2011-2012学年八年级上册数学期末考试试卷一
重庆市实验中学2023-2024学年八年级数学第一学期期末达标检测试题【含解析】

重庆市实验中学2023-2024学年八年级数学第一学期期末达标检测试题检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是()A .100分B .80分C .60分D .40分2.甲种防腐药水含药30%,乙种防腐药水含药75%,现用这两种防腐药水配制含药50%的防腐药水18千克,两种药水各需要多少千克?设甲种药水需要x 千克,乙种药水需要y 千克,则所列方程组正确的是()A .1830%75%1850%x y x y +=⎧⎨+=⨯⎩B .1830%75%18x y x y +=⎧⎨+=⎩C .1875%30%1850%x y x y +=⎧⎨+=⨯⎩D .1875%30%18x y x y +=⎧⎨+=⎩3.下列线段长能构成三角形的是()A .3、4、8B .2、3、6C .5、6、11D .5、6、104.下列四组数据,能组成三角形的是()A .2,2,6B .3,4,5C .359,,D .5,8,135.如图,Rt ABC ∆中,90C ∠=︒,AC BC =,60ADC ∠=︒,则BAD ∠的度数等于()A .10︒B .15︒C .30°D .45︒6.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为()A .3B .6C .12D .167.已知一个等腰三角形的两边长a 、b 满足方程组23{3a b a b -=+=则此等腰三角形的周长为()A .5B .4C .3D .5或48.下列说法错误的是()A .0.350是精确到0.001的近似数B .3.80万是精确到百位的近似数C .近似数26.9与26.90表示的意义相同D .近似数2.20是由数a 四会五入得到的,那么数a 的取值范围是2.195 2.205a < 9.4的平方根是()A .4B .4±C .2±D .210.用科学记数法表示0.0000000052为()A .105210-⨯B .95.210-⨯C .105.210-⨯D .115.210-⨯11.下列语句不属于命题的是()A .直角都等于90°B .两点之间线段最短C .作线段ABD .若a=b ,则a 2=b 212.如图,点A ,D ,C ,F 在一条直线上,AB=DE ,∠A=∠EDF ,下列条件不能判定△ABC ≌△DEF 的是()A .AD=CFB .∠BCA=∠FC .∠B=∠ED .BC=EF二、填空题(每题4分,共24分)13.如图,在扇形BCD 中,∠BCD=150°,以点B 为圆心,BC 长为半径画弧交BD 于点A ,连接AC ,若BC=8,则图中阴影部分的面积为________14.已知点P (1﹣a ,a+2)关于y 轴的对称点在第二象限,则a 的取值范围是______.15.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x=_______________.16.若8m a =,2n a =,,m n 为正整数,则2m n a +=___________.17.如图,在平行四边形ABCD 中,10,8,AB m AD m AC BC ==⊥,则平行四边形ABCD 的面积为____________.18.已知2,3m n a a ==,则3m n a +=____.三、解答题(共78分)19.(8分)2019年11月30日上午符离大道正式开通,同时宿州至徐州的K902路城际公交开通试运营,小明先乘K902路城际公交车到五柳站下车,再步行到五柳景区游玩,从出发地到五柳景区全程31千米,共用了1个小时,已知步行的速度每小时4千米,K902路城际公交的速度是步行速度的10倍,求小明乘公交车所行驶的路程和步行的路程.20.(8分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b)2的值;(2)先化简(22221a a a +--2221a a a a --+)÷1a a +,并回答:原代数式的值可以等于-1吗?为什么?21.(8分)数轴上点表示,点关于原点的对称点为,设点所表示的数为,(1)求的值;(2)求的值.22.(10分)如图,已知四边形ABCD ,AB =DC ,AC 、BD 交于点O ,要使AOB DOC △≌△,还需添加一个条件.请从条件:(1)OB =OC ;(2)AC =DB 中选择一个合适的条件,并证明你的结论.解:我选择添加的条件是____,证明如下:23.(10分)利用乘法公式计算16827816878⨯-⨯:24.(10分)先化简,再求值:2112111x x x x +⎛⎫-÷⎪-+-⎝⎭,其中x 满足240x -=.25.(12分)分解因式:16n 4﹣126.计算:[(x 2+y 2)﹣(x ﹣y )2+2y (x ﹣y )]÷4y .参考答案一、选择题(每题4分,共48分)1、B【解析】解:c ac b++≠ab,1判断正确;227是有理数,2判断正确;﹣0.6,3判断错误;∵2<3,∴1﹣1<2,4判断正确;数轴上有无理数,5判断正确;张晓亮的答卷,判断正确的有4个,得80分.故选B.【点睛】本题主要考查了实数的大小比较,实数的分类等知识点,属于基础知识,同学们要熟练掌握.2、A【解析】根据等量关系:甲种防腐药水+乙种防腐药水=18千克,甲种防腐药+乙种防腐药=18×50%千克,可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】由题意得:18 30%75%1850%x yx y+=⎧⎨+=⨯⎩.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,根据数量关系找出关于x、y的二元一次方程是解题关键.3、D【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【详解】解:A、3+4<8,不符合三角形三边关系定理,故本选项错误;B、2+3<6,不符合三角形三边关系定理,故本选项错误;C、5+6=11,不符合三角形三边关系定理,故本选项错误;D、5+6>10,6+10>5,5+10>6,符合三角形三边关系定理,故本选项正确;故选D.【点睛】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4、B【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A.∵2+2<6,∴2,2,6不能组成三角形;B.∵3+4>5,∴3,4,5能组成三角形;C.∵3+5<9,∴3,5,9不能组成三角形;D.∵5+8=13,∴5,8,13不能组成三角形;故选B.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5、B【分析】先根据等腰三角形的性质可求出B Ð的度数,再根据三角形的外角性质即可得.【详解】90,C AC BC∠=︒=1(18090)452B BAC ∠=∠=︒-︒=∴︒60,ADC ADC B BAD∠=︒∠=∠+∠604515BAD ADC B ∴∠=∠-∠=︒-︒=︒故选:B .【点睛】本题考查了等腰三角形的性质、三角形的外角性质,熟记各性质是解题关键.6、B【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB 的垂直平分线交AB 于点D ,∴AE=BE ,∵△ACE 的周长=AC+AE+CE=AC+BC=13,△ABC 的周长=AC+BC+AB=19,∴AB=△ABC 的周长-△ACE 的周长=19-13=6,故答案为:B .【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.7、A【解析】试题分析:解方程组23{3a b a b -=+=得:21a b =⎧⎨=⎩所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为2.所以这个等腰三角形的周长为2.故选A.考点:1.等腰三角形的性质;2.解二元一次方程组.8、C【分析】根据近似数的精确度对各项进行判断选择即可.【详解】A.0.350是精确到0.001的近似数,正确;B.3.80万是精确到百位的近似数,正确;C.近似数26.9精确到十分位,26.90精确到百分位,表示的意义不相同,所以错误;D.近似数2.20是由数a 四会五入得到的,那么数a 的取值范围是2.195 2.205a < ,正确;综上,选C.【点睛】本题考查了近似数,精确到第几位是精确度常用的表示形式,熟知此知识点是解题的关键.9、C【分析】根据平方根的性质,正数有两个平方根且互为相反数,开方求解即可.【详解】∵一个正数有两个平方根且互为相反数∴4的平方根是2±故选:C .【点睛】本题主要考查平方根的性质,熟知一个正数有两个平方根并互为相反数是解题的关键,区分平方根与算术平方根是易错点.10、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000000052=95.210-⨯.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11、C【分析】根据命题的定义对四个选项进行逐一分析即可.【详解】解:A 、正确,对直角的性质作出了判断,故不符合题意;B 、正确,两点之间,线段最短,作出了判断,故不符合题意;C 、错误,是叙述一件事,没作出任何判断,故符合题意;D 、正确,对a 2和b 2的关系作了判断,故不符合题意;故选C.【点睛】本题考查的是命题的定义,即判断一件事情的语句叫命题.12、D【解析】根据全等三角形的判定方法分别进行分析即可.【详解】AD=CF ,可用SAS 证明△ABC ≌△DEF ,故A 选项不符合题意,∠BCA=∠F ,可用AAS 证明△ABC ≌△DEF ,故B 选项不符合题意,∠B=∠E ,可用ASA 证明△ABC ≌△DEF ,故C 选项不符合题意,BC=EF ,不能证明△ABC ≌△DEF ,故D 选项符合题意,故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .但是AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每题4分,共24分)13、16π+【分析】连接AB ,判断出ABC 是等边三角形,然后根据扇形及三角形的面积公式,即可求得阴影部分的面积为:()S S S S ABCBCD ABC =--阴影扇形扇形.【详解】解:连接AB ,∵BC AC AB 8===,∴ABC 是等边三角形,∴SABC 182=⨯⨯=,ABC 60∠=,∴()ABCBCD ABC S S S S=--阴影扇形扇形22150π860π8360360⎛⨯⨯=-- ⎝16π=+故答案为:16π+.【点睛】本题考察扇形中不规则图形面积的求解,掌握扇形的面积公式是解题的关键.14、21a -<<.【解析】试题分析:点P (1,2)a a -+关于y 轴的对称点在第二象限,在P 在第一象限,则10{,20a a ->+>2 1.a ∴-<<考点:关于x 轴、y 轴对称的点的坐标.15、1或1【解析】∵一组数据2,3,4,5,x 的方差与另一组数据5,1,7,8,9的方差相等,∴这组数据可能是2,3,4,5,1或1,2,3,4,5,∴x=1或1,故答案是:1或1.16、1【分析】根据同底数幂的乘法及幂的乘方的逆运算即可解答.【详解】解:222()m n m n m n a a a a a +=⋅=⋅∵8m a =,2n a =∴22()8232m n a a ⋅=⨯=,故答案为:1.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆运算,解题的关键是熟练掌握同底数幂的乘法及幂的乘方的逆运算.17、48m 1【分析】由平行四边形的性质可得BC=AD=8m ,然后利用勾股定理求出AC ,根据底乘高即可得出面积.【详解】∵四边形ABCD 为平行四边形∴BC=AD=8m ∵AC ⊥BC∴△ABC 为直角三角形∴平行四边形ABCD 的面积=BC AC=86=48⋅⨯m 1故答案为:48m 1.【点睛】本题考查了平行四边形的性质与勾股定理,题目较简单,根据平行四边形的性质找到直角三角形的边长是解题的关键.18、1【分析】根据幂的乘方以及同底数幂乘法的逆用进行计算即可.【详解】解:∵2,3m n a a ==,∴()33332354m n m n m n a a a a a +=⋅=⋅=⨯=,故答案为:1.【点睛】本题主要考查了幂的乘方以及同底数幂的乘法,熟练掌握幂的运算性质是解答本题的关键.三、解答题(共78分)19、30千米;1千米【分析】设小明行驶的路程为x 千米,步行的路程y 千米,根据题意可得等量关系:①步行的路程+行驶的路程=31千米;②公交车行驶x 千米时间+步行y 千米的时间=1小时,根据题意列出方程组即可.【详解】解:设小明乘车路程为x 千米,步行的路程y 千米,∵公交的速度是步行速度的10倍,步行的速度每小时4千米,∴公交的速度是每小时40千米,由题意得:311404x y x y +=⎧⎪⎨+=⎪⎩,解得:301x y =⎧⎨=⎩,∴小明乘公交车所行驶的路程为30千米,步行的路程为1千米.【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系.20、(1)a 2+b 2=29,(a -b)2=9;(2)原代数式的值不能等于-1,理由见解析.【解析】试题分析:(1)根据完全平方公式,即可解答;(2)原式括号中两项约分后,利用乘法分配律化简,约分后利用同分母分式的减法法则计算得到最简结果,令原式的值为-1,求出x 的值,代入原式检验即可得到结果.试题解析:(1)a 2+b 2=(a +b)2-2ab =72-2×10=49-20=29,(a -b)2=(a +b)2-4ab =72-4×10=49-40=9.(2)原式=()()()()()22111[]•111a a a a a a a a a +-+-+--=()21111a a a a ++---=11a a +-,原式的值为-1,即11a a +-=-1,去分母得:a+1=-a+1,解得:a=0,代入原式检验,分母为0,不合题意,则原式的值不可能为-1.21、(1);(2)1.【解析】由对称性求出点B 表示的数,即为x 的值将x 的值代入原式计算即可得到结果.【详解】解:(1)∵数轴上点A 表示,点A 关于原点的对称点为B ,∴数轴上表示点B 表示-,即x=-(2)由(1)得,x=-将x=-代入原式,则=(-2)2+=8-2=1.【点睛】此题考查了实数与数轴,熟练掌握运算法则是解本题的关键.22、条件是(2)AC =DB ,证明见解析【分析】根据三角形全等的条件进行选择判断,先证明ABC DCB ∆≅∆,可以得到=BAC CDB ∠∠,从而可以证明出AOB DOC ∆≅∆.【详解】解:选择的条件是(2)AC DB =,证明如下:在ABC DCB ∆∆和中,∵AB DC AC DB BC CB =⎧⎪=⎨⎪=⎩,∴ABC DCB∆≅∆∴=BAC CDB∠∠在AOB DOB ∆∆和中,∵AOB DOC BAC CDB AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC∆≅∆【点睛】本题考查了全等三角形的判定,在全等三角形的5种判定方法中,选用合适的方法进行判定是解题的关键.23、33600【分析】根据乘法分配律的逆运算进行计算,即可得到答案.【详解】解:16827816878⨯-⨯=)(16827878⨯-=168200⨯=33600;【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.24、22x +,12.【分析】根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.【详解】原式11(1)(1)()112x x x x x +-=-⨯-++1122x x x x +-=-++22x =+因为:240x -=2x =当2x =时,原式12=.【点睛】本题考查分式的化简求值,熟练掌握计算法则是解题关键.25、(4n 2+1)(2n +1)(2n -1)【分析】根据公式法,利用平方差公式,即可分解因式.【详解】解:原式=(4n 2+1)(4n 2-1)=(4n 2+1)(2n+1)(2n-1).【点睛】本题考查分解因式,较容易,熟练掌握公式法分解因式,即可顺利解题.26、x ﹣12y 【分析】首先利用完全平方公式计算小括号,然后再去括号,合并同类项,最后再计算除法即可.【详解】解:原式=(x 2+y 2﹣x 2+2xy ﹣y 2+2xy ﹣2y 2)÷4y ,=(4xy ﹣2y 2)÷4y ,=x ﹣12y .【点睛】此题主要考查了整式的混合运算,关键是掌握计算顺序:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.。
余姚市2011学年第一学期期末考试八年级数学模拟试卷

余姚市2011学年第一学期期末考试八年级数学模拟试卷一、选择题(每小题3分,共24分)1.若a 为整数,且点M (3a -9,2a -10)在第四象限,则a 2+1的值为( ) (A )17(B )16(C )5D .42.不等式3x+1<m 的正整数解是1,2,3,则整数m 的最小值是( ) (A )10 (B )11 (C )12 (D )13 3.在函数12-+=x x y 中自变量x 的取值范围是( )(A )x ≥-2 (B )-2≤x <l (C )x >1 (D )x ≥-2且x ≠14.小芳要画一个有两边长分别为4cm 和8cm 的等腰三角形,则这个等腰三角形的周长( ) A 、20cm B 、18cm C 、16cm 或20cm D 、16cm5.如右图,P (x ,y )是以坐标原点为圆心、5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有( ) (A )4个 B )8个 (C )12个 (D )16个 6.直线L 的解析式为y kx b =+且过点(-3,-2),则不等式2kx b +>-的解为( ) A 、2x >- B 、3x >- C 、2x <- D 、3x <-7. 如图,已知在R t A B C △中,R t A C B ∠=∠,AB =6,分别以A C ,B C 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于( ) A 、9π B 、6π C 、3π D 、92π8. ) A 、1 B 、2 C D 、92π二、填空题(每小题3分,共30分)9. 当1k <2k <0<3k <4k 时,画出直线1y k x =,2y k x =,3y k x =,4y k x =大致图像为 .10. 点A (—1,5)到y 轴的距离为_________.11.数据0,2,0,2,3,0,2,3,1,2标准差是 ;众数为 ,中位数为 .xCABS 1S 212.某养鱼专业户搞池塘养鱼3年,头一年养鲢鱼20000尾,其成活率为70%,在秋季捕捞时,随意捞出10尾鱼,称得每尾的重量如下(单位)千克:0.8,0.9,1.2,1.3,0.8,0.9,1.1,1.0,0.2,0.8)根据样本平均数估计这塘鱼的总重量是千克.13.小明所在的一个小组共有五个学生,在一次考试中,平均分为80,小明得了第四名,但成绩为85分, 请你写出符合题意的五个数据.14.几个相同大小的正方体叠合在一起,该组合体的正视图和俯视图如下所示,那么组合体中正方体的个数至少为个,最多为个.正视图俯视图15.如图AB=AC,D是BC上一点,AE=AD,∠BAD= 30°,则∠EDC=度.16.已知直角三角形两直角边上的中线分别为m、n,则斜边边上的中线长为_________.17.直线2+-=xy与x轴、y轴的正半轴分别交于A、B两点,点p是直线2+-=xy上的一点,当△AOP为等腰三角形时,则点p的坐标为.18.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是____________. (3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,则yx+的值为.三、解答题(每小题7分,共56分)19.如图是由若干个大小相同的小正方体堆砌而成的几何体,画出它的三视图.AB CED四面体长方体正八面体正十二面体20.解不等式组:532(1)134(2)2x x x -≥⎧⎪⎨-<⎪⎩21、如图,AD ∥BC,∠A=90,E 是AB 上的一点,且AD=BE ,∠1=∠2, (1) △ADE 与△BEC 全等吗?请说明理由; (2) 若AD=3,AB=7,请求出CD 的长.22.王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a 米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米. (1)请用a 表示第三条边长;(2)问第一条边长可以为7米吗?为什么?请说明理由,并求出a 的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,请说明理由.23. 药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如下图.请你根据图象:ADB CE1 2(1)说出服药后多少时间血液中药物浓度最高?(2)分别求出血液中药物浓度上升和下降阶段y 与x 的函数关系式. 24.编写一道实际问题的应用题,使得根据其题意列出的不等式为:6(x-1)< (4x+19) <6x .25. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,求证:①S ⊿ABC +S ⊿CDE ≧S ⊿ACE ; ②BM ⊥DM; ③BM=DM.26、如图,四边形ABCD 中,∠DAB=∠DCB=90o ,点M 、N 分别是BD 、AC 的中点.MN 、AC 的位置关系如何?证明你的猜想.M E C A。
2011-2012学年度第一学期期末考试八年级数学试卷

2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
八年级数学第一次月考卷01(考试版:八年级上册第十一章~第十二章】人教版-25年初中上学期第一次月考

2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.85。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△ABC的BC边上的高AD,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.86.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是( )A.2B.3C.4D.58.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.∠C=∠D C.AC=AD D.BC=AD9.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,CD=3,则点D到AB的距离是()A.6B.2C.3D.410.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则∠CFE 的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,CD是△ABC的高,∠ACB=90°.若∠A=35°,则∠BCD的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.18.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1、B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A2023B2023O=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|―2|―6×―+(―4)2+8.20.(6分)解不等式组2x+1>x―123x―1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△ABC中,∠A=40°,∠ABC=∠C.(1)作∠ABC的平分线,交AC于点D(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BDC的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)估计全校学生上学所用时间在20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△ABC中,AC=CB=20cm,AB=16cm,点D为AC的中点.(1)如果点P在线段AB上以6cm/s的速度由A点向B点运动,同时,点Q在线段BC上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△APD与△BQP是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△APD与△BQP全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?26.(12分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为BC的中点.点E是直线AB上的一动点,连接DE,作DF⊥DE交直线AC于点F.(1)如图1,若点E与点A重合时,请你直接写出线段DE与DF的数量关系;(2)如图2,若点E在线段AB上(不与A、B重合)时,请判断线段DE与DF的数量关系并说明理由;(3)若点E在AB的延长线上时,线段DE与DF的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.。
2011-2012学年新人教版八年级(上)期末目标检测数学试卷(三)

倍多分八年级数学一、选择题(本大题共8小题,每小题3分,共24分。
在每小题只有一个选项正确)1、下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有()A、1个B、2个C、3个D、4个2、下列四个点中,在函数y=﹣2x+1的图象上的点是()A、(1,1)B、(﹣1,﹣3)C、(﹣2,3)D、(2,﹣3)3、(2007•巴中)下列各式计算正确的是()A、a2+a2=a4B、(3x)2=6x2C、(x2)3=x6D、(x+y)2=x2+y24、(2007•怀化)已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A、1B、﹣1C、5D、﹣55、(2008•陕西)如图,直线AB对应的函数表达式是()A、y=﹣x+3B、y=x+3C、y=﹣x+3D、y=x+36、(2007•德阳)已知a+b=2,则a2﹣b2+4b的值是()A、2B、3C、4D、67、(2008•怀化)如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A、B、C、D、8、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A、0B、1C、2D、3二、填空题(本题共9小题,每小题3分,共27分)9、(2011•常德)函数中自变量x的取值范围是_________.10、算术平方根是的数是_________.11、等腰三角形的一个外角等于110°,则底角为_________.12、(2009•辽宁)分解因式:3a2﹣27=_________.13、(2004•济宁)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_________.14、3(2﹣)﹣|﹣2|=_________.15、(2004•龙岩)把一块周长为20cm的三角形铁片裁成四块形状、大小完全相同的小三角形铁片(如图示),则每块小三角形铁片的周长为_________cm.16、如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为_________.17、观察下列等式:第一行3=4﹣1第二行5=9﹣4第三行7=16﹣9第四行9=25﹣16…按照上述规律,第n行的等式为_________.三、解答题18、在一次学校组织的游艺活动中,某同学在玩“碰碰撞”时,想通过击球A,使撞击桌边MN后反弹回来击中彩球B,请在图上标明使主球撞击在MN上哪一点,才能达到目的(不写作法,保留作图痕迹)19、如图,Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,且CD=5,求AD的长?20、先化简,再求值:3(a﹣1)2﹣(2a+1)(a﹣2),其中a=.21、如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.22、(2009•衢州)如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.23、如图,2009个正方形由小到大套在一起,从外向里相间画上阴影,最外面一层画阴影,最里面一层画阴影,最外面的正方形的边长为2009cm,向里依次为2008cm,2007cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?24、运动会前,小明和小强在学校400米环形跑道上进行某个项目的的训练,一次练习中,小明所跑的路程与所用时间的函数关系如图1所示,小强距离起点(终点)的路程与所用时间的函数关系如图2所示.(1)两人进行的是_________米赛跑训练;(2)若两人同时同地同向出发,求两人出发后多长时间第一次并列?25、(2007•成都)某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的,但又不少于红梅牌钢笔的数量的.如果他们买了锦江牌钢笔x支,买这两种笔共花了y元.①请写出y(元)关于x(支)的函数关系式,并求出自变量x的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?26、(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.答案与评分标准一、选择题(本大题共8小题,每小题3分,共24分。
2011-2012学年度期末考试七年级上册数学试卷

2011-2012学年度七年级上学期期末数学试卷(满分120分,考试时间120分钟)一、选择题: (共30分)1.如果+2 表示增加2 ,那么-6 表示( ). A .增加14 B .增加6 C .减少6D .减少262.如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1a b < D .0a b -<4. 下面说法中错误的是( ). A .368万精确到万位 B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×1045. 将线段AB 延长至C ,再将线段AB 反向延长至D ,则图中共有线段 ( ) A .8条 B .7条 C .6条 D .5条 6. 请你认真观察和分析图中数字变化的规律, 由此得到图中所缺的数字应为 ( )A.32B.29C.25D.23 7.在解方程5113--=x x时,去分母后正确的是( ) A .5x =15-3(x -1)B .x =1-(3x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1) 8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2m D .2n图1 第9题 图2第10题从正面看 从左面看10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个二、填空题: (共30分)11.多项式132223-+--x xy y x x 是_______次_______项式12.从三个不同方向看都是同一平面图形的几何体有 、 .(写两种即可)13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.若2320a a --=,则2526a a +-= .15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是________________.18.一个角的余角比它的补角的32还少40°,则这个角为 度.19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20. 如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC= 度三、解答题:本大题共6小题,每题10分,共60分) 21.计算:(1)(-10)÷551⨯⎪⎭⎫⎝⎛-(2)()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--.ABmnx nnabm n学校: 班级: 姓名: 考号:·············································································································22.解方程:(1)2x-3=3(x+1) (2)0.10.20.02x --10.5x += 323.已知:22321A x xy x =+--,21B x xy =-+- (1)求3A +6B 的值;(2)若3A +6B 的值与x 的值无关,求y 的值。
2012-2013学年八年级上学期期末考试数学试卷

岳池县2012—2013学年度上期八年级期末考试数学试卷一、选择题:请选择一个最适合的答案,填在题前括号中,祝你成功!(每小题3分,共30分)( ) 1. 1000的立方根是 A.100 B.10 C.-10 D.-100( ) 2. 如果a 3=-27,b 2=16,则ab 的值为 A.-12 B.12 C.1或-7 D.±12 ( ) 3. 下列说法中,不正确的是A.大小不同的两个图形不是全等形B.等腰三角形是轴对称图形C.负数有平方根D.( ) 4. 已知点M (0,3)关于x 轴对称的点为N ,则线段MN A.(0,-3) B.(0,0) C.(-3,0) D.(0,( ) 5. 已知正比例函数的图象如图所示,则这个函数的关系式为A. y=xB. y=-xC. y=-3x ( ) 6. 一次函数的图象经过点A (2,1),且与直线y=3x-2为A. y=3x-5B. y=x+1C. y=-3x+7D. 非上述答案 ( ) 7. 下列式子中是完全平方式的是A. a 2-ab-b 2B. a 2+2ab+3C. a 2-2b+b 2D. a 2-2a+1 ( ) 8. 下列计算正确的是A. (x 3)2=x 5B. a 2+a 3=a 5C. a 6÷a 2=a 3D. (-bc)3÷(-bc)2=-bc( ) 9. 一次函数经过第一、三、四象限,则下列正确的是 A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0 ( ) 10. 拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中剩油11. 如果一个三角形的两个内角分别为75o 和30o,那么这个三角形是 三角形。
12. 36的算术平方根是。
13. 直线y=3x-21与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
2023-2024学年度第一学期期末考试 试题 八年级数学+答案解析

2023-2024学年度第一学期期末考试八年级数学试卷试卷满分:150分考试时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.下列几种著名的数学曲线中,不是轴对称图形的是(▲)A .B .C .D .2.有下列实数: ,1.8-,9,3,33,其中无理数有(▲)A .1个B .2个C .3个D .4个3.下列数据中不能确定物体位置的是(▲)A .电影票上的“5排8号”B .小明住在某小区3号楼7号C .南偏西37°D .东经130°,北纬54°的城市4.如图,AD 为∠BAC 的角平分线,添加下列条件后,不能证明△ABD ≌△ACD 的是(▲)A .∠B =∠C B .∠BDA =∠CDA C .AB =AC D .BD =CD 5.在等腰三角形ABC 中,∠A =100°,则底角的度数是(▲)A .100°B .80°C .50°D .40°6.如图,△AOB 是边长为2的等边三角形,点B 在x 轴上,则点A 关于x 轴的对称点的坐标为(▲)A .(1,-3)B .(1,3)C .(-1,-3)D .(-1,3)7.一次函数b ax y +=1与正比例函数bx y =-2在同一坐标系中的图像大致是(▲)A .B .C .D .8.如图,△ABC 中,∠ACB =90°,BC =6,AC =8,点D 是AB 的中点,将△ACD 沿CD 翻折得到△ECD ,连接AE ,BE ,则线段AE 的长等于(▲)A .75B .548C .53D .514第4题图第6题图第8题图二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.36的平方根是▲.10.扬州市面积约为6591平方公里,数据6591用四舍五入法精确到百位,并用科学记数法表示为▲.11.比较大小:3▲1-π(用“>”、“<”或“=”填空).12.如果将直线y =2x -1向上平移3个单位,那么所得直线的函数表达式是▲.13.已知点A (1,m ),B (32,n )在一次函数y =3x +1的图像上,则m ▲n (用“>”、“<”或“=”填空).14.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若BC =3cm ,AD =4cm ,则图中阴影部分的面积是▲cm 2.15.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为()a a -,+112,则a 的值为▲.16.如图,在Rt △ABC 中,AC =4,AB =5,∠C =90°,BD 平分∠ABC 交AC 于点D ,则DC 的长是▲.17.已知A 、B 两地是一条直路,甲骑自行车从A 地到B 地,乙骑摩托车从B 地到A 地,两人同时出发,乙先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,则下列结论正确的有▲.①两人出发2h 后相遇;②甲骑自行车的速度为60km/h ;③乙比甲提前2h 到达目的地;④乙到达目的地时两人相距200km .第14题图第15题图第16题图第17题图18.定义:在平面直角坐标系xOy 中,O 为坐标原点,任意两点P (x 1,y 1)、Q (x 2,y 2),称2121y y x x +++的值为P 、Q 两点的“坐标和距离”.若P (1,-3),Q 为直线y =x +2上任意一点,则P ,Q 的“坐标和距离”的最小值为▲.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:9)1(6423--+;(2)求27)4(3-=-x 中x 的值.20.(本题满分8分)已知2a +1与a -4是b 的两个不相等的平方根,求b -1的立方根.21.(本题满分8分)已知y 与2x -3成正比例,且当x =2时,y =2.(1)求y 与x 的函数关系式;(2)求当x =21时的函数值.22.(本题满分8分)已知:如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,AD ⊥BC ,垂足为点D ,求BC ,AD 的长.23.(本题满分10分)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图.(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1(点A 、B 、C 分别对应A 1、B 1、C 1);(2)△A 1B 1C 1的面积=▲;(3)若M (x ,y )是△ABC 内部任意一点,请直接写出这点在△A 1B 1C 1内部的对应点M 1的坐标▲;(4)P 是x 轴上一点,满足线段B 1P +BP 的值最小,画出P 点,并写出P 点坐标▲.24.(本题满分10分)已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,连接BM 、DM .(1)求证:BM =DM ;(2)求证:MN ⊥BD .25.(本题满分10分)在四边形ABCD 中,O 是边BC 上的一点.若△OAB ≌△OCD ,则点O 叫做该四边形的“全等点”.(1)如图,已知在四边形ABCD 中,∠BAO =85°,∠B =40°,求∠AOD 的度数;(2)如图,在四边形ABCD 中,边BC 上的点O 是四边形ABCD 的“全等点”,已知CD =32,OA =5,BC =12,连接AC ,求AC 的长.26.(本题满分10分)如图,一次函数343+-=x y 的图像分别于x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰直角△ABC ,∠BAC =90°.(1)求过B 、C 两点的直线的函数解析式;(2)在x 轴上取一点M ,使△AMC 是等腰三角形,直接写出符合条件的所有M 的坐标.27.(本题满分12分)如图,深50cm 的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,右图为容器顶部离水面的距离y (cm )随时间t (分钟)的变化图像.(1)求放入的长方体的高度;(2)求该容器注满水所用的时间;(3)若长方体铁块的底面积为6cm 2,求圆柱体的底面积.28.(本题满分12分)已知,△ABC 是等边三角形,点D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 右侧作等边△ADE .图1图2图3(1)如图1,点D 在线段BC 上,连接CE ,若AB =4,且CE =1,求线段CD 的长;(2)如图2,点D 是BC 延长线上一点,过点E 作EF ⊥AC 于点F ,求证:CF =AF +CD ;(3)如图3,若AB =8,点D 在射线BC 上运动,取AC 中点G ,连接EG ,请直接写出EG 的最小值.2023-2024学年度第一学期期末考试八年级数学参考答案一、选择题(每题3分,共24分)题号12345678答案DBCDDACB二、填空题(每题3分,共30分)9.±6;10.3106.6⨯;11.<;12.22+=x y ;13.<;14.3;15.-2;16.23;17.①②④;18.2.三、解答题19.(1)计算:9)1(6423--+解:原式=2……………………4分(2)求27)4(3-=-x 中x 的值.解:x =1……………………8分20.解:2a +1+a -4=0a =1……………………4分b =9b -1的立方根为2……………………8分21.(1)解:设y =k (2x -3)(k ≠0)x =2,y =2k =2y =4x -6……………………4分(2)解:当21=x 时y =-4……………………8分22.(1)BC =5……………………4分(2)AD =512……………………8分23.(1)图略……………………2分(2)2……………………4分(3)(-x ,y )……………………6分(4)作出点P 图略…………………8分(0,0)……………………10分24.(1)在△ABC 中,∵∠ABC =90°,M 是AC 的中点∴BM =21AC 同理DM =21AC∴BM =DM ……………………5分(2)在△MBD 中,BM =DM∵N 是BD 的中点∴MN ⊥BD……………………10分25.(1)70;……………………5分(2)80或54……………………10分26.(1)371+=x y ;……………………5分(2)(-1,0)、(9,0)、(10,0)(649,0)……………………10分(其中前3个1分1个,最后一个2分)27.(1)20cm ;……………………4分(2)21分钟;……………………8分(3)8cm 2……………………10分28.(1)3;……………………4分(2)在AC 上取一点G ,使CG =CD ,连EG先证△ABD ≌△ACE 得到∠ACE =∠DCE =60°再证△EGC ≌△EDC 得EG =EA 又∵EF ⊥AC ∴AF =FG ∴CF =AF +CD……………………8分(3)12或32……………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C八年级数学期末模拟一选择题:【 】1.计算23()a 的结果是 A .a 5 B .a 6C .a 8D .3 a 22.下列运算正确的是( )A .523a a a =+B .632a a a =⋅C .65332)(b a b a = D .632)(a a =【 】3.下列图形是轴对称图形的是A .B .C .D . 【 】4.如图,△ACB ≌△A ’CB ’,∠BCB ’=30°,则∠ACA ’的度数为 A .20° B .30°C .35°D .40°5.若0a >且2x a =,3ya =,则x ya-的值为6.如图,AOC ∆≌BOD ∆,∠C 与∠D 是对应角,AC 与BD 是对应边,AC=8㎝,AD=10㎝,OD=OC=2㎝,那么OB 的长是( )A .8㎝B .10㎝C .2㎝D .无法确定7.若3=mx,2=n x ,则=+n m x 。
8. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长 9△ABC 中,AB=AC=x ,BC=6,则腰长x 的取值范围是10,.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是(A .y x23 B .223yx C .y x 232D .2323yx 10. 在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充条件后仍不一定能保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )A .BC=B ’C ’ B .∠A=∠A ’ C .AC=A ’C ’D .∠C=∠C ’ 11. 直角三角形两锐角的角平分线所交成的角的度数是( ) A .45° B .135° C .45°或135° D .都不对12. 现有两根木棒,它们的长分别是40cm 和50cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm .100cm 的木棒 13.根据下列已知条件,能惟一画出三角形ABC 的是( )A . AB =3,BC =4,AC =8; B . AB =4,BC =3,∠A =30; C . ∠A =60,∠B =45,AB =4;D . ∠C =90,AB =6 14.三角形ABC 中,∠A 是∠B 的2倍,∠C 比∠A +∠B 还大12度,则这个三角形是__三角形.15.△ABC 中,∠A +∠B =∠C ,∠A 的平分线交BC 于点D ,若CD =8cm ,则点D 到AB 的距离为____cm .16.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是____;中线AD 的取值范围是____.17.如图1,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有________个18.已知等腰三角形的的两边长分别是5cm 和10cm ,则这个等腰三角形的周长为_______cm . 19.等腰三角形的一个角是40°,则它的另两个角度数是 ______________20.如图5,在三角形纸片ABC 中,∠C=90°,∠A=30°,AC=3cm. 现折叠纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E ,则折痕DE 的长为_____________cm. 21.如图6,△ABD 、△ACE 都是正三角形,BE 和CD 交于O 点,则∠BOC=__________°.22.如图7,已知一组等腰三角形中,AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,…如果∠B =200,那么,∠CA 2A 1的度数是 °, ∠A 6的度数是 °.. CB B 'A ' (第4题)OD BA C A A 1A 2A 34图7图5 A B C D O E 图6三、解答题.23.因式分解:① 33205xy y x - ② 1682+-a a (3)22m n mn -=24.(1)化简:)8(21)2)(2(b a b b a b a ---+. (2)分解因式:322x x x ---.⒈(3))132)(132(++-+y x y x (4).化简()221)1(--+a a1(5)。
已知49)(2=+b a ,9)(2=-b a ,求22b a +,ab 的值6))2(216322baa bc ab -⋅÷(7 )已知x x 1+=2,试求221x x +的值. (8 )9323496222-⋅+-÷-+-a a b a ba a .(1)114112=---+x x x ; (2)0(,0)1m nm n mn x x -=≠≠+.“先化简,再求值:“先化简,再求值:22241()244x x x x x -+÷+-- 其中,x=—3”. 25.如图⊿ ABC 中,∠ACB=900,AC=AB ,AE 是BC 边上的中线,过C 作C F ⊥AE 于F , 过B 作BD ⊥BC 交CF 的延长线于D , 求证 :AE=CD26.(8分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A . 27 .如图:△ABC 和△ADE 是等边三角形.求证:BD=CE.28.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(1)在图中画出ABC △关于y 轴的对称图形111A B C △;(2)写出点111A B C ,,的坐标.25.如图,四边形ABCD 的对角线AC 与BD 相交于O 求证:(1)△ABC ≌△ADC ; (2)BO =DO .(第23题)A123 4AB CO20.(8分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。
某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?21.(8分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
设原计划行军的速度为xkm/h ,,则可列方程( )A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x xD. 1%2016060-+=)(x x24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .=1 23 4AB CDO (第24题)2.若三角形两边长分别是4、5,则周长c的范围是()A. 1<c<9B. 9<c<14C. 10<c<18D. 无法确定4.一个多边形内角和是10800,则这个多边形的边数为()A、 6 B、 7 C、 8 D、 95.已知,如图,AB∥CD,∠A=70°,∠B=40°,则∠ACD=()A、 55°B、 70°C、 40°D、 110°6.如图所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 等于()A、90°B、135°C、270°D、315°7.如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=500 ,则∠BPC等于()A、90°B、130°C、270°D、315°8.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A. 95°B. 120°C. 135°D. 无法确定13.计算:(1-)2009-(π-3)0+4=.三、解答题.20.因式分解:①33205xyyx-②1682+-aa(3)22m n mn-=19.(1)化简:)8(21)2)(2(babbaba---+.(2)分解因式:322x x x---.⒈)132)(132(++-+yxyx 2.化简()221)1(--+aa第5题图D CB A第7题图第6题图_2. 已知x x 1+=2,试求221xx +的值. 3三、解答题.21.已知2514x x -=,求()()()212111x x x ---++的值.7.如图⊿ ABC 中,∠ACB=900,AC=AB ,AE 是BC 边上的中线,过C 作C F ⊥AE 于F , 过B 作BD ⊥BC 交CF 的延长线于D , 求证 :AE=CD23 .如图:△ABC 和△ADE 是等边三角形.求证:BD=CE.)23.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,. (1)在图中画出ABC △关于y 轴的对称图形111A B C △;(2)写出点111A B C ,,的坐标.(第23题)AB CDE24.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图:(1)在图1中用下面的方法画等腰三角形ABC的对称轴.①量出底边BC的长度,将线段BC二等分,即画出BC的中点D;②画直线AD,即画出等腰三角形ABC的对称轴.(2)在图2中画∠AOB的对称轴,并写出画图的方法.【画法】26.已知线段AC与BD相交于点O,连结AB、DC,E为OB的中点,F为OC的中点,连结EF(如图所示).(1)添加条件∠A=∠D,∠OEF=∠OFE,求证:AB=DC.(2)分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题(选择“真”或“假”填入空格,不必证明).(第27题8分)ODCABE F(第26题)B1234ABCDO(第24题)27. 如图,在平面直角坐标系xOy 中,已知直线AC 的解析式为122y x =-+,直线AC 交x 轴于点C ,交y 轴于点A .(1)若一个等腰直角三角形OBD 的顶点D 与点C 重合,直角顶点B 在第一象限内,请直接写出点B 的坐标;(2)过点B 作x 轴的垂线l ,在l 上是否存在一点P ,使得△AOP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)试在直线AC 上求出到两坐标轴距离相等的所有点的坐标.(第28题8分)28. 元旦期间,甲、乙两个家庭到300 km 外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h (从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h 的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y 甲(km )、y 乙(km )与时间x (h )之间的函数关系对应图象,请根据图象所提供的信息解决下列问题: (1)由于汽车发生故障,甲家庭在途中停留了 h ; (2)甲家庭到达风景区共花了多少时间;(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km ,请通过计算说明,按图所表示的走法是否符合约定.(第27题)y八年级数学(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)9.514x - 10.k <-2 11.m n (m -n ) 12.37° 13.0 14.1415.9 16.-2<x <-1 17.48° 18.7三、解答题(本大题共10小题,共60分.)19.解:(1))8(21)2)(2(b a b b a b a ---+2224214b ab b a +--=……………………………………………………4分ab a 212-=…………………………………………………………………6分 (2)322x x x ---=2(1)x x x -++ …………………………………………………………3分=2(1)x x -+ …………………………………………………………5分20.(1)只要度量残留的三角形模具片的∠B ,∠C 的度数和边BC 的长,因为两角及其夹边对应相等的两个三角形全等.……………………………3分 (2)按尺规作图的要求,正确作出A B C '''∠的图形.……………………………5分 21.解:()()()212111x x x ---++=22221(21)1x x x x x --+-+++……………………………………………2分 =22221211x x x x x --+---+ ……………………………………………3分 =251x x -+………………………………………………………………………4分 当2514x x -=时,原式=2(5)114115x x -+=+= ……………………………………………5分22.解:(1)∵),1(b 在直线1+=x y 上,∴当1=x 时,211=+=b .……………………………………………3分 (2)解是⎩⎨⎧==.2,1y x …………………………………………………………………5分 23.(1)画图正确; ………………………………………………………………………2分(2)111(4,3)A B C (1,5),(1,0),………………………………………………5分24.证明:(1)在△ABC 和△ADC 中1234AC AC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC .………………………………………………………3分(2)∵△ABC ≌△ADC∴AB =A D ……………………………………………………………………4分又∵∠1=∠2∴BO =DO …………………………………………………………………6分25.(1)画图正确……………… …………………………………………………………2分(2) ①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD ; ②连接CD ,量出CD 的长,画出线段CD 的中点E ;③画直线OE ,直线OE 即为∠AOB 的对称轴.………………………………6分 (作图正确2分,作法正确2分) 26.(1)∵∠OEF =∠OFE∴OE =OF …………………………………………………………………………1分 ∵E 为OB 的中点,F 为OC 的中点,∴OB =OC ……………………………………………………………………………2分 又∵∠A =∠D ,∠AOB =∠DOC ,△AOB ≌△DOC ………………………………………………………………4分 ∴AB=DC …………………………………………………………………………5分 (2)假 ………………………………………………………………………………6分 27.(1)B (2,2); ………………………………………………………………………2分 (2)∵等腰三角形OBD 是轴对称图形,对称轴是l ,∴点O 与点C 关于直线l 对称,∴直线AC 与直线l 的交点即为所求的点P . ……………………………………3分把x =2代入122y x =-+,得y =1,∴点P 的坐标为(2,1)……………………………………………………………4分 (3)设满足条件的点Q 的坐标为(m ,122m -+),由题意,得 122m m -+= 或 122m m -+=-……………………………………………6分 解得43m = 或4m =-…………………………………………………………7分∴点Q 的坐标为(43,43)或(4-,4)……………………………………8分(漏解一个扣2分)28.(1)1;…………………………………………………………………………………1分 (2)易得y 乙=50x -25…………………………………………………………………2分当x =5时,y =225,即得点C (5,225).由题意可知点B (2,60),……………………………………………………3分 设BD 所在直线的解析式为y =kx +b ,∴5225,260.k b k b +=⎧⎨+=⎩解得55,50.k b =⎧⎨=-⎩∴BD 所在直线的解析式为y =55x -50.………………………………………5分当y =300时,x =7011.答:甲家庭到达风景区共花了7011h .……………………………………………6分(3)符合约定. …………………………………………………………7分由图象可知:甲、乙两家庭第一次相遇后在B 和D 相距最远. 在点B 处有y 乙-y = -5x +25=-5×2+25=15≤15;在点D 有y —y 乙=5x -25=7511≤15.……………………………………………8分。