高中数学 第一章《排列》教案6 新人教A版选修23
高中数学 第一章《排列》教案1 新人教A版选修23

高中数学 第一章《排列》教案1 新人教A 版选修23(第一课时)教学目标:理解排列、排列数的概念,了解排列数公式的推导教学重点:理解排列、排列数的概念,了解排列数公式的推导教学过程一、复习引入:1、分类计数原理:(1)加法原理:如果完成一件工作有k 种途径,由第1种途径有n 1种方法可以完成,由第2种途径有n 2种方法可以完成,……由第k 种途径有n k 种方法可以完成。
那么,完成这件工作共有n 1+n 2+……+n k 种不同的方法。
2,乘法原理:如果完成一件工作可分为K 个步骤,完成第1步有n 1种不同的方法,完成第2步有n 2种不同的方法,……,完成第K 步有nK 种不同的方法。
那么,完成这件工作共有n 1×n 2×……×n k 种不同方法二、讲解新课:1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定..的顺序...排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示 注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号mn A 只表示排列数,而不表示具体的排列 3.排列数公式及其推导:求m n A 以按依次填m 个空位来考虑(1)(2)(1)m n A n n n n m =---+,排列数公式:(1)(2)(1)m n A n n n n m =---+=!()!n n m -(,,m n N m n *∈≤) 说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全部取出的一个排列 全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘)4.例子:例1.计算:(1)316A ; (2)66A ; (3)46A .解:(1)316A =161514⨯⨯=3360 ;(2)66A =6!=720 ;(3)46A =6543⨯⨯⨯=360 例2.(1)若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = .(2)若,n N ∈则(55)(56)(68)(69)n n n n ----用排列数符号表示 .解:(1)n = 17 ,m = 14 .(2)若,n N ∈则(55)(56)(68)(69)n n n n ----= 1569n A -.例3.(1)从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1)255420A =⨯=;(2)5554321120A =⨯⨯⨯⨯=;(3)2141413A =⨯=课堂小节:本节课学习了排列、排列数的概念,排列数公式的推导课堂练习:课后作业:。
人教A版数学选修2-3第一章第2节《排列组合习题课》教学设计

【教学设计】教材分析1、教材的地位和作用所授篇目来源于人教A版选修2-3第一章第一节中的排列组合。
排列组合在中学数学中是很重要的内容之一,他是对后面的概率内容学习的延续,为后面的知识做了很好的铺垫。
因此,学好这一节的内容对整个中学数学,甚至在学生后期的自主招生,甚至竞赛考试中取得优秀的成绩都是至关重要的。
2、教学目标情感目标:培养学生积极参与、合作交流的主体意识,在知识的探索和发现过程中,使学生感受数学学习的意义。
能力目标:在复习排列组合的过程中,训练学生条理的逻辑思维能力,努力提高学生的观察、归纳概括和独立思考的能力,使学生在学习知识的同时掌握一些数学思想方法。
知识目标:掌握排列组合的有关知识点,并会解决对于有限制条件的排列组合。
3、重点难点的确定及依据根据这一节课的内容特点以及学生的实际情况:学生对有限制条件的排列组合的应用缺乏感性认识,不能够在理解的基础上来运用排列组合的知识点解决问题。
因此,本节课的难点是有限制条件的排列组合的求解,依据本节的教学内容和学生现有的实际水平和认知能力,把排列、组合的意义及其计算方法作为教学重点。
一、教法和学法分析1、教法分析根据上述的教材分析,针对职高学生的知识结构和心理特征,本节课遵循以教师为主导、学生为主体、训练为主线的教学原则。
采用发现法、启发引导式、练习相结合的教学法。
而且要注意分层次进行教学,抢答题和拓展题不要求所有学生会做,只要求中等偏上的同学会做。
在课堂教学中充分运用投影辅助教学演示手段的操作,投影学生的作业,通过学生观察分析,主动探索解决有限制条件的排列组合问题。
为强化重点,突破难点,通过比较,做练习让学生能更好的掌握。
由于学生的基础参差不齐,为此,在教学中要顾及全局,注意提高差生的学习兴趣和学习能力,耐心讲解,耐心辅导。
2、学法分析数学教学是师生之间,学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习。
高中数学 第一章排列教案6 新人教A版选修2-3

高中数学选修2-3:第一章《排列》教案6例9.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列解:(1)先将男生排好,有55A 种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,有552A 种排法故本题的排法有5555228800N A A =⋅=(种); (2)方法1:10510105530240A N A A ===; 方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有510A 种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法故本题的结论为510130240N A =⨯=(种)2007年高考题1.(2007年天津卷)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 390 种(用数字作答).2.(2007年江苏卷)某校开设9门课程供学生选修,其中,,A B C 三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有 75 种不同选修方案。
(用数值作答)3.(2007年北京卷)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( B )A.1440种 B.960种 C.720种 D.480种4.图3是某汽车维修公司的维修点分布图,公司在年初分配给A、B、C、D四个维修点的某种配件各50件,在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行,那么完成上述调整,最少的调动件次(n个配件从一个维修点调整到相邻维修点的调动件次为n)为答案:B ; (A)15 (B)16 (C)17 (D)185.(2007年全国卷I )从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答)6.(2007年全国卷Ⅱ)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( B )A .40种B .60种C .100种D .120种7. (2007年陕西卷)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有 210 种.(用数字作答)8.(2007年四川卷)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A )288个 (B )240个 (C )144个 (D )126个 解析:选B .对个位是0和个位不是0两类情形分类计数;对每一类情形按“个位-最高位-中间三位”分步计数:①个位是0并且比20000大的五位偶数有341496A ⨯⨯=个;②个位不是0并且比20000大的五位偶数有3423144A ⨯⨯=个;故共有96144240+=个.本题考查两个基本原理,是典型的源于教材的题目.9.(2007年重庆卷)某校要求每位学生从7门课程中选修4门,其中甲乙两门课程不能都选,则不同的选课方案有____25_____种.(以数字作答)10.(2007年宁夏卷)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 240 种.(用数字作答)11.(2007年辽宁卷)将数字1,2,3,4,5, 6拼成一列,记第i 个数为i (i 126)a = ,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种(用数字作答).解析:分两步:(1)先排531,,a a a ,1a =2,有2种;1a =3有2种;1a =4有1种,共有5种;(2)再排642,,a a a ,共有633=A 种,故不同的排列方法种数为5×6=30,填30.。
高中数学排列的教案

高中数学排列的教案教学目标:1. 了解排列的定义和性质。
2. 掌握排列的计算方法。
3. 能够应用排列解决实际问题。
教学重点:1. 排列的定义。
2. 排列的计算公式。
3. 排列的实际应用。
教学难点:1. 排列的组合计算。
2. 排列的应用题解决。
教学过程:一、导入教学(5分钟)通过一个生活中的例子引入排列的概念,让学生了解排列是指一组事物按照一定规律排列的方式。
二、讲解排列的定义和性质(15分钟)1. 讲解排列的定义:排列是指从一组事物中选择若干个事物按照一定的顺序排列的方式。
2. 性质:包括排列的计算公式和性质,如排列的计算方法和排列的性质等。
三、示范排列的计算方法(20分钟)1. 讲解排列的计算方法:根据排列的性质,介绍排列的计算方法,例如使用排列公式计算排列数量。
2. 给出几个简单的排列题目,让学生通过实际计算来理解排列的计算过程。
四、练习与讨论(15分钟)1. 给学生几道排列计算题目进行练习,帮助学生掌握排列的计算方法。
2. 利用实际生活中的问题,让学生应用排列解决实际问题,提高学生的应用能力。
五、总结与拓展(5分钟)1. 总结本节课的内容,强调排列的重要性和应用。
2. 展示排列在实际生活中的应用,拓展学生对排列的理解和应用。
六、课堂作业(5分钟)布置相关的排列计算的作业,巩固学生的学习成果。
教学反思:通过本节课的教学,让学生对排列的概念和计算方法有了一定的了解,但仍需通过更多的练习和实践来加深对排列的理解和应用。
在以后的教学中,可以结合更多实际生活中的问题,让学生更好地理解排列的应用。
高中数学第一章计数原理12排列与组合122组合第3课时教案新人教A版选修23

1.2.2 组合第三课时教学目标知识与技能理解排列组合的区别和联系,综合运用排列组合解决计数问题.过程与方法通过具体实例,经历把具体事例抽象为排列组合问题,利用排列、组合数公式求解的过程.情感、态度与价值观能运用排列组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:综合运用排列组合解决计数问题.教学难点:综合运用排列组合解决计数问题.教学过程复习回顾提出问题1:判断下列问题是组合问题还是排列问题?并求出下列问题的解.(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共打了多少个电话?活动设计:学生自主完成,教师提问.活动成果:(1)(3)(4)是排列;(2)(5)是组合.(1)A 23=6;(2)C 211=55;(3)A 323=10 626;(4)A 210=90;(5)C 210=45.1.从n 个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2.排列数公式:A m n =n(n -1)(n -2)…(n-m +1)(m ,n∈N ,m≤n).A m n =n(n -1)(n -2)…(n-m +1)=n !(n -m)!=A nn A n -m n -m . 3.组合的概念:一般地,从n 个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.4.C mn =A mn A m =n(n -1)(n -2)…(n -m +1)m !或C m n =n !m !(n -m)!(n ,m∈N ,且m≤n). 设计意图:回顾本单元基础知识,为本节课的学习服务.典型例题类型一:排数字问题1(1)用0,1,2,3,4能组成多少个无重复数字的四位数?(2)这四位数中能被3整除的数有多少个?思路分析:可以从特殊元素或特殊位置入手直接分析,也可以从对立面间接排除. 解:(1)直接分类法:①特殊元素分析法:分两类:选0,有A 13A 34=72个;不选0,有A 44=24个.根据分类加法计数原理可得共有72+24=96个.②特殊位置分析法:先考虑首位,可以从1,2,3,4四个数字中任取一个,共A 14种方法,再考虑其他三个位置,可以从剩下的四个数字中任取3个,即A 34种方法.根据分步乘法计数原理共有A 14A 34=96种方法,即96个无重复数字的四位数.③间接排除法:先从五个数字中任取四个排成四位数:A 45,再排除不符合要求的四位数,即0在首位的四位数:A 34.则共有A 45-A 34=96个.(2)能被3整除的四位数应该是四位数字之和为3的倍数的数.分析:因为不含0时,1+2+3+4=10,10不是3的倍数,所以组成的四位数必须有0,即0,1,2,3或0,2,3,4,共有2(A 44-A 33)=36个.点评:对于有特殊元素和特殊位置的问题,往往有三种方法:特殊元素分析法、特殊位置分析法、间接排除法.【巩固练习】用0,1,2,3,4五个数字组成无重复数字的五位数从小到大依次排列.(1)第49个数是多少?(2)23 140是第几个数?解:(1)首位是1,2,3,4组成的五位数各24个.所以第49个数是首位为3的最小的一个自然数,即30 124.(2)首位为1组成A 44=24个数;首位为2,第二位为0,1共组成2A 33=12个数.首位为2,第二位为3,第三位为0的数共A 22=2个;首位为2,第二位为3,第三位为1,第四位为0的数有1个,为23 104.由分类加法计数原理得:A 44+2A 33+A 22+1=39.按照从小到大的顺序排列,23 104后面的五位数就是23 140,所以23 140是第40个数.类型二:分组分配问题2(1)6本不同的书,按下列条件,各有多少种不同的分法:①分给甲、乙、丙三人,每人两本;②分成三份,每份两本;③分成三份,一份1本,一份2本,一份3本;④分给甲、乙、丙3人,一人1本,一人2本,一人3本;⑤分给5个人,每人至少一本;(2)6本相同的书,分给甲乙丙三人,每人至少一本,有多少种不同的分法?思路分析:可以根据分类加法计数原理和分步乘法计数原理,结合排列数和组合数来解决这类问题.解:(1)①分成三个步骤:第一步,选2本书分配给甲,有C 26种方法;第二步,从剩下的4本书中选2本书分配给乙,有C 24种方法;第三步,将剩下的2本书分配给丙,有C 22种方法.根据分步乘法计数原理,共有C 26C 24C 22=90种方法.②在①的基础上去掉顺序即可,有C 26C 24C 22A 33=15种方法. ③分成三个步骤:第一步,选1本书成为一组,有C 16种方法;第二步,从剩下的5本书中选2本书成为一组,有C 25种方法;第三步,剩下的3本书成为一组,有C 33种方法.根据分步乘法计数原理,共有C 16C 25C 33=60种方法.④在③的基础上,把三组书分配给三个人即可,有C 16C 25C 33A 33=360种方法.⑤分成两个步骤:第一步,分成5组,有C 26种方法;第二步,将5组分配给5个人,有A 55种方法.根据分步乘法计数原理,共有C 26A 55=1 800种方法.(2)分成两个步骤:第一步,分成3组,有C25种方法;第二步,将3组分配给3个人,有A33种方法.根据分步乘法计数原理,共有C25A33=60种方法.点评:在解决问题时,要先考虑分类还是分步完成,然后考虑是否有顺序,再确定方法.【巩固练习】1.今有10件不同奖品,从中选6件分成三份,其中两份各1件,另一份4件,有多少种分法?2.今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件,有多少种分法?答案:1.C610C46=3 150 2.C610C26C24C22=18 900.【变练演编】对某种产品的6件不同的正品和4件不同的次品,一一进行测试,直至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有几种可能?提示:因为在第5次测试时全部发现次品,所以第五次测试的一定是次品,前四次有三次出现次品.所以共有A34C16C11=144种可能.【达标检测】1.把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有____________种.2.从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为________________.3.要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为____________.(用排列数和组合数表示) 答案:1.9 2.9 3.C38C27+C28C37课堂小结1.知识收获:进一步复习分类加法计数原理和分步乘法计数原理以及排列、组合的概念.2.方法收获:(1)注意区别“恰好”与“至少”;(2)特殊元素(或位置)优先安排;(3)“相邻”用“捆绑”,“不邻”就“插空”;(4)混合问题,先“组”后“排”.3.思维收获:化归思想、分类讨论思想.补充练习【基础练习】1.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有______个(用数字作答).2.五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有______种.3.从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O、Q和数字0至多只出现一个的不同排法种数是______.答案:1.576 2.96 3.8 424【拓展练习】4.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同的派遣方案?解:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案A48种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A38种方法,所以共有3A38种方案;③若乙参加而甲不参加,同理也有3A38种方案;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另两个城市有A28种,共有7A28种方法.所以共有不同的派遣方案总数为A48+3A38+3A38+7A28=4 088.设计说明本节课是排列组合复习课,目的是总结综合应用排列组合的问题和方法.特点是教师总结题目,学生在解决的过程中总结方法,举一反三,达到灵活掌握的程度.备课资料相同元素的分配问题隔板法:1把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有多少种不同的放法?解:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有C216=120种.210个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为C69=84种.变式1:7个相同的小球,任意放入四个不同的盒子,问每个盒子都不空的放法有______种.变式2:马路上有编号为1,2,3,4,5,6,7,8,9的9盏路灯,为节约用电,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,满足条件的关灯办法有________种.3将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种?解:(1)先从4个盒子中选三个放置小球有C34种方法.(2)注意到小球都是相同的,我们可以采用隔板法.为了保证三个盒子中球的颜色齐全,可以在4个相同的白球、5个相同的黑球、6个相同的红球所产生的3个、4个、5个空档中分别插入两个板.各有C23、C24、C25种方法.(3)由分步乘法计数原理可得C34C23C24C25=720种.。
最新-高中数学《排列与组合-排列》教案1 新人教A版选修2-3 精品

(6)20位同学互通一封信
(7)以圆上的10个点为端点作弦
(8)以圆上的10个点中的某一点为起点,作过另一个点的射线
(9)有10个车站,共需要多少种车票?
(10)有10个车站,共需要多少种不同的票价?
二排列数:
排列数的定义:我们把从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有这样排列的个数称为从n个不同元素中取出m个元素的排列数.用符号 表示.
教学难点
排列数公式的理解与运用
教具准备
电脑
教学过程
设计思路
情境设计
1.从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动。有多少种不同的选法?并列出所有不同的选法。
2.从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有多少种不同的排法?并列出所有不同的排法。
4、m<n时的排列叫选排列,m=n时的排列叫全排列。
5、为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。
例1、下列问题中哪些是排列问题?
(1)10名学生中抽2名学生开会
(2)10名学生中选2名做正、副组长
(3)从2,3,5,7,11中任取两个数相乘
(4)从2,3,5,7,11中任取两个数相除
排列与排列数
让学生自己小结
本课作业
课本P18 2,3.(2)、(4想)
引出排列的定义
新知教学
一排列:一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
说明:1、元素不能重复。n个中不能重复,m个中也不能重复。
人教A版数学选修23第一章第2节《排列组合习题课》

一、基础题
• 本部分题目限时回答,到时间 之前由答题员将本组答案写在 题板上,到时间不答的不得分, 答对得分,答错不扣分。每题 10分。小组讨论后不再讲授。
1、 8名同学争夺3项冠军,获得冠 军的可能性有多少种?
• 8名同学争夺3项冠军,获得冠 军的可能性有多少种?
【解析】:重复排列求幂法(住店法) 。
同室4人各写一张贺卡,先集中起来,然后 每人从中拿一张别人送出的贺年卡,则4 张贺年卡不同的分配方式有多少种?
标号排位树状图
6、有甲乙丙三项任务,甲需2人承担,乙 丙各需一人承担,从10人中选出4人承担 这三项任务,不同的选法有多少种?
• 有甲乙丙三项任务,甲需2人承担,乙丙 各需一人承担,从10人中选出4人承担这 三项任务,不同的选法有多少种?
• 马路上有编号为1,2,3…,9的九只路灯,现 要关掉其中的三盏,但不能关掉相邻的二盏或 三盏,也不能关掉两端的两盏,求满足条件的 关灯方案有多少种?
• 相离问题插空法 (屁股上绑着的凳子!)
• 把此问题当作一个排队模型,在6盏亮灯的5个
空隙中插入3盏不亮的灯共有 满足条件的关灯方案有10种.
C53
课程名称:排列组合习题课 学 科: 数学 年 级:高二 上/下册: 选修2-3第一章第2节 版 本:人教A版
排列组合智力快车
学习目标
• 1、加深对排列组合技巧的理解,会选择 合适的方法应用在题目中。
• 2、激发兴趣,领会知识来自于平时的积 累,要养成良好的学习习惯。•Βιβλιοθήκη 3、培养全体同学的竞争意识和协作精神。
种方法,所以
4、停车场划出一排10个停车位置,今 有6辆车需要停放.要求空车位置连在 一起,不同的停车方法有多少种?
高三数学教案:排列

高三数学教案:排列
教学目标:
1. 了解排列的概念。
2. 学会计算排列的个数。
3. 掌握计算有重复元素的排列的个数。
教学重点:
1. 排列的概念和计算方法。
2. 有重复元素的排列的计算方法。
教学难点:
有重复元素的排列的计算方法。
教学准备:
教材、复习资料、白板、彩笔。
教学过程:
Step 1: 导入新知
教师介绍排列的概念,并给出一些实际生活中的例子来说明排列的应用场景。
例如,从一堆书中取出不同的几本书进行阅读的排列等。
Step 2: 计算没有重复元素的排列的个数
教师讲解如何计算没有重复元素的排列的个数。
引导学生观察问题,例如三张不同的扑克牌、四本不同的书籍等的排列,然后解释计算排列的方法。
Step 3: 计算有重复元素的排列的个数
教师给出有重复元素的排列的例子,例如由不同的字母组成的单词的排列。
引导学生
思考如何计算有重复元素的排列的个数,并提供解决方法。
Step 4: 练习
教师带领学生进行一些排列计算的练习。
可以分成两部分,一部分是没有重复元素的
排列,另一部分是有重复元素的排列。
Step 5: 总结和拓展
教师总结排列的概念和计算方法,并提醒学生注意在实际应用中正确使用排列的方法。
鼓励学生在生活中发现更多排列的应用场景,拓展他们的思维。
Step 6: 课堂小结
教师对本节课的内容进行小结,并布置相应的练习作业。
Step 7: 课后作业
要求学生完成教师布置的练习作业,并在下节课的开头进行相关讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修2-3:第一章《排列》教案6
例9.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列 解:(1)先将男生排好,有55A 种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,有5
52A 种排法 故本题的排法有5555228800N A A =⋅=(种);
(2)方法1:105101055
30240A N A A ===; 方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有5
10A 种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法 故本题的结论为510130240N A =⨯=(种)
2007年高考题
1.(2007年天津卷)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 390 种(用数字作答).
2.(2007年江苏卷)某校开设9门课程供学生选修,其中,,A B C 三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有 75 种不同选修方案。
(用数值作答)
3.(2007年北京卷)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( B )
A.1440种 B.960种 C.720种 D.480种
4.图3是某汽车维修公司的维修点分布图,公司在年初分配给A、B、C、D四个维修点的某种配件各50件,在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行,那么完成上述调整,最少的调动件次(n个配件从一个维修点调整到相邻维修点的调动件次为n)为答案:B ; (A)15 (B)16 (C)17 (D)18
5.(2007年全国卷I )从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答)
6.(2007年全国卷Ⅱ)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( B )
A .40种
B .60种
C .100种
D .120种
7. (2007年陕西卷)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有 210 种.(用数字作答)
8.(2007年四川卷)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )
(A )288个 (B )240个 (C )144个 (D )126个 解析:选B .对个位是0和个位不是0两类情形分类计数;对每一类情形按“个位-最高位
-中间三位”分步计数:①个位是0并且比20000大的五位偶数有341496A ⨯⨯=个;②个
位不是0并且比20000大的五位偶数有3423144A ⨯⨯=个;故共有96144240+=个.本
题考查两个基本原理,是典型的源于教材的题目.
9.(2007年重庆卷)某校要求每位学生从7门课程中选修4门,其中甲乙两门课程不能都选,则不同的选课方案有____25_____种.(以数字作答)
10.(2007年宁夏卷)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 240 种.(用数字作答)
11.(2007年辽宁卷)将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =L ,
,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种(用数字作答).
解析:分两步:(1)先排531,,a a a ,1a =2,有2种;1a =3有2种;1a =4有1种,共
有5种;(2)再排642,,a a a ,共有633=A 种,故不同的排列方法种数为5×6=30,填30.。