考点18 解三角形应用举例

合集下载

高考数学 《解三角形应用举例》

高考数学 《解三角形应用举例》

解三角形应用举例主标题:解三角形应用举例副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。

关键词:距离测量,高度测量,仰角,俯角,方位角,方向角难度:3重要程度:5考点剖析:能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题.命题方向:1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题.2.高考对此类问题的考查常有以下两个命题角度:(1)测量问题;(2)行程问题.规律总结:1个步骤——解三角形应用题的一般步骤2种情形——解三角形应用题的两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.2个注意点——解三角形应用题应注意的问题(1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程.(2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.知识梳理1.距离的测量背景可测元素图形目标及解法两点均可到达a,b,α求AB:AB=a2+b2-2ab cos α只有一点可到达b,α,β求AB:(1)α+β+B=π;(2)ABsin β=bsin B两点都不可到达a,α,β,γ,θ求AB:(1)△ACD中,用正弦定理求AC;(2)△BCD中,用正弦定理求BC;(3)△ABC中,用余弦定理求AB2.高度的测量背景可测元素图形目标及解法底部可到达a,α求AB:AB=a tan_α底部不可到达a,α,β求AB:(1)在△ACD中用正弦定理求AD;(2)AB=AD sin_β3.实际问题中常见的角(1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.(4)坡度:坡面与水平面所成的二面角的度数.。

解三角形的实际应用举例ppt

解三角形的实际应用举例ppt
A
(1) 已知三边 , 求三个角;
A
B
C
BCຫໍສະໝຸດ (2) 已知两边和它们的夹角,
(2) 已知两边和一边对角, 求其它元素。
A C
求其它元素。
A C
B
B
补充:我军有A、B两个小岛相距10海里, 敌军在C岛,从A岛望C岛和B岛成60°的视 角,从B岛望C岛和A岛成75°的视角,为 提高炮弹命中率,须计算B岛和C岛间的距 离,请你算算看。
0
A
6 2 0
0
D B
0
1 . 95 m
1 . 95
1 . 40
2
2 1 . 95 1 . 40 cos 66 2 0
=3.571 ∴BC≈1.89(m). 答:顶杆BC约长1.89m.
练1.如图,一艘船以32海里/时的 速度向正北航行,在A处看灯塔S 在船的北偏东200, 30分钟后航行 到B处,在B处看灯塔S在船的北 偏东650方向上,求灯塔S和B处的 距离.(保留到0.1) 解:AB=16,由正弦定理知:
数学结论 解三角形问题
谢谢
再见!
解三角形问题是三角学的基本问题之一。什 我国古代很早就有测量方面的知识,公元 解三角形的方法在度量工件、测量距离和高 么是三角学?三角学来自希腊文“三角形”和 一世纪的《周髀算经》里,已有关于平面测量 度及工程建筑等生产实际中,有广泛的应用, “测量”。最初的理解是解三角形的计算,后 的记载,公元三世纪, 我国数学家刘徽在计 在物理学中,有关向量的计算也要用到解三角 来,三角学才被看作包括三角函数和解三角形 算圆内接正六边形、正十二边形的边长时,就 形的方法。 两部分内容的一门数学分学科。 已经取得了某些特殊角的正弦……

《解直角三角形应用举例》课件

《解直角三角形应用举例》课件
一号的组合体在离地球表面 343 km 的圆形轨道上运行.
如图,当组合体运行到地球表面
P 点的正上方时,从中能直接看到的地球
表面最远的点在什么位置?最远点与 P 点
的距离是多少 (地球半径约为 6 400 km,π
取 3.142,结果取整数)?
F
P
FQ 是☉O 的切线,
∠FQO 为直角
Q
最远点
O
෢ 的长,要先
解:在 Rt△AOC 中,∵sin75°=


,
∴OC ≈ 38.8 cm.
在 Rt△BOC 中,∵tan30°=

,

∴BC ≈ 67.3 cm.
答:该台灯照亮水平面的宽度 BC 约为67.3 cm.
易错警示:注意结果必须根据题目要求精确到0.1cm.
技巧点拨:
借助公共边解双直角三角形
面的夹角是 30°,拉索 CD 与水平桥面的夹角是 60°,
两拉索顶端的距离 BC 为 2米.两拉索底端的距离 AD 为
20米,请求出立柱 BH 的长.(结果精确到0.1米, 3≈1.732)
解:设 DH =x 米. ∵ ∠CDH =60° ,∠H =90°,
∴ CH =DH·tan60°= 3x 米,
∴ 此时南楼的影子落在北楼上约 3.5 m 高.
解:(2)如图,若使每层楼在冬天都受阳光照射,则
DC =0 m,即点 C 与点 D 重合.
当点 C 与点 D 重合时,
tan∠ACB
∴ BD=

= ,即


tan32°
=
tan32°=
16
tan32°



≈ 25.6 (m),

解三角形的应用举例

解三角形的应用举例
N
方位角 60度
目标方向线
视 线
仰角
水平线
俯角
视 线
4
三角形中的计算问题
• • • • 面积计算公式: S=1/2ah S=1/2absinC=1/2bcsinA=1/2acsinB 海伦-秦九韶公式:
S=abc/4R
5
定理应用
P18例1 如图, 为了测量河对岸两点 A, B之间的距离, 在河岸这 边取点C , D, 测得ADC 85, BDC 60, ACD 47, BCD 72, CD 100m , 设A, B , C , D在同一平面内, 试求A, B B之间的距离(精确到1m) A
例5、锐角三角形中,边a、b是方程x 2 2 3 x 2 0
的度数,边 c的长度及 ABC的面积。 3
2 sin ( A B) 3 0, sin ( A B) 解:
ABC为锐角三角形
的两根,角 A、B满足2 sin (A B) 3 0,求角 C
2
A B 120o C 60o 边a、b是方程 x 2 2 3 x 2 0的两根
c a b 2ab cos C 2 (a b) 3ab 12 6 6 c 6
2 2 2
a b 2 3,ab 2
S ABC
所以F3和F 在同一条直线上, 并且大小相等, 方向相反.
如图在OF1 F中,由余弦定理, 得
F 302 502 2 30 50cos120 70( N ).
再由正弦定理, 得
P20练习2 50sin120 5 3 sin F1OF , 70 14 sin F1OF 38.2 , F1OF3 141.8 .

江苏省高考数学考前压轴冲刺(新高考)-专题18 三角函数问题(解答题)(解析版)

江苏省高考数学考前压轴冲刺(新高考)-专题18 三角函数问题(解答题)(解析版)

专题18 三角函数问题考点预测三角函数与解三角形是江苏高考必考的题型,主要考察正余弦定理,三角函数的图像与性质在解三角形中的灵活运用,常考的知识点如下:1.在ABC ∆中,C B A C B A tan tan tan tan tan tan =++,CB CB A tan tan 1tan tan tan -+-=.2.在ABC ∆中,B c C b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos +=.3.ABC ∆的面积RabcR c ab C ab S 4221sin 21===. 4.C R c B R b A R a sin 2,sin 2,sin 2===.5.222222222cos 2,cos 2,cos 2b c a B ac c b a C ab a c b A bc -+=-+=-+=.典型例题1.在△ABC 中,它的内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2(B +C )﹣sin 2B ﹣sin 2C +sin B sin C =0,再从条件①、条件②这两个条件中选择一个作为已知,求: (Ⅰ)a 的值; (Ⅱ)△ABC 的面积; 条件①:c =4,a +b =6+2; 条件②:b =6,sin (﹣B )=﹣.【分析】若选择条件①:(Ⅰ)由已知利用正弦定理即可求解a 的值.(Ⅱ)由(Ⅰ)及余弦定理可得cos A的值,结合范围A ∈(0,π),可求A 的值,进而根据三角形的面积公式即可求解.若选择条件②:(Ⅰ)由正弦定理,余弦定理可得cos A的值,结合A∈(0,π),可求A的值,在根据题中条件利用三角函数恒等变换可求sin B的值,即可根据正弦定理可求a的值;(Ⅱ)利用两角和的正弦公式可求sin C的值,进而根据三角形的面积公式即可求解.【解答】解:若选择条件①:c=4,a+b=6+2;(Ⅰ)因为sin2(B+C)﹣sin2B﹣sin2C+sin B sin C=0,可得sin2B+sin2C﹣sin2A=sin B sin C,由正弦定理可得b2+c2﹣a2=bc,则a2=b2+c2﹣bc=(6+2﹣a)2+16﹣(6+2﹣a)×4,解得a=2.(Ⅱ)由(Ⅰ)及余弦定理可得cos A==,因为A∈(0,π),所以A=,因为a=2,a+b=6+2,所以b=6,所以S△ABC=bc sin A==6.若选择条件②:b=6,sin(﹣B)=﹣;(Ⅰ)因为sin2(B+C)﹣sin2B﹣sin2C+sin B sin C=0,可得sin2B+sin2C﹣sin2A=sin B sin C,由正弦定理可得b2+c2﹣a2=bc,在由余弦定理可得cos A==,又因为A∈(0,π),所以A=,因为sin(﹣B)=﹣cos B=﹣,即cos B=,则B∈(0,),所以sin B=则由正弦定理,及b=6,可得a===4.(Ⅱ)因为A=,sin B=,cos B=,所以sin C=sin(A+B)=+=,所以S△ABC=ab sin C==.【知识点】正弦定理、余弦定理2.已知a,b,c是△ABC的内角A,B,C的对边,,b=2,D为线段AC上一点且AD=3DC.(Ⅰ)求cos B;(Ⅱ)求|BD|的最大值.【分析】(Ⅰ)利用正弦定理将已知等式化成边之间的关系,再由余弦定理即可求得cos B的值;(Ⅱ)利用平面向量的线性运算及数量积运算可得=,由(Ⅰ)中结论及利用基本不等式可得,从而可得结论.【解答】解:(Ⅰ)由正弦定理得:,∴∴,(Ⅱ)因为D为线段AC上一点且AD=3DC,所以=+=+=+()=+,所以===.由(Ⅰ)知:因为:,(当且仅当a=c=时取等号).所以:,得:所以:故|BD|的最大值为.【知识点】正弦定理、余弦定理专项突破一、解答题(共14小题)1.在△ABC中,内角A,B,C所对的边分别为a,b,c,sin2C=sin A sin B,=,a2+b2=4ab cos C.(Ⅰ)求证:C=60°;(Ⅱ)若a=6,求△ABM的外接圆的面积.(Ⅰ)先利用正弦定理将sin2C=sin A sin B中的角化边,再结合a2+b2=4ab cos C和余弦定理求得cos C,【分析】进而得角C;(Ⅱ)先证得△ABC为等边三角形,再由正弦定理求得外接圆半径,进而求出外接圆面积.【解答】(Ⅰ)证明:由正弦定理知,==,∵sin2C=sin A sin B,∴c2=ab,由余弦定理知,c2=a2+b2﹣2ab cos C,∵a2+b2=4ab cos C,∴c2=2ab cos C,∴c2=2c2cos C,∵c≠0,∴cos C=,∵C∈(0°,180°),∴C=60°.(Ⅱ)解:由(Ⅰ)知,cos C=,∴a2+b2=2ab,即a=b,∴△ABC为等边三角形,又a=6,且=,∴AM=2,在△ABM中,由余弦定理知,BM2=AB2+AM2﹣2AB•AM cos A=36+4﹣2×6×2×cos60°=28,∴BM=.设△ABM的外接圆半径为R,∵2R==,∴R=,∴△ABM的外接圆的面积S=πR2=π•==.【知识点】余弦定理、正弦定理2.在△ABC中,内角A,B,C的对边分别是a,b,c,并且a sin(A+B)=c sin2A.(Ⅰ)求A的值;(Ⅱ)若M为AC的中点,并且BM=3,求△ABC面积的取值范围.【分析】(Ⅰ)利用两角和的正弦公式,正弦定理,二倍角的正弦公式化简已知等式,结合范围0<A<π,0<C<π,可求cos A的值,进而可求A的值.(Ⅱ)由题意可得S△ABC=2S△ABM=×AB×AM,设∠AMB=θ,θ∈(0,),则由正弦定理可得AB=2sinθ,AM=2sin(θ+),利用三角形的面积公式,三角函数恒等变换的应用可求S△ABC=3sin(2θ﹣)+,进而根据正弦函数的性质即可求解其取值范围.【解答】解:(Ⅰ)因为sin(A+B)=sin C,所以a sin(A+B)=c sin2A=a sin C,根据正弦定理可得sin A sin C=sin C sin2A=2sin C sin A cos A,0<A<π,0<C<π,所以cos A=,所以A=,(Ⅱ)因为点M为AC的中点,因此S△ABC=2S△ABM=×AB×AM,在△ABM中,由正弦定理可得===2,因此AB=2sin∠AMB,AM=2sin∠ABM,设∠AMB=θ,θ∈(0,),则AB=2sinθ,AM=2sin(θ+),从而S△ABC=6sinθsin(θ+)=3sin(2θ﹣)+,当θ∈(0,)时,2θ﹣∈(﹣,),所以S△ABC∈(0,].【知识点】正弦定理、余弦定理3.已知△ABC,它的内角A,B,C的对边分别为a,b,c,且3a=c,A=,____.①a sin B=3;②当x=B时,函数f(x)=cos2x+sin x cos x+2取得最大值.在①②这两个条件中选择一个补充至上述横线上,求解下述问题:若问题中的三角形存在,能否求出边c的值?若能,请求出边c的值;若不能,请说明理由;若问题中的三角形不存在,请说明理由.【分析】由已知结合余弦定理可得b的值,当补充①至条件中时:分类讨论,利用余弦定理可求sin B,进而可求a的值,可求c的值;当补充②至条件中时:分类讨论,利用余弦定理可求cos B,结合分B∈(0,π),可得B=,化简函数解析式可得f(x)=cos(2x﹣)+,利用余弦函数的性质即可求解.【解答】解:因为a=c,结合余弦定理可得cos A==,整理可得b2﹣bc+c2=0,即(b﹣c)(b﹣c)=0,解得b=c,或c,当补充①至条件中时:当b=c时,由余弦定理可得cos B==,则sin B=,再由a sin B=3,可得a=6,可得c=6;当b=c时,由余弦定理可得cos B==0,则sin B=1,再由a sin B=3,可得a=3,可得c=3,综上可知三角形存在,且可求得c=6或3.当补充②至条件中时:当b=c时,由余弦定理可得cos B==,由B∈(0,π),可得B=;当b=c时,由余弦定理可得cos B==0,由B∈(0,π),可得B=;因为f(x)=cos2x+sin x cos x+2=+sin2x+2=cos(2x﹣)+,要使f(x)取得最大值,只需2x﹣=2kπ,k∈Z,解得x=kπ+,k∈Z,所以B=时,满足条件,综上所述,这样的三角形存在,但这样的三角形彼此相似,有无数多个,故无法确定边长c的值.【知识点】两角和与差的三角函数、余弦定理、正弦定理4.在①;②c sin A=3;③三边成等比数列.这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求解此三角形的边长和角的大小;若问题中的三角形不存在,请说明理由.问题:是否存在△ABC,它的内角A、B、C的对边分别为a、b、c,且,,____.【分析】若选①根据题意,结合正弦定理,可得b=a,c=,结合C=,运用余弦定理即可求得c=1,进而可求B,A的值;若选②根据题意,△ABC中,c sin A=a sin C,即可求得a=6,进而得到b=2.运用余弦定理即可求得c=2,即可得解;若选③由已知利用正弦定理可得a=b,由余弦定理可得c=b,可得B=C=,A=,可得a>b=c,推出矛盾,可得问题中的三角形不存在.【解答】解:若选①ac=,因为△ABC中,sin A=sin B,即b=a,又ac=,可得c=,所以cos C===,所以a=,b=1,c=1,B=C=,A=.若选②c sin A=3,因为△ABC中,c sin A=a sin C=a sin=3,解得a=6,因为sin A=sin B,即a=b,解得b=2.所以cos C===,可得c=2,所以B=C=,A=.若选③,三边成等比数列,因为,,可得a=b,由余弦定理可得c2=a2+b2﹣2ab cos C=(b)2+b2﹣2×b×b×=b2,可得c=b,所以B=C=,A=,所以a>b=c,与三边成等比数列矛盾,故问题中的三角形不存在.【知识点】三角形中的几何计算5.已知函数f(x)=cos(ωx)(ω>0)的最小正周期为π.(1)求ω的值及函数的值域;(2)在△ABC中,内角A,B,C所对应的边长分别为a,b,c,若,,△ABC 的面积为,b﹣c=2,求a的值.【分析】(1)由函数f(x)=cos(ωx)(ω>0)的最小正周期为π.求出ω=2,从而得到f(x)=cos2x,g(x)=2sin(2x﹣),由此能求出函数g(x)的值域.(2)由题意得cos2A=﹣,推导出A,由△ABC的面积为3,推导出bc,再由b﹣c=2,利用余弦定理能求出a.【解答】解:(1)∵函数f(x)=cos(ωx)(ω>0)的最小正周期为π.∴=π,由ω>0,得ω=2,此时f(x)=cos2x,则g(x)=2sin(2x﹣),当x∈[0,]时,2x﹣∈[﹣,],2sin(2x﹣)∈[﹣1m2],∴函数的值域为[﹣1,2].(2)由题意得cos2A=﹣,∵A∈(0,),则得2A∈(0,π),∴2A=,解得A=,∵△ABC的面积为3,则得,即=3,即bc=12,∵b﹣c=2,∴由余弦定理得a=====4.【知识点】余弦定理、三角函数的周期性6.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数f(x)的解析式;(2)将函数f(x)图象上所有点的横坐标缩短为原来的,纵坐标不变,得到函数g(x)的图象,若函数g(x)在区间[﹣t,t]上单调递增,求实数t的最大值.【分析】(1)由图象的最大值可得A,由f(0)=1,可得φ,由f()=0,可得ω,从而可求得函数f(x)的解析式;(2)由函数的平移变换可得g(x),由正弦函数的性质求得g(x)的单调递增区间,从而可求得t的取值范围,即可求得t的最大值.【解答】解:由题图可知,A=2,又f(0)=1,所以2sin(ω•0+φ)=1,即sinφ=,又|φ|<,所以φ|=,因为f()=0,所以2sin(ω•+)=0,结合题图可知ω•+=2kπ,k∈Z,即ω=,k∈Z,又T>,所以0<ω<,所以ω=2,所以f(x)=2sin(2x+).(2)因为将函数f(x)图象上所有点的横坐标缩短为原来的,纵坐标不变,得到函数g(x)的图象,所以g(x)=2sin(4x+).令﹣+2kπ≤4x+≤+2kπ,k∈Z,解得﹣+≤x≤+,k∈Z,因为g(x)在区间[﹣t,t]上单调递增,所以,解得t≤,所以实数t的最大值为.【知识点】由y=Asin(ωx+φ)的部分图象确定其解析式、函数y=Asin(ωx+φ)的图象变换7.在①;②2a cos A=b cos C+c cos B,③,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在△ABC中,内角A,B,C的对边分别为a,b,c.已知_______.(1)求角A;(2)设△ABC的面积为S,若,求面积S的最大值.【分析】(1)首先任选择一个条件,然后根据正弦定理进行边角互化,再根据三角恒等变换,化简求值.(2)由(1)得A=,利用余弦定理和基本不等式求bc的最大值,再求面积的最大值.【解答】解:(1)若选条件①,∵,∴由正弦定理得,∵sin B=sin(A+C)=sin A cos C+cos A sin C,∴=,,∵sin C≠0,∴,∵0<A<π,∴;若选条件②,∵2a cos A=b cos C+c cos B,∴由正弦定理得2sin A cos A=sin B cos C+sin C cos B,即2sin A cos A=sin(B+C)=sin A,,∵0<A<π,∴;若选条件③,∵,∴由正弦定理得,∵sin B=sin(A+C)=sin A cos C+cos A sin C,∴=sin A cos C+cos A sin C,,∵sin C≠0,∴,∵0<A<π,∴;所以不管选择哪个条件,.(2)a2=b2+c2﹣2bc cos A,,即b2+c2﹣bc=3,∵b2+c2≥2bc,∴2bc﹣bc≤3,即bc≤3,当b=c时等号成立.∴bc的最大值为3,∵,∴.【知识点】正弦定理、两角和与差的三角函数8.已知f(x)=A sin(ωx+φ)(A>0,0<ω<4,|φ|<)过点(0,),且当x=时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位长度得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,求h(x)在[0,]上的值域.【分析】(1)由函数的最值求出A,由特殊点的坐标求出φ的值,由周期求出ω,可得f(x)的解析式,再根据y=A sin(ωx+φ)的图象变换规律求得g(x)的解析式.(2)利用三角恒等变换化简函数的解析式,再利用正弦函数图象及性质即可得出结论.【解答】解:(1)由题意可得A=1,由函数过,得,结合范围,由,∵0<ω<4,∴可得:ω=2,可得:,∴.(2)∵,由于,可得:,∴h(x)在上的值域为[﹣1,2].【知识点】函数y=Asin(ωx+φ)的图象变换、三角函数的最值9.如图,在平面四边形ABCD中,已知AD=AB=1,∠BAD=θ,且△BCD为等边三角形.(1)将四边形ABCD的面积S表示为θ的函数;(2)求S的最大值及此时θ的值.【分析】(1)在△ABD中,根据余弦定理可表示BD,根据S=ab sin c可表示出△ABD,△BCD的面积,从而表示出四边形ABCD的面积;(2)由(1)可把四边形面积S化为S=A sin(ωx+φ)+B形式,根据三角函数的有界性可求其最值.【解答】解:(1)BD==,S△ABD=×1×1×sinθ=sinθ,S△BCD=×BD2=(2﹣2cosθ)=﹣cosθ,∴S ABCD=sinθ﹣cosθ+(0<θ<π).(2)由(1)得S ABCD=sinθ﹣cosθ+=sin(θ﹣)+,∵0<θ<π,∴﹣<θ﹣<,当θ﹣=时,即θ=时,S有最大值1+.【知识点】三角函数的最值10.已知函数f(x)=cos x.(1)若α,β为锐角,,,求cos2α及tan(β﹣α)的值;(2)函数g(x)=f(2x)﹣3,若对任意x都有g2(x)≤(2+a)g(x)﹣2﹣a恒成立,求实数a的最大值;(3)已知,α,β∈(0,π),求α及β的值.【分析】(1)结合余弦的二倍角公式和弦化切的思想,可得cos2α=cos2α﹣sin2α==,代入已知数据计算即可;由于α,β为锐角,所以2α∈(0,π),α+β∈(0,π),再结合同角三角函数的平方关系和商数关系,可依次求得tan2α=,tan(α+β)=﹣2,然后利用拼凑角的思想和正切的两角差公式可知tan(β﹣α)=tan(α+β﹣2α)=,代入已得数据进行计算即可;(2)g(x)=f(2x)﹣3=cos2x﹣3,原问题可转化为(cos2x﹣4)a≥(cos2x﹣3)2﹣2(co2x﹣3)+2恒成立,设cos2x﹣4=t,则t∈[﹣5,﹣3],所以at≥(t+1)2﹣2(t+1)+2=t2+1,则a≤t+.令y=t+,结合对勾函数的性质即可得函数y的最小值,从而得解;(3)由题可知,cosα+cosβ﹣cos(α+β)=,因为α,β∈(0,π),所以α=β=.【解答】解:(1)∵tanα=,∴cos2α=cos2α﹣sin2α====,∵α,β为锐角,即,∴2α∈(0,π),α+β∈(0,π).∴sin2α==,∴tan2α=,∵f(x)=cos x,∴f(α+β)=cos(α+β)=,∴sin(α+β)==,∴tan(α+β)==﹣2,∴tan(β﹣α)=tan(α+β﹣2α)===.综上,cos2α=,tan(β﹣α)=.(2)g(x)=f(2x)﹣3=cos2x﹣3,∵对任意x都有g2(x)≤(2+a)g(x)﹣2﹣a恒成立,∴(cos2x﹣3)2≤(2+a)(cos2x﹣3)﹣2﹣a恒成立,即(cos2x﹣4)a≥(cos2x﹣3)2﹣2(cos2x﹣3)+2恒成立,设cos2x﹣4=t,则t∈[﹣5,﹣3],∴at≥(t+1)2﹣2(t+1)+2=t2+1,则a≤t+.设y=t+,由对勾函数的性质可知,函数y在区间[﹣5,﹣3]上为增函数,∴y=t+≥﹣5﹣=,∴a≤,故a的最大值为.(3)∵,∴cosα+cosβ﹣cos(α+β)=,∵α,β∈(0,π),∴α=β=.【知识点】二倍角的三角函数、两角和与差的三角函数、三角函数的最值11.如图,某校打算在长为1千米的主干道AB一侧的一片区域内临时搭建一个强基计划高校咨询和宣传台,该区域由直角三角形区域ACB(∠ACB为直角)和以BC为直径的半圆形区域组成,点P(异于B,C)为半圆弧上一点,点H在线段AB上,且满足CH⊥AB.已知∠PBA=60°,设∠ABC=θ,且θ∈[,).初步设想把咨询台安排在线段CH,CP上,把宣传海报悬挂在弧CP和线段CH上.(1)若为了让学生获得更多的咨询机会,让更多的省内高校参展,打算让CH+CP最大,求该最大值;(2)若为了让学生了解更多的省外高校,贴出更多高校的海报,打算让弧CP和线段CH的长度之和最大,求此时的θ的值.【分析】(1)利用直角三角形的边角关系求出BC、CH和CP的表达式,再计算CH+CP的最大值;(2)取线段BC的中点O,连接OP,计算和线段CH的长度之和y,构造函数,利用导数判断函数的单调性,从而求得弧CP和线段CH的长度之和最大时对应θ的值.【解答】解:(1)在Rt△ACB中,BC=1×cosθ=cosθ,在Rt△CBH中,CH=cosθ×sinθ=sinθcosθ;在Rt△CBP中,CP=cosθsin(﹣θ);所以CH+CP=sinθcosθ+cosθsin(﹣θ)=sinθcosθ+cosθ(cosθ﹣sinθ)=sinθcosθ+cos2θ=sin2θ+×=sin(2θ+)+,因为θ∈[,),所以≤2θ+<π,所以当且仅当2θ+=,即θ=时,CH+CP最大,最大值为千米;(2)取线段BC的中点O,连接OP,如图所示,则∠COP=2∠CBP=2(﹣θ)=﹣2θ;由(1)知,CO=BC=cosθ,所以的长为cosθ•(﹣2θ)=cosθ﹣θcosθ;由(1)知,CH=sinθcosθ,所以和线段CH的长度之和为y=cosθ﹣θcosθ+sinθcosθ=cosθ(﹣θ+sinθ),θ∈[,);设f(θ)=﹣θ+sinθ,θ∈[,),g(θ)=cosθ,θ∈[,),则y=f(θ)g(θ);因为f′(θ)=﹣1+cosθ,θ∈[,),所以f′(θ)=﹣1+cosθ<0,所以函数f(θ)在区间[,)上单调递减,所以<f(θ)≤f(),易知函数g(θ)在区间[,)上也是单调递减函数;所以g(θ)≤g(),所以f(θ)g(θ)≤f()•g();所以当且仅当θ=时,弧CP和线段CH的长度之和最大.【知识点】三角函数模型的应用12.如图,在凸四边形ABCD中,AB=1,BC=,AC⊥DC,CD=AC.设∠ABC=θ.(1)若θ=30°,求AD的长;(2)当θ变化时,求BD的最大值.【分析】(1)在△ABC中,利用余弦定理可求AC,进而在△ACD中,利用勾股定理可求AD的值.(2)设AC=x,CD=x,在△ABC中,利用余弦定理可求x2=4﹣2cosθ,利用正弦定理可得sin∠ACB=,进而利用三角函数恒等变换的应用,余弦定理可求BD=,结合范围θ∈(0,π),利用正弦函数的图象和性质可求BD的最大值.【解答】(本题满分为12分)解:(1)在△ABC中,AC2=AB2+BC2﹣2AB•BC•cos∠ABC,∴AC2=1+3﹣2cos30°=1,∴AC=1…(2分)在△ACD中,AD2=AC2+DC2=4AC2=4,∴AD=2.…(4分)(2)设AC=x,CD=x,在△ABC中,AC2=AB2+BC2﹣2AB•BC•cos∠ABC,x2=4﹣2cosθ,…(5分)∵=,∴sin∠ACB=.…(7分)在△BCD中,BD======,…(10分)∵θ∈(0,π),∴θ﹣∈(﹣,),当θ﹣=,θ=时BD取到最大值3.…(12分)【知识点】正弦定理、余弦定理13.△ABC的内角A,B,C所对的边分别为a,b,c,已知.(1)若b=,C=120°,求△ABC的面积S;(2)若b:c=2:3,求.【分析】(1)由正弦定理化简已知条件,解得a,又知b,C,由三角形面积公式ab sin C可求得面积;(2)由已知条件可得a,b,c的比例关系,由倍角公式和正弦定理,余弦定理化简即可得结果.【解答】解:(1)由正弦定理知,c sin B=b sin C;由2a sin C=c sin B,得2a sin C=b sin C,故2a=b,∵b=,∴a=6;又C=120°,△ABC的面积S===18,故△ABC的面积S为18.(2)由2a=,b:c=2:3,∴,∴,===2cos A﹣;==;∴2cos A﹣=1.故.【知识点】解三角形14.已知函数f(x)=(a sin x+b sin2x)+a cos x﹣b cos2x,a,b∈R.(1)若a=b=1,求f(x)的值域;(2)若存在b,使得f(x)+4≥0恒成立,求a的最大值.【分析】(1)利用三角函数的三角变换,将f(x)化简,再利用二次函数的性质,求出f(x)的最值,求出值域;(2)f(x)+4=2a sin(x+)+2b sin(2x﹣)=4b sin2(x+)+2a sin(x+)﹣2b=4b sin2(x+)+2a sin(x+)﹣2b+4≥0恒成立,分b=0及b≠0分类讨论恒成立的条件来判断a的取值范围,进而求出其最大值.【解答】解:(1)由题设知:f(x)=a(sin x+cos x)+b(sin2x﹣cos2x)=2a sin(x+)+2b sin(2x﹣),又a=b=1,故f(x)=2sin(x+)+2sin[2(x+)﹣]=2sin(x+)﹣2cos[2(x+)]=2sin(x+)﹣2[1﹣2sin2(x+)],即f(x)=4sin2(x+)+2sin(x+)﹣2=4[sin(x+)+]2﹣,∵令t=sin(x+)∈[﹣1,1],∴f(t)=4(t+)2﹣,抛物线开口向上,对称轴t=﹣∈[﹣1,1],因为|1﹣(﹣)|>|﹣1﹣(﹣)|,所以当t=﹣时,f(t)最小且为﹣,当t=1时,f(t)最大且为4(1+)2﹣=4,所以f(x)∈[﹣,4].故f(x)的值域为[﹣,4];(2)由(1)易知:f(x)=2a sin(x+)+2b sin(2x﹣)=4b sin2(x+)+2a sin(x+)﹣2b,依题意存在b,使得4b sin2(x+)+2a sin(x+)﹣2b+4≥0恒成立,若b=0,则2a sin(x+)+4≥0恒成立,∴,解得﹣2≤a≤2若b≠0,则,∴,∴,解得﹣,综上可知a的最大值为.故答案为:(1)[﹣,4];(2)【知识点】三角函数的最值、两角和与差的三角函数。

解直角三角形应用举例

解直角三角形应用举例

利用解直角三角形的知识解决实际问题的一般过程: 1. 将实际问题抽象为数学问题; 根据题意画出平面图形,转化为解直角三角形的问题 2. 根据已知条件,选用适当的锐角三角函数解直角三角形; 3. 得到数学问题的答案; 4. 得到实际问题的答案.
1. 坡角
坡面
i= h : l
h
坡面与水平面的夹角叫做坡角,记作 α .
成功实现交会对接. “神州”九号与“天宫”一号的组合体在地球表面343 km 的圆形轨道上运行. 如图,当组合体运行到地球表面P点的正上方时,从 中能直接看到的地球表面最远的点在什么位置?最远点与P点的距离是多 少(地球半径约为6 400 km,π取3.142,结果取整数)?
F P
O
FQ是☉O的切 线,∠FQO为
F
Q
O
解:设∠FOQ= α ,∵FQ是☉O的切线,
∴△FOQ是直角三角形.
∵cos OQ 6 400 0.949 1,
OF 6 400 343
∴ 18.36 .
答:当组合体在P点正上方时,从中观测地球表面时的最远点距离P点约2 051 km.
例2 热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看
解:如图,a = 30°,β= 60°, AD=120.
BD AD tan 120 tan 30
120 3 40 3. 3
CD AD tan 120 tan 60 120 3 120 3.
BC BD CD 40 3 120 3 160 3 277(m).
答:这栋楼高约为277 m.
B Aα D
β
C
例3 如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile
的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34° 方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?

_解三角形应用举例课堂使用

_解三角形应用举例课堂使用
图2
③两点都不能到达
二、练习
(2009 湖北卷文)在锐角△ ABC 中,a、b、c 分别为 1. 角 A、B、C 所对的边,且 3a 2c sin A (Ⅰ)确定角 C 的大小: (Ⅱ)若 c= 7
3 3 ,且△ABC 的面积为 2 ,求 a+b 的值。
2.在△ABC中,设角A ,B,C的对应边分别为a,b,c且 cos C 3a c 2 2 cos B b 3 (1)求sinB的值; (2)若b= 4 2 且a=c,求△ABC的面积 8 2
5 3 sin 38 14
0
45

75

解:设巡逻船沿AB方向经过x小时后在B处 追上走私船,则CB 10 x, AB 14 x, AC 9 0 0 0 ACB 75 45 120 由余弦定理得AB 2 AC 2 BC 2 2 AC BC cos1200
B
取某一点C , 测量得出 AC, BC距离为b, a以及 角C为,则
由余弦定理得:
A

a
b
C
AB a b 2abcos
2 2
变式2.如图河流的一岸有条公路,一辆汽车在公路上匀速 行驶,某人在另一岸的C点看到汽车从A 点到B点用了t秒,请你设计方案求 B 汽车的速度?
A
C
分析:用例1的方法,可以计算出AC,BC的 距离,再测出∠BCA的大小,借助于余弦 定理可以计算出A、B两点间的距离。
在RT ACE中,AE AC sin
a sin sin sin
AB AE BE
例3、某巡逻艇在A处发现北偏东450相距9海里的C处有 一艘走私船,正沿南偏东750的方向以10海里/小时的速 度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿 着直线方向追去,问巡逻艇应该沿什么方向去追?需要 多少时间才追赶上该走私船?

解三角形应用举例

解三角形应用举例

2006年第17题 已知三角形△ABC,∠B=45°, AC= 10 ,cosC= 2 5 5 (I)求BC边的长; (II)记AB的中点为D,求中线CD的长。
3 2
13
200320在某海滨城市附近海面有一台风。 据监测,当前台风中心位于城市O(如图)的 东偏南θ(cosθ= )方向300km的海面P 处,并以20km/h的速度向西偏北45°方向 移动,台风侵袭的范围为圆形区域,当前 半径为60km,并以10km/h的速度不断增 大,问几小时后该城市 开始受到台风的侵袭?
应用举例
解三角形应用题中的几个角的概念 1、仰角、俯角的概念: 、仰角、俯角的概念: 在测量时,视线与水平线 所成的角中,视线在水平线 上方的角叫仰角,在水平线 下方的角叫做俯角。如图:
2、方向角:指北或指南 、方向角: 方向线与目标方向线所成 的小于90°的水平角,叫 方向角,如图
解斜三角形应用题的一般步骤是: 解斜三角形应用题的一般步骤是: 1、分析:理解题意,画出示意图 、分析: 2、建模 建模:把已知量与求解量集中在一个三角形中 建模 3、求解 求解:运用正弦定理和余弦定理,有顺序地解这 求解 些三角形,求得数学模型的解。 4、检验 4 检验:检验所求的解是否符合实际意义,从而 检验 得出实际问题的解。 数学问题(三角形) 实际问题→数学问题(三角形) →数学问题的解(解三角形)→实际问题的解 数学问题的解(解三角形)
如图建立坐标系:以O为原点,正东方向为x轴正向 在时刻t(h)台风中心 ( , )的坐标为
此时台风侵袭的区域是 (x- )2+(y- )2≤[r(t)]2, 其中r(t)=10t+60 若在t时刻城市O受到台风的侵袭,则有 (0- )2+(0- )2≤(10t+60)2, 即(300× -20× t)2+(-300× +20× 即r2-36t+288≤0, 解得12≤t≤24 答:12小时后该城市开始受到台风的侵袭。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点18 解三角形应用举例
一、填空题
1. (2013·福建高考理科·T13)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC,
sin ∠BAC=3,AB=则BD 的长为 .
【解题指南】显然,sin ∠BAC=cos ∠BAD,用余弦定理.
【解析】sin ∠22=sin()2+∠BAD π=cos ∠BAD,
在△BAD 中,BD 2=AB 2+AD 2-2AB ·AD ·cos ∠BAD=18+9-2×3=3, 所以
【答案】
二、解答题
2.(2013·重庆高考理科·T20)在△ABC 中,内角A 、B 、C 的对边分别是a 、
b 、
c ,且222a b c ++=.
(Ⅰ)求C ;
(Ⅱ)设cos cos A B =,2cos()cos()cos A B ααα++=,求tan α的值.
【解题指南】直接利用余弦定理可求出C 的值,由和差公式及C 的值通过化简可求出tan α的值.
【解析】(Ⅰ)因为222a b c += 由余弦定理有.2
2222cos 222-=-=-+=ab ab ab c b a C 故43π=C . (Ⅱ)由题意得.52cos )cos cos sin )(sin cos cos sin (sin 2=--α
ααααB B A A 因此.52)cos sin )(tan cos sin (tan =
--B B A A αα .5
2)cos sin )(tan cos sin (tan =--B B A A αα .52cos cos )sin(tan sin sin tan 2=
++-B A B A B A αα① 因为43π=
C ,,4π=+B A 所以22)sin(=+B A 因为,sin sin cos cos )cos(B A B A B A -=+即
,2
2sin sin 523=-B A 解得.10222523sin sin =-=B A 由①得04tan 5tan 2=+-αα,
解得1tan =α或4tan =α.
3. (2013·重庆高考文科·T18)在△ABC 中,内角A,B,C 的对边分别是a,b,c,且a 2=b 2+c 2
(Ⅰ)求A ;
(Ⅱ)设为△ABC 的面积,求S+3cosBcosC 的最大值,并指出此时B 的值.
【解题指南】直接利用余弦定理可求出A 的值,再利用正弦定理求解S+3cosBcosC
的最大值,并指出此时B 的值.
【解析】(Ⅰ)由余弦定理得.2
3232cos 222-=-=-+=bc bc bc a c b A 又因为π<<A 0,所以.6
5π=
A (Ⅱ)由(Ⅰ)得,2
1sin =A 又有正弦定理及3=a 得 ,sin sin 3sin sin sin 21sin 21C B C a A B a A bc S =∙∙== 因此,).cos(3)cos cos sin (sin 3cos cos 3C B C B C B C B S -=+=+
所以,当C B =,即1212π
π=-=A
B 时, 3cos cos S B
C +取最大值.3
4. (2013·山东高考理科·T17)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a+c=6,b=2,cosB =9
7.
(1)求a ,c 的值;
(2)求sin (A-B )的值.
【解题指南】(1)先由余弦定理B ac c a b cos 2222-+=可得到ac 的关系式,再和已知a+c=6联立方程,可得a ,c 的值;(2)由()B A B A B A sin cos cos sin sin -=-知,需先求出sinA,sinB,cosA,cosB 的值,可先利用同角三角函数基本关系式求出sinB,然后由正弦定理求出sinA ,进而求得cosA ,从而本题得解.
【解析】(1)由与余弦定理得B ac c a b cos 2222-+=,得()()B ac c a b cos 1222+-+= 又a+c =6,b=2,cosB=97,所以ac =9,解得a =3,c=3.
(2)在△ABC 中,924cos 1sin 2=
-=B B , 由正弦定理得322sin sin ==b B a A . 因为a=c ,所以A 为锐角. 所以3
1sin 1cos 2=-=A A .
因此()27
2109243197322sin cos cos sin sin =⋅-⋅=-=-B A B A B A . 5.(2013·福建高考文科·T21)如图,在等腰直角
OPQ ∆中,90∠=POQ , OP =点M 在线段PQ 上.
(I )若OM =求PM 的长;
(II )若点N 在线段MQ 上,且30MON ∠=,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值.
【解题指南】由等腰知45P ∠=,此时,OPM ∆可解;第(II)问,按“求什么设什么”列式求解,将面积表达式写出,利用三角函数计算公式求解。

【解析】(Ⅰ)在OMP ∆中,45OPM ∠=︒,5OM 22OP =
由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒,得2430MP MP -+=,解得1MP =或3MP =.
(Ⅱ)设POM α∠=,060α︒≤≤︒,
在OMP ∆中,由正弦定理,得
sin sin OM OP OPM OMP =∠∠, 所以()sin 45sin 45OP OM α︒=
︒+, 同理()
sin 45,sin 75︒=︒+OP ON α 故1
sin 2OMN S OM ON MON ∆=⨯⨯⨯∠
()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+
()()1sin 45sin 4530αα=︒+︒++︒
=⎣⎦
=
44
=
= =因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆
的面积取到最小值.即30POM ∠=︒时,OMN ∆的面积的最小值为8-
6.(2013·江苏高考数学科·T18)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C,另一种是先从A 沿索道乘缆车到B,然后从B 沿直线步行到C.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min.在甲出发2min 后,乙从A 乘缆车到B,在B 处停留1min 后,再从B 匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC 长为1260m,经测量, 1312cos =A ,5
3cos =C .
(1)求索道AB的长.
(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
【解题指南】(1)利用正弦定理确定出AB的长.(2)先设再建立时间t与甲、乙间距离d的函数关系式,利用关系式求最值.(3)利用条件“使两位游客在C处互相等待的时间不超过3分钟”建立不等式求解.
【解析】(1)在△ABC中,因为cosA=,cosC=,所以sinA=,sinC=.
从而sinB=sin[π-(A+C)]
=sin(A+C)=sinAcosC+cosAsinC
=5312463
13513565
⨯+⨯=,
由正弦定理AB
sinC=AC sinB,得
AB=AC
sinB×sinC=12604
635
65
⨯=1040(m).
所以索道AB的长为1040m.
(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离
A处130tm,所以由余弦定理得d2=(100+50t)2+(130t)2-2×130t×(100+50t)×12 13
=200(37t2-70t+50),
因0≤t ≤1040130 ,即0≤t ≤8,
故当t =3537 (min)时,甲、乙两游客距离最短.
(3)由正弦定理BC sinA =AC sinB ,得BC =AC sinB ×sinA=126056313
65
⨯=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710m 才能到达C . 设乙步行的速度为v m/min,由题意得-3≤50071050v - ≤3,解得1250625,4314
v ≤≤ 所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在[125043 ,62514 ] (单位:m/min)范围内.
关闭Word 文档返回原板块。

相关文档
最新文档