描点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k 的图象性质。
教学难点:理解抛物线y=ax2+k与抛物线y=ax2的之间的位置关系【教法学法分析】数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。
为了更好地体现在课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。
为此设计了4个环节:(一)复习回顾——引入新课;(二)自主探究,合作交流——发现规律;(三)当堂训练——检查自我。
(四)课堂小结——深化巩固;这四个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。
【教学过程】(一)复习回顾,引入新课回顾二次函数y=ax2的图象和性质设计意图:此环节通过对前一节所学内容的复习,让学生回忆如何根据函数关系式的特征,判定函数y=ax2的图像特征,为进一步探索y=ax2+k的图像特征作铺垫,从而引入本节新课。
22.1.3二次函数y=a(x-h)^2的图象和性质(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例:在讲解顶点变换对图象的影响时,可以通过实际变换抛物线y=x^2的图象,比如平移(h变化)和缩放(a变化),让学生观察并总结规律,突破顶点变换的难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数y=a(x-h)^2的图象和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否遇到过抛物线形状的物体或现象?”(如拱桥、篮球投篮的轨迹等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数的奥秘。
22.1.3二次函数y=a(x-h)^2的图象和性质(教案)
一、教学内容
本节课选自教材第22章第1节第3部分,主要探讨二次函数y=a(x-h)^2的图象和性质。教学内容包括:
1.二次函数y=a(x-h)^2的标准形式及其特点;
2.二次函数y=a(x-h)^2图象的绘制方法,包括顶点、对称轴、开口方向等;
2.培养学生的空间想象能力和抽象思维能力,通过绘制和分析二次函数图象,让学生感知数学图形的直观性,发展几何直观;
3.培养学生的数据分析观念和推理能力,通过对二次函数性质的研究,使学生能够发现数据规律,进行合理解释,形成数学推理;
4.培养学生的团队合作意识和表达能力,通过小组讨论、展示交流,提高学生的沟通能力和协作能力。
人教版初三数学教案 第2课时 二次函数y=a(x-h)2的图象和性质

第二十二章 二次函数22.1.3 二次函数y =a (x -h )2+k 的图象和性质第2课时 二次函数y =a (x -h )2的图象和性质学习目标:1.会画二次函数y =a (x -h )2的图象.2.掌握二次函数y =a (x -h )2的性质.3.比较函数y =ax 2与y =a (x -h )2的联系.重点:会画二次函数y =a (x -h )2的图象.难点:掌握二次函数y =a (x -h )2的性质并会应用其解决问题.自主学习一、知识链接1.说说二次函数y =ax 2+c (a ≠0)的图象的特征.2.二次函数 y =ax 2+k (a ≠0)与y =ax 2(a ≠0)的图象有何关系?3.函数21(2)2y x 的图象,能否也可以由函数212y x 平移得到?课堂探究二、要点探究探究点1:二次函数y =a (x -h )2的图象和性质 引例 在同一直角坐标系中,画出二次函数212y x 与21(2)2y x 的图象.根据所画图象,填写下表:试一试 画出二次函数2112yx ,2112y x 的图象,并分别指出它们的开口方向、对称轴和顶点坐标.想一想 通过上述例子,函数y =a (x -h )2的性质是什么?要点归纳:二次函数y =a (x -h )2(a ≠0)的性质当a >0时,抛物线开口方向向上,对称轴为直线x =h ,顶点坐标为(h ,0),当x =h 时,y 有最小值为0.当x <h 时,y 随x 的增大而减小;x >h 时,y 随x 的增大而增大.当a >0时,抛物线开口方向向下,对称轴为直线x =h ,顶点坐标为(h ,0),当x =h 时,y 有最大值为0.当x <h 时,y 随x 的增大而增大;x >h 时,y 随x 的增大而减小.典例精析例1 已知二次函数y =(x ﹣1)2(1)完成下表; x … … y……(2)在如图的坐标系中描点,画出该二次函数的图象.(3)写出该二次函数的图象的对称轴和顶点坐标;(4)当x 取何值时,y 随x 的增大而增大.(5)若3≤x ≤5,求y 的取值范围;想一想:若-1≤x ≤5,求y 的取值范围;(6)若抛物线上有两点A (x 1,y 1),B (x 2,y 2),如果x 1<x 2<1,试比较y 1与y 2的大小.变式:若点A (m ,y 1),B (m +1,y 2)在抛物线的图象上,且m >1,试比较y 1,y 2的大小,并说明理由.探究点2:二次函数y =ax 2与y =a (x -h )2的关系想一想 抛物线2112y x , 2112y x 与抛物线212y x 有什么关系?要点归纳:二次函数y =a (x -h )2与y =ax 2的图象的关系 y =ax 2向右平移︱h ︱得到y =a (x -h )2; y =ax 2向左平移︱h ︱得到y =a (x +h )2.左右平移规律:括号内左加右减,括号外不变.例2 抛物线y =ax 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a 不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”. 练一练将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位当堂检测22(3)x 22(2)x 23(1)4x 2.如果二次函数y =a (x ﹣1)2(a ≠0)的图象在它的对称轴右侧部分是上升的,那么a 的取值范围是_____.3.把抛物线y =-x 2沿着x 轴方向平移3个单位长度,那么平移后抛物线的解析式是 .4.若(-134,y 1)(-54,y 2)(14,y 3)为二次函数y =(x -2)2图象上的三点,则y 1,y 2,y 3的大小关系为___________.5.在同一坐标系中,画出函数y =2x 2与y =2(x -2)2的图象,分别指出两个图象之间的相互关系.能力提升已知二次函数y =(x ﹣h )2(h 为常数),当自变量x 的值满足﹣1≤x ≤3时,与其对应的函数值y 的最小值为4,求h 的值.。
22.1.2第4节二次函数y=a(x-h)2的图象与性质(教案)

一、教学内容
22.1.2第4节二次函数y=a(x-h)^2的图象与性质
1.二次函数y=a(x-h)^2的图象特点
- a>0时,抛物线开口向上;a<0时,抛物线开口向下
- h为抛物线的对称轴,即x=h
-抛物线顶点为(h, 0)
2.二次函数y=a(x-h)^2的性质
(2)强调对称轴(x=h)和顶点((h, k))的概念,解释它们与函数最值、单调性的关系,并通过具体例子进行说明。
(3)详细讲解图象的平移变换,使学生掌握左加右减、上加下减的变换规律,并能运用到具体问题中。
(4)结合实际情境,如物体抛掷、经济模型等,展示二次函数的应用,强调数学知识在实际问题中的运用。
1.提供更多具有代表性的案例,让学生在实际问题中运用所学知识。
2.加强对学生的引导和启发,提高他们在解决问题时的独立思考能力。
3.优化问题设计,使学生在讨论过程中能够更加聚焦主题。
4.针对不同学生的掌握程度,进行有针对性的辅导和答疑。
2.掌握二次函数图象变换方法,提高学生数学建模、数学运算的能力。
-通过图象变换,培养学生建立数学模型,解决实际问题的能力。
-在变换过程中,锻炼学生准确进行数学运算,提高解题效率。
3.培养学生运用二次函数知识解决实际问题的意识,提升数学应用、数据分析的核心素养。
-结合实例分析,引导学生运用所学知识解决生活中与二次函数相关的问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版九年级数学上册第22章第1节《二次函数y=a(x-h)2+k的图象和性质》优质课件第3课时

第3课时 二次函数y=a(x-h)2+k的图象和性质
【学习目标】 1.会用描点法画出二次函数y=a(x-h)2+k(a≠0)的 图象. 2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移 规律. 3.依据具体问题情境建立二次函数y=a(x-h)2+k 模型来解决实际问题. 【学习重点】 二次函数y=a(x-h)2+k(a≠0)的图象及其性质. 【学习难点】 1.二次函数y=a(x-h)+k与y=ax2(a≠0)的图象之 间的平移关系. 2.通过对图象的观察,分析规律,归纳性质.
5.已知一个二次函数图象的顶点为A(-1,3),且它是由 二次函数y=5x2平移得到,请直接写出该二次函数的 解析式.
该二次函数的解析式为:y=5(x+1)2+3
课堂小结
图象特点
二次函数y=a(x-h)2+k 的图象和性质
当a>0,开口向上; 当a<0,开口向下. 对称轴是x=h, 顶点坐标是(h,k).
平移规律
左右平移:括号内左加右减;
上下平移:括号外上加下减.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
3
同,且顶点坐标是(4,-2),试求这个函数关系式.
y 1 (x 4)2 2 3
当堂练习
1.完成下列表格:
二次函数 开口方向 对称轴 顶点坐标
y=2(x+3)2+5 y=-3(x-1)2-2
y = 4(x-3)2+7 y=-5(2-x)2-6
向上 向下 向上 向下
直线x=-3 (-3, 5 ) 直线x=1 ( 1, -2 ) 直线x=3 ( 3 , 7) 直线x=2 ( 2 , -6 )
九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

教材分析之前学生已经学过一次函数、反比例函数的图像和性质,以及会建立二次函数的模型和理解二次函数的图像相关概念和性质基础之上进行的。
是前面知识的应用和拓展,又为今后学习二次函数的应用及一元二次方程与二次函数之间的关系作预备。
充分体现了数形结合的思想,因此本课无论在知识上还是培养学生动手能力上都起了很大的作用。
学生已经会了上一节的二次函数图像及性质。
课标要求会用描点法画出二次函数的图像,通过图像了解二次函数的性质。
学情分析可能有些学生对二次函数还不理解,甚至还不会描点法画出函数图像,看图能力差,不能类比一次函数的一些观察图像的方法来学习二次函数的图像。
不能从图中获取相关的信息。
由于放假的原因,学生对上下平移和左右平移的知识有很多淡忘,所以完成本节知识在理解方面会有难点。
教学目标知识目标:让学生经历二次函数y=a(x-h)2+k性质探究的过程,理解函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象的关系能力目标:通过画图象独立去探索交流图象的性质培养分析解决问题的能力。
能说出二次函数y =a(x-h)2+k的图象与二次函数y=ax2的图象的关系。
情意目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。
教学重点:会用描点法画出二次函数y=a(x-h)2+k的图象,理解二次函数y=a(x-h)2+k的性质。
能说出顶点坐标。
教学难点:理解二次函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2关系。
教学手段导学案教学方法问答法、练习法、讨论法教学过程1、创设情境::(组织方法)复习两个上下平移及左右平移的二次数学图像,对照图像说出开口方向、对称轴、顶点坐标、最值、性质。
详见导学案。
解决哪些教学目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。
学生可能出现的困难:忘记或混淆上下平移和左右平移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.1.2 二次函数)0()(2≠+-=a k h x a y 的图象和性质(三) 知识点:
1、抛物线)0()(2≠+-=a k h x a y 的对称轴为 ,顶点坐标为 。
2、抛物线)0()(2≠+-=a k h x a y 与抛物线)0(2≠=a ax y 的形状 ,位置 ,将抛物线)0(2≠=a ax y 进行平移可得到抛物线)0()(2≠+-=a k h x a y ,平移规律为:
当0,0>>k h 时,将抛物线)0(2≠=a ax y 得到抛物线 )0()(2≠+-=a k h x a y ;
当0,0<>k h 时,将抛物线)0(2≠=a ax y 得到抛物线 )0()(2≠+-=a k h x a y ;
当0,0><k h 时,将抛物线)0(2≠=a ax y 得到抛物线 )0()(2≠+-=a k h x a y ;
当0,0<<k h 时,将抛物线)0(2≠=a ax y 得到抛物线 )0()(2≠+-=a k h x a y ;
3、抛物线)0()(2≠+-=a k h x a y 的图象特点:
0>a 时,抛物线开口向 ,左 右 ,顶点最 ;
0<a 时,抛物线开口向 ,左 右 ,顶点最 ;
一、选择题:
1、抛物线21
)1(22+--=x y 的顶点坐标为( )
A 、(-1,21
) B 、(1,21) C 、(-1,—21) D 、(1,—21
)
2、对于2)3(22+-=x y 的图象,下列叙述正确的是( )
A 、顶点坐标为(-3,2)
B 、对称轴是直线3-=y
C 、当3≥x 时,y 随x 的增大而增大
D 、当3≥x 时,y 随x 的增大而减小
3、将抛物线2x y =向右平移一个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为(
)
A 、3)1(2++=x y
B 、3)1(2+-=x y
C 、3)1(2-+=x y
D 、3)1(2--=x y
4、抛物线2)1(22-+-=x y 可由抛物线22x y -=平移得到,则下列平移过程正确的是( )
A 、先向右平移1个单位,再向上平移2个单位
B 、先向右平移1个单位,再向下平移2个单位
C 、先向左平移1个单位,再向上平移2个单位
D 、先向左平移1个单位,再向下平移2个单位
5、如图,把抛物线y =x 2沿直线y =x A 处,则平移后的抛物线解析式是( )
A 、y =(x +1)2-1
B .y =(x +1)2+1
C .y =(x -1)2+1
D .y =(x -1)2-1
6、设A (-1,1y )、B (1,2y )、C (3,3y )是抛物线k x y +--=2)2
1(21上的三个点,则1y 、2y 、3y 的大小关系是( )
A 、1y <2y <3y
B 、2y <1y <3y
C 、3y <1y <2y
D 、2y <3y <1y
7、若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( )
A .m =l
B .m >l
C .m ≥l
D .m ≤l
8、二次函数n m x a y ++=2)(的图象如图所示,则一次函数n mx y +=的图象经过( )
A 、第一、二、三象限
B 、第一、二、四象限
C 、第二、三、四象限
D 、第一、三、四象限
二、填空题:
1、抛物线1)3(22-+-=x y 的对称轴是 ,顶点坐标是 ;当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x 时,y 取最 值为 。
2、抛物线k h x y ++=2)(4的顶点在第三象限,则有k h ,满足h 0,k 0。
3、已知点A (1x ,1y )、B (2x ,2y )在二次函数1)1(2+-=x y 的图象上,若121>>x x ,则1y 2y (填“>”、“<”或“=”).
4、抛物线的顶点坐标为P (2,3),且开口向下,若函数值y 随自变量x 的增大而减小,那么x 的取值范围为 。
5、在平面直角坐标系中,点A 是抛物线k x a y +-=2
)3(与y 轴的交点,
点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角
形ABC 的周长为 。
6、将抛物线2x y -=先沿x 轴方向向 移动 个单位,再沿y 轴方向向 移动 个单位,所得到的抛物线解析式是1)3(2+--=x y 。
7、将抛物线12+-=x y 先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是 。
8、将抛物线1)1(22++-=x y 绕其顶点旋转180°后得到抛物线的解析式为 ;
将抛物线1)1(22++-=x y 绕原点旋转180°后得到抛物线的解析式为 。
9、抛物线k h x a y +-=2)(的顶点为(3,-2),且与抛物线231x y -
=的形状相同,则a ,h = ,k = 。
10、如图,抛物线3)2(2
1-+=x a y 与1)3(2
122+-=x y 交于点A (1,3), 过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:
①无论x 取何值,y 2的值总是正数;②a =1;③当x =0时,y 2-y 1=4;
④2AB =3AC ;其中正确结论是 。
三、解答题:
1、若二次函数图象的顶点坐标为(-1,5),且经过点(1,2),求出二次函数的解析式。
2、若抛物线经过点(1,1),并且当2=x 时,y 有最大值3,则求出抛物线的解析式。
3、已知:抛物线y =34
(x -1)2-3.(1)写出抛物线的开口方向、对称轴; (2)函数y 有最大值还是最小值?并求出这个最大(小)值;
(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数解析式.
4、在直角坐标系中,二次函数图象的顶点为A (1、-4),且经过点B (3,0)
(1)求该二次函数的解析式;
(2)当33<<-x 时,函数值y 的增减情况;
(3)将抛物线怎样平移才能使它的顶点为原点。
5、如图是二次函数k m x y ++=2)(的图象,其顶点坐标为M (1,-4)
(1)求出图象与x 轴的交点A 、B 的坐标;
(2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=
45,若存在,求出点P 的坐标;若不存在,请说明理由。