山东省2017届高三第二次模拟考试数学(理)试卷(1)及答案(九校联考)
2017年3月2017届高三第二次全国大联考(山东卷)理数(考试版)

绝密★启用前|试题命制中心2017年第二次全国大联考【山东卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知{}2|20x x A x ≤=--,{}21|||x B x =<-,则=I A BA . [1,2]-B .1,3()C .1,2()D .1,2]( 2. 复数z 满足(2i)1+i z -=,其中i 为虚数单位,则z 所对应的点所在的象限为 A .第一象限B .第二象限C .第三象限D .第四象限3.原命题:“a ,b 为两个实数,若2≥+a b ,则a ,b 中至少有一个不小于1”,下列说法错误的是 A .逆命题为:若a ,b 中至少有一个不小于1则2≥+a b ,为假命题 B .否命题为:若2<+a b 则a ,b 都小于1 ,为假命题 C .逆否命题为:若a ,b 都小于1则2<+a b ,为真命题 D .“2≥+a b ”是“a ,b 中至少有一个不小于1”的必要不充分条件4. 平面向量a 与b 满足(2,0)a =,=1b , =2a+2b ,a 与b 的夹角为 A .6πB .3π C .2π3D .π5.2017年3月全国两会在北京召开,现从A 组4人和B 组5人中任取3人参加一项议程讨论,在取出的3人中至少有A 组和B 组各一人的不同取法有 A .35种B .70种C . 80种D .140种6. 我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细的重量是均匀变化的,问原有的金箠的重量为 A . 6 斤 B . 14斤 C . 15斤 D .20 斤7. 执行如图所示的程序框图,若输出的结果是3132,则输入的a 的值可能为 A .3B .4C .5D .68. 已知21()+cos +4f x x x ϕ=()为偶函数且(0)0f >,则函数()y f x '=的图象大致为 9.已知ABC △的三边分别为,,a b c ,其面积2224ABCa b c S +-=△,令向量(,)s a b =,(,)t =m n (其中m ,n 满足约束条件221m m n n m ≥⎧⎪-≥⎨⎪≥⎩,)若s t g 的最小值为4,则该三角形面积的最大值为A .2B .4CD10. 已知函数32,(1,]()+1,(,1]x x f x x x x +⎧-∈-0⎪=⎨⎪∈0⎩且()+g x mx m =,若()()g x f x =在(11]-,内有且仅有两个不同的根,则实数m 的取值范围是A .912042⎛⎤⎛⎤- ⎥⎥⎝⎦⎝⎦U ,-,B .1112042⎛⎤⎛⎤-⎥⎥⎝⎦⎝⎦U ,-, C .922043⎛⎤⎛⎤- ⎥⎥⎝⎦⎝⎦U ,-,D .1122043⎛⎤⎛⎤-⎥⎥⎝⎦⎝⎦U ,-,第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题卡上)11. 已知定义在R 上的奇函数()f x 满足(()11)+=-f x f x ,且当]1[0∈,x 时,()2x f x m -=,则(2017)f = .12. 某几何体的三视图如图所示,则该几何体的表面积为 . 13. 已知π202sin d =⎰a x x,则二项式6(+x 展开式中的常数项是 .14.已知点2P )在幂函数y f x =()的图象上,那么圆1C :22+4x y =和圆2C :22(-2)+(+2)4x y =的公共弦上的点到y f x =()的最短距离为 .15. 已知直线m 满足:①倾斜角为钝角;②与双曲线2213yx -=的一条渐近线平行;③过抛物线C :28y x =焦点F .若直线m 与抛物线C 的准线l 相交于A ,点P 为C 上一点,若PA l ⊥,则PF =_ .解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)将函数sin 2y x =图像向右平移π12个单位得到()y f x =的图像,将函数sin 2y x=图像向左平移π4个单位得到()y g x =的图像,若令()()()h x f x g x =-,求(Ⅰ)函数()h x 的最小正周期、单调递增区间; (Ⅱ)求()h x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域.17.(本小题满分12分)《中国诗词大会》是中央电视台最近新推出的一档有重大影响力的大型电视文化节目,今年两会期间,教育部部长陈宝生答记者问时给予其高度评价。
山东省淄博市高三第二次模拟考试——数学理数学理

山东省淄博市2017届高三第二次模拟考试数学(理)试题本试卷,分第I 卷和第Ⅱ卷两部分.共5页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、区县和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数A .B .C .D .2.己知集合(){}{}()R 11,2,1,0,1,A x y g x B C A B ==+=--⋂=则A .B .C .D .3.下列四个结论中正确的个数是①若②己知变量x 和y 满足关系,若变量正相关,则x 与z 负相关③“己知直线和平面,,//,m n m n αβαβαβ⊥⊥⊥、,若则”为真命题④是直线与直线互相垂直的充要条件A .1B .2C .3D .44.己知单位向量(),2a b a a b a b ⊥+,满足,则与夹角的余弦值为A .B .C .D .5.函数()20172016f x x x =+--的最大值是A . -1B .1C .4033D . -4033 6.二项式展开式的常数项为A. B. C.80 D.167.若角终边上的点在抛物线的准线上,则A .B .C .D .8.已知函数()sin 2x xf x e π⎛⎫- ⎪⎝⎭=(e 为自然对数的底数),当[](),x y f x ππ∈-=时,的图象大致是9.已知约束条件为,若目标函数仅在交点处取得最小值,则k 的取值范围为A .B .C .D .10.如图为一个多面体的三视图,则该多面体的体积为A .B .7C .D .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知奇函数()()()()()3,0,2,0,x a x f x f g x x ⎧-≥⎪=-⎨<⎪⎩则的值为_________. 12.过点(1,1)的直线l 与圆()()22239x y -+-=相交于A ,B 两点,当时,直线l 的方程为____________.13.若按如右图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是__________.14.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如第一个人先报“1,2”,则另一个人可以有“3”,“3,4”,…,“3,4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是___________.15.已知抛物线的一条弦AB 经过焦点F ,O 为坐标原点,D 为线段OB 的中点,延长OA 至点C ,使,过C ,D 向y 轴作垂线,垂足分别为E,G ,则的的最小值为__________.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知函数()()()21cos cos 02f x x x x f x ωωωπω=-+>,与图象的对称轴相邻的的零点为.(I )讨论函数在区间上的单调性;(II )设的内角A,B,C的对应边分别为(),,1a b c f C =,且,若向量与向量共线,求的值.17.(本小题满分12分)如图,在三棱锥A —BCD 中,90,ABC BCD CDA AC ∠=∠=∠==,E 点在平面BCD 内,EC=BD ,.(I)求证:平面BCDE ;(Ⅱ)设点G 在棱AC 上,若二面角的余弦值为,试求的值.18.(本小趑满分12分)甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.(I )若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;(II )若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X ,求X 的分布列和数学期望EX.19.(本小题满分12分)己知等比数列的前n 项和为,()11131=242n n n a S S a n N n *--=++∈≥,且,数列满足:()113731*24n n b b b n n N n -=--=+∈≥,且且. (I)求数列的通项公式;(II)求证:数列为等比数列;(III)设的前n 项和的最小值.20.(本小题满分1 3分)己知a ∈R ,函数()()()1,ln 1xf x ae xg x x x =--=-+(e=2.718 28…是自然对数的底数). (I )讨论函数极值点的个数;(II )若,且命题“[)()()0,,x f x kg x ∀∈+∞≥”是假命题,求实数k 的取值范围.21.(本小题满分14分)己知椭圆是坐标原点,点P 是椭圆C 上任意一点,且点M 满足 (,是常数).当点P 在椭圆C 上运动时,点M 形成的曲线为.(I)求曲线的轨迹方程;(II)过曲线上点M做椭圆C的两条切线MA和MB,切点分别为A,B.①若切点A的坐标为,求切线MA的方程;②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由.。
山东省临沂市2017届高三第二学期第二次模拟考试数学试卷理

山东省临沂市2017届高三数学下学期第二次模拟考试试题 理2017.5本试题分为选择题和非选择题两部分,共5页,满分150分,考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.第I 卷 (共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.全集为实数集R ,集合{}{}()3=2,R M x x N x x C M N =≤<⋂=,集合则 (A){}3x x <- (B) {}32x x -<< (C){}2x x <(D) {}32x x -≤< 2.若z 是z 的共轭复数,且满足()13z i i z -=+=,则(A)1+2i (B)-1+2i (C)1-2i (D) -1-2i 3.某地市高三理科学生有30000名,在一次调研测试中,数学成绩()2~100N ξσ,,已知()80=0.45P ξ<≤100,若按分层抽样的方式取200份试卷进行成绩分析,则应从120分以上的试卷中抽取(A)5份 (B)10份 (C)15份 (D)20份4.“125x x -++≤”是“32x -≤≤”的(A)充分不必要条件(B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件5.某几何体的三视图如图所示,俯视图是半径为2的圆,则该几何体的表面积为(A) 24π(B) 16π (C) 12π (D) 8π6.将函数()2sin 16f x x π⎛⎫=++ ⎪⎝⎭的图象向右平移3π个单位,再把所有点的横坐标缩短到原来的12倍(纵坐标不变),得函数y =g(x )的图象,则g(x )图象的一个对称中心为 (A) ,06π⎛⎫ ⎪⎝⎭ (B) ,012π⎛⎫ ⎪⎝⎭ (C) ,16π⎛⎫ ⎪⎝⎭ (D) ,112π⎛⎫ ⎪⎝⎭7.已知x ,y 满足220,0,2,x y x y m x +-≥⎧⎪-+≥⎨⎪≤⎩若目标函数2z x y =-+的最大值不超过5,则实数m 的取值范围是(A) ()2,2- (B) []0,2 (C) []2,0- (D) []2,2-8.在平面直角坐标系中,已知点A,B 分别为x 轴、y 轴上的点,且4113AB P ⎛⎫= ⎪⎝⎭,若点,,则AP BP OP ++的取值范围是(A) []5,6 (B) []5,7 (C) []4,6 (D) []6,9 9.已知双曲线()2212210x y C a b a b -=>>:与双曲线222:12y C x -=的离心率相同,双曲线1C 的左、右焦点分别为12,,F F M 是双曲线1C 的一条渐近线上的点,且2OM MF ⊥,若2OMF ∆的面积为1C 的实轴长是(A)32 (B)16 (C)8 (D)410.已知()()()()()2,x f x xe g x f x tf x t R ==-∈⎡⎤⎣⎦又,若方程()2g x =-有4个不同的根,则t 的取值范围为(A) 1,2e e ⎛⎫-∞-- ⎪⎝⎭ (B) 1,e e ⎛⎫-∞- ⎪⎝⎭ (C) 12,e e ⎛⎫++∞ ⎪⎝⎭(D) 1,e e ⎛⎫++∞ ⎪⎝⎭ 第1I 卷 (共100分)二、填空题:本大题共5个小题,每小题5分,共25分,把正确答案填写在答题卡给定的横线上.。
山东省青岛2017年高三二模检测理科数学试题

2017年青岛市高考模拟检测数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集R U =,集合2{|3}A y y x ==-,2{|log (2)}B x y x ==+,则 ()U A B = ð A .{|23}x x -<≤ B .{|3}x x > C .{|3}x x ≥ D .{|2}x x <-2.设复数2i z =-+(i 为虚数单位) ,则复数1z z+的虚部为 A .45 B .4i 5 C .65 D .6i 53.已知命题,p q ,“p ⌝为假”是“p q ∨为真”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.一个公司有8名员工,其中6位员工的月工资分别为5200,5300,5500,6100,6500,6600,另两位员工数据不清楚,那么8位员工月工资的中位数不可能是A .5800B .6000C .6200D .64005.执行右图所示的程序框图,则输出的结果为 A .7 B .9 C .10 D .116.已知3,1x x =-=是函数()sin()(0)f x x ωϕω=+> 的两个相邻的极值点,且()f x 在1x =-处的导数(1)0f '->,则(0)f =A .0B .12 CD7.已知实数1m >,实数x ,y 满足不等式组21y xy x x y ≥⎧⎪≤⎨⎪+≤⎩,若目标函数z x my =+的最大值等于3,则m 的值是A .2B .3C .4D .58.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为 A .10000立方尺 B .11000立方尺 C .12000立方尺 D .13000立方尺主视图侧视图俯视图9.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有 A .6种B .24种C .30种D .36种10.设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为2||3OF ,则双曲线的离心率为 A.BC.D .5第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.不等式0|5||12|>--+x x 的解集为 ; 错误!未找到引用源。
2017届 高三第二次模拟考试 数学理 (含答案)word版

山东省泰安市2017届高三第二次模拟考试数学试题(理)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于实数a 、b 、c ,“a >b ”是“2ac >2bc ”的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件2.已知复数z 满足()i i z -=+11(i 为虚数单位),则z 等于A.iB.i -C.i -2D.i +23.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为A.35B.25C.15D.7 4.下列命题中的真命题是 A.23cos sin ,=+∈∃x x R x B.()x x sin ,,0π∈∀>x cos C.()x x 2,0,∞-∈∃<x3D.()x e x ,,0+∞∈∀>1+x5.对于平面α和直线m 、n ,下列命题是真命题的是 A.若n m ,与α所成的角相等,则m//n B.若,//,//ααn m 则m//n C.若n m m ⊥⊥,α,则α//nD. 若αα⊥⊥n m ,,则n m // 6. 如图给出的是计算20121614121+⋅⋅⋅+++的值的程序框图,其中判断框内应填入的是 A.2012≤i B.i >2012C.1006≤iD.i >10067.若点()n m ,在直线01034=-+y x 上,则22n m +的最小值是 A.2 B.22 C.4D. 328.如图曲线2x y =和直线41,1,0===y x x 所围成的图形(阴影部分)的面积为A.32 B.31 C.21D.41 9.在ABC ∆中,60=∠BAC °,,E,F ,AC AB 12==为边BC 的三等分点,则AFAE ⋅等于A.35B.45 C.910D.815 10.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 A.288个 B.240个 C.144个 D.126个 11.已知A ,B ,C ,D ,E 是函数()ϕω+=x y sin (ω>0,0<ϕ<⎪⎭⎫2π一个周期内的图像上的五个点,如图所示,⎪⎭⎫⎝⎛-0,6πA ,B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,在x 轴上的投影为12π,则ϕω,的值为 A.6,2πϕω==B.3,2πϕω==C.3,21πϕω==D.12,21πϕω==12.已知()x x f x3log 21-⎪⎭⎫⎝⎛=,实数a 、b 、c 满足()()()c f b f a f <0,且0<a <b <c ,若实数0x 是函数()x f 的一个零点,那么下列不等式中,不可能...成立的是 A.0x <aB.0x >bC.0x <cD.0x >c二、填空题:本大题共4个小题,每小题4分,共16分.请把答案填在答题纸的相应位置. 13.设()x f 是周期为2的奇函数,当10≤≤x 时,()()x x x f -=12,则=⎪⎭⎫⎝⎛-25f ▲ . 14.在三棱柱ABC-A 1B 1C 1中,各侧面均为正方形,侧面AA 1C 1C 的对角线相交于点A ,则BM 与平面AA 1C 1C 所成角的大小是 ▲ .15.已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≥≤+≤,0,2,y y x x y 那么目标函数y x z 3+=的最大值是 ▲ .16.给出下列四个命题:①若直线l 过抛物线22x y =的焦点,且与这条抛物线交于A 、B 两点,则AB 的最小值为2;②双曲线1916:22-=-y x C 的离心率为35;③若⊙,02:221=++x y x C ⊙012:222=-++y y x C ,则这两圆恰有2条公切线;④若直线06:21=+-y x a l 与直线()0934:2=+--y a x l 互相垂直,则.1-=a 其中正确命题的序号是 ▲ .(把你认为正确命题的序号都填上)三、解答题:本大题共6个小题,满分74分.解答应写出必要的文字说明、证明过程或演算步骤.请将解答过程写在答题纸的相应位置. 17.(本小题满分12分)已知等差数列{}n a 的公差0≠d ,它的前n 项和为n S ,若,355=S 且2272,,a a a 成等比数列. (I )求数列{}n a 的通项公式; (II )设数列⎭⎬⎫⎩⎨⎧n S 1的前n 项和为T n ,求T n .18.(本小题满分12分)已知函数().2sin 22cos 2sin 22x x x x f -⎪⎭⎫ ⎝⎛+=(I )若()332=x f ,求sin2x 的值; (II )求函数()()()()x f x f x f x F 2+-⋅=的最大值与单调递增区间.19.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,1,2===AD AB PA ,点E 是棱PB 的中点.(I )求证:平面ECD ⊥平面PAD ;(II )求二面角A —EC —D 的平面角的余弦值.20.(本小题满分12分)形状如图所示的三个游戏盘中(图(1)是正方形,M 、N 分别是所在边中点,图(2)是半径分别为2和4的两个同心圆,O 为圆心,图(3)是正六边形,点P 为其中心)各有一个玻璃小球,依次水平摇动三个游戏盘,当小球静止后,就完成了一局游戏。
山东省潍坊市2017届高三数学下学期第二次模拟考试试题理

山东省潍坊市2017届高三数学下学期第二次模拟考试试题 理一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合}03|{2>-=x x x A ,集合}1|{<=x x B ,则)(B C A U 等于( ) A .]1,3(- B .]1,(-∞ C .)3,1[ D .)(3,+∞ 2.若i z 21-=,则复数zz 1+在复平面上对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知21sin cos =-αα,则ααcos sin 等于( ) A .83 B .21 C .43 D .234.dx x ⎰ππ2sin 的值为( )A .2πB .π C.21D .1 5. 已知βα,是两个不同平面,直线β⊂l ,则“βα//”是“α//l ”的( ) A .充分不必要条件 B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件6.等比数列}{a n 满足,21,35311=++=a a a a 则=++753a a a ( )A.21B.42C.63D.847.某几何体的三视图如图所示,在该几何体的体积是( )A .310 B .320 C. 52 D .548.设t n m ,,都是正数,则mt t n n m 4,4,4+++三个数( )A .都大于4B .都小于4C. 至少有一个大于4 D .至少有一个不小于49.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+,则λμ+=A .43 B .53C .158D .2 10.已知点1F 是抛物线2:4C x y =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以12F F ,为焦点的双曲线上,则双曲线的离心率为 A1 C1 D二、填空题(每题5分,满分25分,将答案填在答题纸上) 11.右图是一个算法流程图,则输出的k 的值 . 12.将函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度,所得图象关于点3,04π⎛⎫⎪⎝⎭对称,则ω的最小值是 . 13.二项式n 展开式中,前三项系数依次组成等差数列,则展开式中的常数项等于_____.14. 在约束条件24,,0,0.x y x y m x y +≤⎧⎪+≤⎨⎪≥≥⎩下,当35m ≤≤时,目标函数32z x y =+的最大值的取值范围是____________(请用区间表示).15.对于函数()f x ,若存在区间[](){},,A m n y y f x x A A ==∈=,使得,则称函数()f x 为“同域函数”,区间A 为函数()f x 的一个“同城区间”.给出下列四个函数: ①()cos2f x x π=;②()21f x x =-;③()21f x x =-;④()f x =log ()21x -.存在“同域区间”的“同域函数”的序号是_______________(请写出所有正确的序号)三、解答题:本大题共6小题,共75分.16.已知(2sin sin cos )(sin cos ))(0)a x x x b x x x λλλ=+=-> ,,,,函数b a x f ⋅=)(的最大值为2.(Ⅰ)求函数)(x f 的单调递减区间;(Ⅱ)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,cab A 22cos -=,若0)(>-m A f 恒成立,求实数m 的取值范围.17.如图,在三棱柱ABC ﹣A 1B 1C 1中,CA=CB=AA 1,∠BAA 1=∠BAC=60°,点O 是线段AB 的中点. (Ⅰ)证明:BC 1∥平面OA 1C ;(Ⅱ)若AB=2,A 1C=,求二面角A ﹣BC ﹣A 1的余弦值.18.(本题满分12分)某公司的两个部门招聘工作人员,应聘者从1T 、2T 两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题1T ,且表示只要成绩合格就签约;丙、丁两人选择使用试题2T ,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是12,丙、丁考试合格的概率都是23,且考试是否合格互不影响. (Ⅰ)求丙、丁未签约的概率;(Ⅱ)记签约人数为X ,求X 的分布列和数学期望EX .19.对于数列}{n a ,}{n b ,n S 为数列}{n a 是前n 项和,且n a S n S n n n ++=+-+)1(1,111==b a ,*+∈+=N n b b n n ,231.(1)求数列}{n a ,}{n b 的通项公式;(2)令)1()(2++=n n n b n n a c ,求数列}{n c 的前n 项和n T .20.已知椭圆1C :)0(12222>>=+b a by a x 的离心率为21=e ,且与y 轴的正半轴的交点为)32,0(,抛物线2C 的顶点在原点且焦点为椭圆1C 的左焦点. (1)求椭圆1C 与抛物线2C 的标准方程;(2)过)0,1(的两条相互垂直直线与抛物线2C 有四个交点,求这四个点围成四边形的面积的最小值.21.已知函数)ln()(2a x x x g ++=,其中a 为常数. (1)讨论函数)(x g 的单调性;(2)若)(x g 垂直两个极值点21,x x ,求证:无论实数a 取什么值都有)2(2)()(2121x x g x g x g +>+.一、选择题1-5: CDADA 6-10:BBDBC 二、填空题:11.17;12.2;13.7;14.[]8,7;15.①②③16.解:(Ⅰ)函数)cos )(sin cos (sin cos sin 32)(x x x x x x b a x f -++=⋅=λλ22sin cos (sin cos )cos2)x x x x x x λλ=+-=-122cos 2)2sin(2)26x x x πλλ=-=- ……………………2分 因为)(x f 的最大值为2,所以解得1=λ ………………………3分 则)62sin(2)(π-=x x f ………………………4分由23k 2622k 2πππππ+≤-≤+x ,可得:35k 2232k 2ππππ+≤≤+x ,65k 3k ππππ+≤≤+x ,所以函数)(x f 的单调减区间为⎥⎦⎤⎢⎣⎡++65,3ππππk k ……………………………6分 (Ⅱ)(法一)由bca cbc a b A 222cos 222-+=-= . 可得,22222a c b ab b -+=-即ab c a b =-+222.解得,21cos =C 即3π=C ………………………………………………9分 因为,320π<<A 所以67626πππ<-<-A ,1)62(sin 21≤-<-πA ……10分 因为0)62(sin 2)(>--=-m A m A f π恒成立,则m A >-)62(sin 2π恒成立即1-≤m . ………………………………………12分(法二)由cab A 22cos -=,可得A C A A Bc A sin )sin(2sin sin 2sin cos 2-+=-= 即0sin cos sin 2=-A C A ,解得,21cos =C 即3π=C …………9分因为,320π<<A 所以67626πππ<-<-A ,1)62(sin 21≤-<-πA ………10分 因为0)62(sin 2)(>--=-m A m A f π恒成立,则m A >-)62(sin 2π恒成立即1-≤m . ………………………………………12分 17. 证明:(Ⅰ)连接O C ,OA1,A 1B .∵CA=CB ,∴OC ⊥AB . ∵CA=AB=AA 1,∠BAA 1=∠BAC=60°, 故△AA 1B 、△ABC 都为等边三角形,∴OA 1⊥AB ,CO ⊥AB ,∴OA 、OA 1、OC 两两垂直, 以O 为原点,OA 、OA 1、OC 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系, 设CA=CB=AA 1=2,则B (﹣1,0,0),C 1(﹣1,,),O (0,0,0),A 1(0,,0),C (0,0,),=(0,),=(0,),=(0,0,),设平面OA 1C 的法向量=(1,0,0),∵=0,且BC 1⊄平面OA 1C ,∴BC 1∥平面OA 1C .解:(Ⅱ)∵AB=2,A 1C=,∴B (﹣1,0,0),C (0,0,),A 1(0,),=(1,0,),=(1,),设平面BCA 1的法向量=(x ,y ,z ),则,取x=,得,平面ABC 的法向量=(0,0,1), 设二面角A ﹣BC ﹣A 1的平面角为θ,则cos θ===.∴二面角A ﹣BC ﹣A 1的余弦值为.18.解:(Ⅰ)分别记事件甲、乙、丙、丁考试合格为,,,A B C D .由题意知,,,A B C D 相互独立,且()()12P A P B ==,()()23P C P D ==.记事件“丙、丁未签约为”F , 由事件的独立性和互斥性得:()()()()P F P CD P CD P CD =++ …………………………3分11122153333339=⨯+⨯+⨯= ………………………4分 (Ⅱ)X 的所有可能取值为0,1,2,3,4. ……………………………………5分()1155(0)()22936P X P AB P F ===⨯⨯=; ()()(1)()()P X P AB P F P AB P F ==+1155222918=⨯⨯⨯=;11511221(2)()()22922334P X P ABF P ABCD ==+=⨯⨯+⨯⨯⨯=; 11222(3)()()222339P X P ABCD P ABCD ==+=⨯⨯⨯⨯=; 11221(4)()22339P X P ABCD ===⨯⨯⨯=. 所以,X 的分布列是:………………………………11分X 的数学期望55121170123436184999EX =⨯+⨯+⨯+⨯+⨯=.…………12分19.解:(1))因为1(1)n n n S n S a n +-+=++,所以121n n a a n +=++, 所以112211()()()n n n n n a a a a a a a a ---=-+-++-+(21)(23)31n n =-+-+++(211)2n n-+=2n =,所以数列{}n a 的通项公式为2n a n =, 由132n n b b +=+,可得113(1)n n b b ++=+,所以数列{1}n b +是首项为112b +=,公比为3的等比数列,所以1123n n b -+=⋅,所以数列{}n b 的通项公式为1231n n b -=⋅-.(2)由(1)可得2112()1233n n n n n n c n --++==⋅,①, ②,②-①得221111126(1)3333n n n n T --+=+++++- (1111)111525361322313n n n n n ----++=+-=-⋅-, 所以11525443n n n T -+=-⋅. 20.解:(1)设半焦距为)0(>c c ,由题意得32,21===b a c e ,∴2,32,4===c b a ,∴椭圆1C 的标准方程为1121622=+y x .设抛物线2C 的标准方程为)0(22>=p px y ,则22==c p,∴4=p ,∴抛物线2C 的标准方程为x y 82=.(2)由题意易得两条直线的斜率存在且不为0,设其中一条直线1l 的斜率为k ,直线1l 方程为)1(-=x k y ,则另一条直线2l 的方程为)1(1--=x k y ,联立⎩⎨⎧=-=x y x k y 8)1(2得0)82(2222=++-k x k x k ,064322>+=∆k ,设直线1l 与抛物线2C 的交点为B A ,,则2224214||k k k AB +⋅+=,同理设直线2l 与抛物线2C 的交点为D C ,,则2414)1(4)1(21)1(4||22222+⋅+=-+-⋅+-=k k kkk CD ,∴四边形的面积2414421421||||2122222+⋅+⨯+⋅+⨯=⋅=k k kk k CD AB S 22428208)1(8k k k k +++=)252)(12(16)252)(12(16222242424kk k k k k k k k ++++=++++=,令2212k k t ++=,则4≥t (当且仅当1±=k 时等号成立),969416)12(16=⋅≥+=t t S . ∴当两直线的斜率分别为1和1-时,四边形的面积最小,最小值为96. 21.解:(1)函数的定义域为),(+∞-a .ax ax x a x x x g +++=++=12212)('2,记122)(2++=ax x x h ,判别式842-=∆a . ①当0842≤-=∆a 即22≤≤-a 时,0)(≥x h 恒成立,0)('≥x g ,所以)(x g 在区间),(+∞-a 上单调递增.②当2-<a 或2>a 时,方程01222=++ax x 有两个不同的实数根21,x x ,记2221---=a a x ,2222-+-=a a x ,显然21x x <(ⅰ)若2-<a ,122)(2++=ax x x h 图象的对称轴02>-=ax ,01)0()(>==-h a h . 两根21,x x 在区间),0(a -上,可知当a x ->时函数)(x h 单调递增,0)()(>->a h x h ,所以0)('>x g ,所以)(x g 在区间),(+∞-a 上递增.(ⅱ)若2>a ,则122)(2++=ax x x h 图象的对称轴02<-=ax ,01)0()(>==-h a h .,所以21x x a <<-,当21x x x <<时,0)(<x h ,所以0)('<x g ,所以)(x g 在),(21x x 上单调递减.当1x x a <<-或2x x >时,0)(>x h ,所以0)('>x g ,所以)(x g 在),(),,(21+∞-x x a 上单调递增. 综上,当22≤≤-a 时,)(x g 在区间),(+∞-a 上单调递增;当2>a 时,)(x g 在)22,22(22-+----a a a a 上单调递减,在),22(),22,(22+∞-+-----a a a a a 上单调递增.(2)由(1)知当2≤a 时,)(x g 没有极值点,当2>a 时,)(x g 有两个极值点21,x x ,且21,2121=-=+x x a x x . 2ln 1)ln()ln()()(222212121--=+++++=+a a x x a x x x g x g ,∴22ln 12)()(221--=+a x g x g 又2ln 4)2()2(221a a a g x x g +=-=+,22ln 21ln 4)2(2)()(22121+--=+-+a a x x g x g x g .记22ln 21ln 4)(2+--=a a a h ,2>a ,则02212)('2>-=-=a a a a x h ,所以)(a h 在2>a 时单调递增,022ln 212ln 42)2(=+--=h ,所以0)(>a h ,所以)2(2)()(2121x x g x g x g +>+.。
2017届山东省青岛市高三第二次模拟考试理科综合试题及答案

高三自评试题理科综合本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分300分。
考试用时150分钟。
答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在试卷和答题卡规定的位置。
第Ⅰ卷(必做,共107分)注意事项:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,不涂在答题卡上,只答在试卷上不得分。
相对原子质量: C-12 H-1 O-16 S-32 N-14一、选择题(本题包括13小题,每小题只有一个选项符合题意)1.下列关于细胞结构的说法中,正确的是A.能形成囊泡的细胞结构只有内质网和高尔基体B.DNA聚合酶和RNA聚合酶等大分子物质可以通过核孔进入细胞核C.细胞核是储存和复制遗传物质DNA和RNA的主要场所D.植物细胞的边界是细胞壁,动物细胞的边界是细胞膜2.图甲表示在二氧化碳充足的条件下,某植物光合速度与光照强度和温度的关系,图乙表示某植物的非绿色器官在氧浓度为a、b、c、d时,CO2释放量和O2吸收量的关系图,以下说法正确的是A.由图甲可知,光合作用的最适温度为30℃B.当温度为20℃、光照强度小于8千勒克司时,限制该植株光合速度的因素是温度。
C.由图乙可知,在a、b、c、d四浓度中,最适合该植物器官储藏的氧浓度是d。
D.若细胞呼吸的底物是葡萄糖,则在氧浓度为b时,厌氧呼吸消耗葡萄糖的量是需氧呼吸消耗葡萄糖的量的5倍。
3.酸碱物质在生物实验中有广泛的应用,下面有关实验中,表述正确的是A.斐林试剂中,NaOH为CuSO4与还原糖的反应创造碱性条件B.浓硫酸为溴麝香草酚蓝与酒精的显色反应创造酸性环境条件C.双缩脲试剂中,NaOH为CuSO4与蛋白质的反应创造碱性条件D.盐酸水解口腔上皮细胞可改变膜的通透性,加速健那绿进入细胞将DNA 染色4.弥漫性毒性甲状腺肿是一种常见的甲状腺疾病,患者血液中存在与促甲状腺激素受体结合的抗体,该抗体具有类似促甲状腺激素的作用,同时不会被甲状腺激素所抑制,由此可知A.弥漫性毒性甲状腺肿是一种过敏反应B.患者体内的甲状腺激素比正常人含量高C.该抗体是由浆细胞合成并分泌的,受体细胞是垂体细胞D.弥漫性毒性甲状腺肿患者体内甲状腺激素的分泌有分级调节,也有反馈调节5.现代生物进化理论认为:种群是生物进化的基本单位,下列有关种群及进化的叙述。
2017届高三二模理科参考答案(1)

2017届高三二模考试试题参考答案及评分标准理科数学一、选择题(题本大题共12道小题,每小题5分,共60分,在每题给出的四答案中,其中只有一项符合题目要求.)1-5: D C C B D 6-10: B C D B D 11-12:D D二、填空题(本大题共4小题,每小题5分共20分.把答案直接填在题中横线上.) 13. -3 14. 3 15. 0.7 16.己酉年三、解答题(本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
)17.解:(1)∵nn n a a S +=22∴2n 1n 1n 12S a a +++=+……………………………………………………..2分∴ 22n 1n n 1n 1n n 2S 2S (a a )(a a )+++-=+-+…………………………….3分 即n 1n n 1n (a a )(a a 1)0+++--=∵ n a 0>∴n 1n a a 0++>∴n 1n a a 1+-=…………………………………………………………..4分令n 1=,则21112S a a =+ ∴1a 1=或1a 0=∵ n a 0>∴1a 1=…………………………………………………………………………………………5分∴ 数列{}n a 是以1为首项,以为公差1的等差数列∴ n 1a a (n 1)d n =+-=,*n N ∈…………………………………………………………………6分 (2)由(1)知:nnn n 2nn2a 111b (1)(1)()n n 1a a +=-=-+++…………………8分∴数列{}n b 的前2016项的和为n 122016T b b b =+++L111111111(1)()()()()223342015201620162017=-+++-++-+++L 1111111111223342015201620162017=--++--+--++L …………………………………………………………………………10分112017=-+20162017=-……………………………………………………………………12分18.解:(1)证明:法一:取PD 的中点N ,连接MN ,CN.在△PAD 中,N 、M 分别为棱PD 、PA 的中点∴1MN AD 2P1BC AD 2Q P ∴ 四边形BCNM 是平行四边形∴BM CN P∵BM ⊂平面PCD ,CN ⊄平面PCD ∴BM//平面PCD ………………5分(法二:连接EM ,BE.在△PAD 中,E 、M 分别为棱AD 、PA 的中点∴MN PD P ∵AD//BC ,1BC CD AD 12=== ∴ 四边形BCDE 是平行四边形∴BE CD P ∵BE ME E ⋂=,,MN PD P ,BE CD P ∴平面BEM//平面PCD ∵BM ⊂平面BEM ∴BM//平面PCD )(2)以A 为原点,以,的方向分别为x 轴,z 轴的正方向建立空间直角坐标系xyz A -…………………………6分则)0,0,0(A ,)0,1,2(C ,)0,0,1(E . ∵点P 在底面ABCD 上的射影为A ∴PA ⊥平面ABCD∵︒=∠45ADP ∴ PA AD 2== ∴)2,0,0(P∴)2,0,1(-=,)0,1,1(=,)2,0,0(=……..7分设平面PAC 的一个法向量m (a,b,c)=r, 则c 02a b 2c 0⎧=⎨+-=⎩设a 1=,则m (1,2,0)=-r……………………………………..9分设平面PCE 的一个法向量为),,(z y x n =ρ,则⎩⎨⎧=+=-02y x z x ,设2=x ,则)1,2,2(-=n ………………………………10分∴m n cos m,n 5m n•<>==v vv v v v ……………………..11分由图知:二面角A PC E --是锐二面角,设其平面角为θ,则cos cos m,n θ=<>=u u v v …………………………12分19.解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1)目标函数为 10001200z x y =+. …………………………………………….2分 12W =时,由(1)表示的可行域和目标函数几何意义知当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=. 15W =时当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 18W =时,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.………………………………….5分 故最大获利Z 的分布列为…………………………………………………………………….7分因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯=…………………………8分 (Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+= ……………………………………………….10分 所以3天中至少有1天最大获利超过10000元的概率为3311(1)10.30.973.p p =--=-=……………………………………………………12分20.解:(1)设动圆的圆心为E (x,y)则PE =222(x 2)y 4x ++=+∴2y4x =-即:动圆圆心的轨迹E 的方程为2y4x =-…………………………….4分(2)当直线AB 的斜率不存在时,AB ⊥x轴,此时,A ((2,---∴AB CD ==12S S ==∴12S S +=………………………….5分当直线AB 的斜率存在时,设直线AB 的斜率为k ,则k 0≠, 直线AB 的方程是y k(x 2)=+,k 0≠. 设1122A (x ,y ),B (x ,y ),联立方程2y k (x 2)y 4x⎧=+⎨=-⎩,消去y ,得:22k (x 2)4x 0(k 0)++=≠,即:2222k x 4(k 1)x 4k 0(k 0)+++=≠ ∴216(2k 1)0∆=+>,21224(k 1)x x k++=-,12x x 4= ………………………………………………………………………………………………………………….7分由1122A (x ,y ),B (x ,y )知,直线AC 的方程为11y y x x =,直线AC 的方程为22y y x x =, ∴ 12122y 2y C (2,),D (2,)x x ∴ 21121212k (x x )y y CD 22x x x x -=-=∴111S (2x )CD 2=-⋅,221S (2x )CD2=-⋅……………………………………..9分∴12121S S [4(x x )]CD 0)2+=-+⋅=≠ 令21t k=,则t 0>,3212S S 4(2t),t 0+=+>由于 函数32y 4(2t)=+在(0,)+∞上是增函数……………………………………………11分∴ y >12S S +>综上所述,12S S +≥∴112S S +的最小值为12分21.解:(1)函数)(x f 的定义域为)(+∞,0 由已知:),(0)12)(1()2(21)(>++-=-+-='x x x ax a ax x x f…………………………………………………………………………………………………….2分当a x 10<<时,0)(>'x f 所以,函数)(x f 在)10a ,(上是增函数; 当a x 1>时,0)(<'x f 所以,函数)(x f 在)1∞+,(a上是减函数,综上所述:函数)(x f 的增区间是)10a ,(,函数)(x f 的减区间是)1∞+,(a.………………………………………………………………………………………………………………3分(2)设)1()1()(x af x a f xg --+=,则ax ax ax x g 2)1ln()1ln()(---+= …………………………………………………………………………………………………………………..……….5分∴2223122-1111)(x a x a a ax ax x g -=-++='…………………………………………..6分当ax 10<<时,012)(2223>-='x a x a x g ,又0)0(=g ∴0)(>x g故当a x 10<<时,).1()1(x a f x a f ->+……………………………………………………………8分(3) 由(1)知:函数)(x f 的最大值为)1(a f ,且0)1(>a f ……………………………………9分不妨设21210),0,(B ),0,(A x x x x <<,则2110x ax <<<由(2)知:0)()-11()-2(111=>+=x f x a a f x a f …………………………………….10分从而,12-2x a x >所以,.12210ax x x >+=由(1)知:.0)(0<'x f ………………………………………………………………………………………12分请考生在22、23两题中任选一题作答,如果多做,则按多做第一题计分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第Ⅱ卷
(共100分)
二、填空题:本大题共5个小题。每小题5分,共25分,把正确答案填写在答题卡 给定的横线上. 11.已知双曲线
山东省2017届普通高考模拟考试
理科数学
本试卷分为选择题和非选择题两部分,共5页,满分150分.考试时间120分钟. 注意事项:
1.答题前.考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、 县区和科类填写在答题卡上和试卷规定的位置上.
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如 需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上. 3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定 区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写 上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效 .
17.(本小题满分12分) 如图所示的几何体中,ABCA1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=
2 CD,∠ADC=45°.
(I)若AAl=AC,求证:ACl上平面A1B1CD; (Ⅱ)若CD=2, AA1 AC ,二面角A-A1C1-D的平面角的余弦值为
8 3
(B) g 1
10 3
(C)若a>b, a g b
7.已知 a sin xdx ,若从[0,10]中任取一个数x,则使 x 1 a 的概率为
0
(A)
1 5
(B)
3 10
(C)
2 5
(D)
4 5
8.如图,在三棱锥PABC中,面PAC⊥面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N为线段PC上 的点,若MN= 2 ,则三棱锥A—MNB的体积为
b 的取值范围是__________. a
三、解答题:本大题共6小题,共75分。解答应写出必要的文字说明,证明过程 或演算步骤. 16.(本小题满分12分)
-3-
如图,在梯形ABCD中,AB∥CD,AD=6, ADC . (I)若 CAB
1 3
4
,求AC的长;
(Ⅱ)若BD=9,求△ABD的面积.
1 4.将函数 f x cos x 图象上所有点的横坐标缩短为原来的 倍,纵坐标 2 6
不变,得到 g x 的图象,则函数 g x 的一个减区间为
5 (A) , 12 12 11 (B) , 6 6 (C) , 6 3 5 (D) , 3 3
5.已知 tan x 2 ,则sin2x= 4
(A)
3 5
(B)
3 5
(C)
4 5
(D)
4 5
6.已知 f x , g x 分别是定义在R上的奇函数和偶函数,若 f x g x 3x , 则下列结论正确的是 (A) f 1
2 5 ,求 的值. 5
18.(本小题满分12分) 已知等差数列{an}的前几项和为Sn,且a2=6,S5=45;数列{bn}前n项和为Tn,且Tn2 bn +3-0. (I)求数列{an},{bn}的通项公式;
bn , n为奇数 , (Ⅱ)设 cn 求数列的前n项和 Q n . an , n为偶数
x2 y 2 1 的一条渐近线与直线 l : 3 x y 1 0 垂直,则此双 a2
曲线的焦距为______________. 12.已知条件 p : x 2 3 x 2 0 ;条件 q : x m ,若 p 是 q 的充分不必要条件 ,则实数m的取值范围是_______________. 13.执行如图所示的程序框图,输出的k值为______________. 14.现有5名教师要带3个兴趣小组外出参加培训,要求每个兴趣小组的带队 教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有 ______种. 15.已知正数 a, b 满足 5 3a b 4 a, ln b a, ,则
-1-
3.甲、乙两名运动员的5次测试成绩如图,设s1 ,s2分别表示甲、乙两名运动员测试成绩的标准 差, x1、x2 分别表示甲、乙两名运动员测试成绩的 平均数,则有 (A) x1 x2,s1 s2 (C) x1 x2,s1 s2 (B) x1 x2,s1 s2 (D) x1 x2,s1 s2
第I卷
(共50分)
一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项 中。只有一项是符合题目要求的. l.已知i是虚数单位,复数z满足
z i ,则z的模是 1 z 1 2
(A)
2
(B)
2 2
(C)1
(D)
2.已知m,n∈R,集合A={2,log7 m},B={m,2n},若A ∩B={l},则m+n= (A)5 (B)6 (C)7 (D)8
19.(本小题满分12分) -4-
某高中为适应“新高考模式改革”,满足不同层次学生的需要,决定从高一年级 开始,在每周的周二、周四、周五的课外活动期间同时开设物理、化学、生物和 信息技术辅导讲座。每位有兴趣的同学可以在任何一天参加任何一门科目的辅导 讲座,也可以放弃任何一门科目的辅导讲座(规定:各科达到预定的人数时称为 满座,否则称为不满座).统计数据表明,以上各学科讲座各天满座的概率如下 表:
-2-
(A)
2 3
(B)
3 3
(C)
2 3
(D)
1 3
9.对于同一平面内的单位向量a,b,c,若a与b的夹角为60°,则(a-b)·(a2c)的最大值为 (A)
3 2
(B) 2
(C)
5 2
(D) 3
10.已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1, 1],使得2x+y2ey-a=0成立,则实数a的取值范围是