基于CATIA的渐开线型车桥凸轮轴头部参数化设计

合集下载

CATIA二次开发(CAA)技术基础之零件设计

CATIA二次开发(CAA)技术基础之零件设计

第五章零件设计5.1零件设计环境图5.1零件设计环境零件设计环境中,MyPart1中包含参考平面(包括XY平面、YZ平面、ZX平面)、轴系、参数、几何图形集、有序几何图形集、零件几何体、几何体、集合中的几何体等节点.几何图形集是无序建模,一般全曲面建模就是他比较管用;有序几何图形集,他里面可以包含集合中的几何体,几何图形集,几何特征,但建模方式是有序的;几何体是直接插入零件环境下,他里面可以包含几何图形集,有序几何图形,几何特征,但建模方式是有序的;集合中的几何体在插入前会询问用户,他可以放在树的根目录下也可以放在有序几何图形集里面,还可以在插入的同时把有序几何图形集里的特征集合到(集合中的几何体)里面。

5.2零件设计接口介绍5.2。

1操纵零件的一般步骤图5.2操纵零件的主要接口及步骤5.2。

2获得CA TIPrtPart参考代码如下:CA TIPrtContainer_var spPrtContainer=spContainer;CA TIPrtPart_var spPrtPart=spPrtContainer—〉GetPart();5.2。

3获得零件下所有节点方法一:利用CA TIDescendants接口CA TIDescendants_var spDescendantsOnPart=spPrtPart;CA TListV alCA TISpecObject_var spSpecObjects;piDescendantsOnPart—〉GetAllChildren("CA TI SpecObject”,spSpecObjects);方法二:利用CA TContainer中的ListMembersHere方法SEQUENCE(CA TBaseUnknown_ptr)ListObj;long NbObj=piRootContainer—〉ListMembersHere(”CA TISpecObject",ListObj);for(int j=0;j〈NbObj;j++)//注意从0开始{}注意:”CATISpecObject”表示将所有的节点列出,如果想要只列出某种元素,可以将该参数设置为相应的接口,例如”CATPoint"表示所有的点。

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化建模及运动仿真作者:许昌军 指导老师:朱梅(安徽农业大学工学院 07机械设计制造及其自动化 合肥230036)摘要:文章介绍了运用参数化三维软件CATIA对渐开线直齿轮及斜齿轮进行参数化三维建模。

通过GSD模块中的fog方式生成参数方程建立渐开线,再通过镜像、剪切、特征阵列等命令建立齿轮轮廓,通过拉伸、开槽等命令建立渐开线齿轮三维模型,大大提高了设计人员的工作效率。

然后用建模的直齿轮创建直齿轮库,最后进入电子样机运动模块(KIN)对两啮合齿轮进行运动仿真及干涉分析。

关键词:参数化 CATIA 运动仿真 渐开线直齿轮1 引言本文基于CATIA 的三维建模环境, 设计开发了渐开线直齿轮参数化设计系统,建立零件的3D模型, 为渐开线直齿轮的传动、仿真、优化设计、有限元分析打下基础。

用户只需根据修改齿轮参数就可以生成新的渐开线直齿轮, 减少繁琐复杂的重复劳动, 从而大大提高设计效率。

1.1CATIA软件介绍CATIA(Computer Aided Tri-dimensional Interface Application) 是法国达索(Dassault Systemes)飞机公司于1975年开始发展起来的一整套完整的3D CAD/CAM/CAE软件,CATIA V5作为新一代的CATIA版本,提供更多的新功能,其界面更加人性化,基于Windows的操作界面非常友好,因此使得复杂、枯燥的设计工作变得轻松而又愉快。

CATIA以强大的曲面设计功能在飞机、汽车、轮船等设计领域享有很高的荣誉。

2 CATIA参数化设计分析基于特征参数化设计的关键是特征及其相关尺寸、公差的描述,包括数据特性描述、规则特性描述、关系特性描述。

数据特性描述包含特征的静态信息和制造特性;规则或方法属性定义特征特定的设计和制造特性;关系特性描述特征间的相互依赖关系或定义形状特征间的位置关系。

形状特征实际上是几何实体的无任何语义的结构化组合,形状特征月特征(语义特征)间是一对多的关系,这体现了特征的应用多视角性。

基于CATIA的渐开线内齿轮参数化辅助设计

基于CATIA的渐开线内齿轮参数化辅助设计

2.1 设置参数变量
(1)启动 CATIA V5 进入创成式曲面设计(Generative shape Design)模块。
(2)用 Knowledge 工具栏中的公式 f (x) 功能,设置内齿轮的主要参数 m 、 z 、α ,
60 参数类型如表 1。
(3)再次用 f (x) 功能,插入辅助参数 d 、 db 、 d f 、 da ,应用 Formula 对其进行公
40 1 内齿轮渐开线数学模型
如图 1 所示,当一直线 n – n 沿一个圆的圆周作纯滚动时,直线上任意一点 K 的轨迹
作者简介:高明峰,(1985-),男,硕士,主要从事:先进设计理论研究 通信联系人:李苏红,(1964-),男,副教授,主要研究方向:CAD&CG 的研究. E-mail: lish02@
d f = d + 2hf
db
Length
db = d cosα
c
Length
c = c*m
2.3 齿形的绘制
75
在绘制齿形渐开线以前,先引进一个实数型的参数 t 。在这里令 t ∗ PI = ϕ ,其中 PI 代
表圆周率,公式(1)相应地变成如下形式:
⎧ ⎨ ⎩
x y
= =
rb rb
∗ ∗
sin(t ∗ PI cos(t ∗ PI
符号
参数类型
公式 / 初值
性质
m
Real
4 mm

z
Integer
20

α
Angle
20 D

d
Length
d = mz
h a*
Real
1
c*
Real

渐开线齿轮UG参数化设计的几个关键问题

渐开线齿轮UG参数化设计的几个关键问题

渐开线齿轮UG参数化设计的几个关键问题庄宿涛;孟晓军【摘要】This paper establishes involute, tooth root transition curve symmetrical equations, accurately calculates the value of parametric equations and boundaries of the gear teeth of different forms of modeling, provides back-bevel gear cone base plane coordinate system to establish the baseline method. The solution of the parameters of the key problems ensures the authenticity of the gear tooth profile, avoids the loss of asymmetry and the problem parameters, and achieves a gear design of the real model parameters.%建立渐开线、齿根过渡曲线对称方程,精确计算方程参变量取值及不同建模形式的分界齿数,提供锥齿轮背锥基准平面与基准坐标系建立方法,参数化关键问题的解决保证了齿轮齿廓曲线的真实性,避免了齿廓不对称和参数丢失问题,真正实现了齿轮建模的参数化设计.【期刊名称】《泰山学院学报》【年(卷),期】2011(000)006【总页数】4页(P59-62)【关键词】齿轮;参数化;分界齿数;对称方程;基准【作者】庄宿涛;孟晓军【作者单位】泰山学院建筑与机械工程系,山东泰安271021;泰山学院建筑与机械工程系,山东泰安271021【正文语种】中文【中图分类】TH132.41参数化设计,就是以一组参数来映射产品的几何特征,通过参数的设置和程序编辑,可以快速地实现一系列形状相似的模型的重新设计[1].齿轮机构是现代机械中应用最广泛的一种传动机构,现代齿轮机构的设计建模、有限元分析与优化以及虚拟装配技术有着广泛的工程应用背景和研究意义.目前,基于三维设计软件的渐开线齿轮的参数化设计方法中,基于结构生成历程的方法是采用较为普遍的方法,但应用该方法建模存在齿廓曲线不对称、参数丢失和无法实现参数化问题.本文在剖析齿轮原理的基础上,结合软件参数化功能,分析与解决了影响渐开线齿轮参数化设计的几个关键问题.1 齿廓曲线构成的判断当db<df时,齿廓曲线全部由渐开线构成,当db>df时,齿廓曲线由渐开线与齿根过渡曲线构成,分界齿数是以上两种情况的直接判断.(1)标准渐开线直齿圆柱齿轮:直齿圆柱齿轮的分界齿数为41齿.(2)标准渐开线直齿圆柱齿轮:斜齿圆柱齿轮分界齿数与螺旋角β有关,β常在8°~20°之间选择,根据公式可获得各螺旋角β对应的分界齿数Z,如β=15°,z=37.(3)标准渐开线直齿圆锥齿轮:圆锥齿轮的当量分界齿数为41齿.2 齿廓曲线方程2.1 渐开线方程精确建模需要获得齿轮齿廓曲线.使用点关于直线对称的坐标计算公式实现对称渐开线的生成,可避免使用“变换”这一非参数化功能指令.图1渐开线关于y=tanγ×x对称,γ=360°/(4×z)+inva,渐开线函数inva=tan a×180/π-a.a为压力角.渐开线1的方程为则渐开线2的方程为此方程使用直齿圆柱齿轮与直齿圆锥齿轮,对于斜齿圆柱齿轮,应生成前、后端面齿廓.图1 对称渐开线图2 前后端面对称渐开线图2中渐开线1、2关于y=tanγ×x对称,γ=360°/(4×z)+inva,at为端面压力角,渐开线函数invat=tan at×180/π-at;渐开线2、3关于y=tanγ1×x对称,γ1=γ+β1/2;渐开线3、4关于y=tanγ2×x对称,γ2=γ+β1,β1为轮齿前后端面螺旋旋转角度,β1=h×360°/P,h为齿宽,螺旋齿螺距p= πd/tan|β|,d为分度圆直径,β为分度圆螺旋角,因斜齿轮左右旋使用β的±表示,所以β应取绝对值.利用对称性可得所有渐开线对称方程,借助投影可得前、后端面齿廓.2.2 齿根过渡曲线方程对于db>df的齿轮,基圆与齿根圆之间的齿廓曲线是齿根过渡曲线,齿根过渡曲线方程[2]:刀具圆角坐标过渡曲线方程变量:v=(1-t)a+90t;齿条刀具圆角半径:r0=0.3m;刀具齿顶高系数:hac=1.25;刀具坐标与齿轮坐标夹角:θ=(hacm-r0)/(r tan v);r为节圆半径.通过坐标旋转实现齿根过渡曲线与渐开线相连接,连接点C点坐标为t=0即v=a 时的xt,yt:刀具圆角坐标刀具坐标与齿轮坐标夹角:θ1=(hacm-r0)/(r tanα).渐开线C点半径应与过渡曲线 C点半径相等其起始角度a=tanαc×180°/π,αc=arccos(rb/rc),则坐标旋转角度:坐标旋转后齿根过渡曲线方程:2.3 方程参变量为避免由于渐开线修剪出现齿廓曲线不对称和参数丢失问题,应对渐开线生成时起始、终止角度加以定量控制.渐开线齿顶终止角度即t=1时u=b的大小:由齿顶的压力角aa=arccos(rb/ra)得:tan2 aa=(1-cos2 aa)/cos2 aa=r2a/r2b-1,所以渐开线终止角度b=u=tan aa×180°/π.同理可控制渐开线起始角度a=tan ac×180°/π,ac=arccos(rb/rc).3 锥齿轮背锥基准平面与基准坐标系锥齿轮大端参数为标准值,因大端球面渐开线无法展开,用近似法将大端球面齿形向背锥投影研究其齿廓曲线,背锥基准平面与基准坐标系是参数化建模的关键,其正确与否直接关系到参数化建模的成败.利用草图曲线功能生成等顶隙齿坯草图(图3)[3].图3 锥齿轮齿坯草图3.1 背锥基准平面(1)做OA与AB重合,OE与圆锥轴线重合,两者交于O点;(2)创建草图选择创建平面选项,使用点和方向平面指令选择OA线上O点创建Ⅰ平面,在该平面沿yc做直线OF,约束其与OA在O点重合;(3)创建草图选择创建平面选项,使用成一角度(90°)平面指令选择Ⅰ平面为平面对象,OF为线性对象创建Ⅱ平面,即为背锥基准平面,如图4所示.3.2 背锥基准坐标系(1)在Ⅱ平面做OG与OA成γ3=360°/(4×z)-inva,约束OG与OA在O点重合;(2)创建草图选择创建平面选项,使用点和方向平面指令选择OG线上O点创建Ⅲ平面,在该平面沿yc做直线OH,约束其与OG在O点重合;(3)插入基准CSYS,以OG为X轴,以OH为Y轴,O点为原点创建背锥基准坐标系,如图4所示.图4 背锥基准平面与基准坐标系4 结语建立渐开线、齿根过渡曲线对称方程,精确计算方程参变量取值控制曲线起始、终止角度,通过三维设计软件表达式,借助规律曲线功能可直接生成齿廓曲线,无需进行曲线修剪、变换;以分界齿数为齿轮不同建模形式的直接判断,保证了齿轮齿廓曲线的真实性;提供了锥齿轮背锥基准平面与基准坐标系建立方法,为规律曲线的生成指定了正确的CSYS参考;齿轮参数化设计中的几个关键问题的解决,真正实现了齿轮建模的参数化驱动,大大提高模型的生成和修改的速度,在产品的系列设计、相似设计及专用CAD系统开发方面都具有较大的应用价值.[参考文献][1]周虹,仉毅.基于UG的渐开线齿轮参数化设计与实现[J].机械设计与制造,2007,(2):78-79.[2]李玉龙,刘焜,鲍仲辅.基于渐开线齿轮展成法的参数化精确建模[J].现代制造工程,2006,(9):70-72.[3]文立阁,李剑桥,侯洪生.利用UG实现圆锥齿轮参数化设计[J].机械设计与制造,2008,(3):183-184.。

CATIA链轮参数化设计及零件库构建

CATIA链轮参数化设计及零件库构建

CATIA链轮参数化设计及零件库构建刘文莲;桑运春;谢丽华【摘要】建立的标准链轮智能3D模型系统,可根据标准链轮型号、齿数、排数等基本参数进行自动选型。

阐述了VB环境下运用CATIA 对链轮进行参数化设计,结合数据库技术与标准链轮数据进行连接,完成了链轮零件库的构建。

%In the intelligent standard sprocket 3D parametric system ,the parameters suchas the type , teeth and rows of the standard sprocket can be automated selected and matched up .Here we discuss the design process with CATIA software under VB environment in which the data is connected with the standard data base to build the parts library .【期刊名称】《长春工业大学学报(自然科学版)》【年(卷),期】2015(000)002【总页数】6页(P143-148)【关键词】CATIA;参数化;链轮;零件库【作者】刘文莲;桑运春;谢丽华【作者单位】青岛理工大学琴岛学院机电工程系,山东青岛 266000;青岛四方庞巴迪铁路运输设备有限公司,山东青岛 266000;青岛理工大学琴岛学院机电工程系,山东青岛 266000【正文语种】中文【中图分类】TH131.70 引言链传动通常应用在轴间中心距较大、多轴,要求平均传动比准确、环境比较恶劣的传动场合[1],在化工、纺织机械、食品加工、仪表仪器、石油等行业得到广泛应用。

随着CAD技术的发展,在产品开发过程中,三维建模已经成为有限元分析、装配设计、运动仿真、数控加工等必不可少的基础[2]。

利用Catia绘制渐开线斜齿轮-无需描点解读

利用Catia绘制渐开线斜齿轮-无需描点解读

利用 Catia 绘制渐开线斜齿轮————个人学习总结最终所要建立的齿轮模型一、首先,所绘齿轮参数如下: 齿轮轮廓参数:齿数(整数 :z=25模数(长度 :m=2.25mm齿宽(长度 :B=25mm齿顶高系数(实数 :ha'=1径向间隙系数(实数 :c'=0.25压力角(角度:α=20deg螺旋角(角度:β=30deg端面模数:mt=m/cosβ端面压力角:αt=arctan(tanα/cosβ分度圆半径:r=mt*z/2齿顶圆半径:ra=r+m*ha*齿根圆半径:rf=r-m*(ha*+c*基圆半径径:rb=r*cosαt齿根过度半径:ρ=c**m/(1-sinα螺旋线导程:S=2*PI*r/tanβ 二、参数输入过程(1打开 Catia V5,从开始菜单进入形状中的创成式外形设计,如下图:可以启用混合设计或创建几何图形集,这里选择创建几何图形集。

进入后, 根据以上参数完成参数和关系的输入。

步骤如下:点击图标中的 f(x打开如下对话框利用新建类型参数和添加公式按钮完成以上参数的输入及相应设置。

最终输入后的结果在展开树中的形式如下图:(2利用规则 fog(在图标的设计表下拉菜单中选择完成渐开线函数的输入x=rb*sin(t*PI-rb*cos(t*PI*t*PI y=rb*cos(t*PI+rb*sin(t*PI*t*PI此对话框为 x 规则的建立, y 规则的建立与此相同; 其中参数类型 t 为实数, x、y 均为长度。

三、渐开线的绘制(1建立原点,即点.1,根据点建立一直线(xy平面的法线 ,长度为 rb。

(2利用平行曲线功能完成两曲线的绘制具体步骤为,点击平行曲线功能打开如下对话框:此对话框为平行.1曲线的输入参数,曲线处选择先前建立的直线,之后点击法则曲线, 选择关系中的 fogx, 关闭法则曲线对话框, 支持面处选择 yz 平面。

平行.2曲线的建立不同之处在于, 点击法则曲线之后, 选择关系中的 fogy, 支持面处选择 zx 平面。

基于AutoLISP的渐开线圆柱齿轮参数化设计及绘图系统

基于AutoLISP的渐开线圆柱齿轮参数化设计及绘图系统
2.利用DCL文件创建自己的对话框,以齿轮轴为例。输入界 面如图l所示,程序如下:
chjlunzhou:dialogf label=”齿轮轴参数输入-.; :column( :boxed_column flabel=”齿轮轴结构预览:”;
:image{width=30;height=15;key=”img_z”;color=-2;l l

息Ⅲ 术D 信n 技舭 一一■流 ●蕾 ■
■●■■一 ■■一密■ ■■一■ ■■一




■■
郑州机械研究所王永郭钢蒋晶黄红涛潘军远
圆柱齿轮在机械产品中应用十分广泛.并且品种、规格繁 多。长期以来。在齿形上以采用渐开线齿形为主。其传动的速度 和功率范围很大且效率较高。对中心距的敏感性小。装配和维 修方便。可以进行变位切削及各种修形、修缘.从而提高传动质 量。易于进行精密加工,可以取得高精度,是各种齿轮中应用最 为广泛的一种齿轮。考虑到传统设计费时费力,且容易出错。 本文应用AutoLISP语言二次开发出渐开线圆柱齿轮的设计及绘 图系统,实现二维参数化绘制工程图,将设计人员从大量繁琐的 计算和绘图中解放出来,实现渐开线圆柱齿轮精确和快速的绘 制。
}..…‘11. 3.初始化绘图环境及选择坐标系。绘图环境是对 AUTOCAD的系统变量进行保存,并在绘图完成后恢复原来的设 定状态,包括绘图比例、图纸幅面、线型、图层、尺寸标注形式和 文字样式等。初始化程序代码应放在绘图程序的最前端。 4.基本绘图参数的选择。绘制齿形部分需要7个参数,即齿 轮旋向、齿轮模数、一对啮合齿轮的齿数、齿轮啮合中心距、螺旋
”c” l ”center2”
nC”3’'dim”——o’
”e”2”hidden2”
”l” “center2” ”center2””l” ”hidden2” ”hidden2”

CATIA关于30°渐开线内花键的参数化建模

CATIA关于30°渐开线内花键的参数化建模

CATIA关于30°渐开线内花键参数化建模数模:左侧数模为圆齿根花键套,右侧的为平齿根。

关于渐开线花键,国家有专门的标准“GB/T 3478.1-2008圆柱直齿渐开线花键”。

数模是根据这个标准建立的。

开线花键的标准参数:模数:m齿数:z分度圆压力角:αD分度圆直径:D=mz基圆直径:D b=mzcosαD内花键大径:30°平齿根D ei=m(z+1.5)30°圆齿根D ei=m(z+1.8)内花键小径:30°平齿根和圆齿根 D ii=F e max+2C F外花键渐开线起始圆直径最大值:D Fe max=2(0.5D b)2+(0.5DsinαD−h s−0.5es vD/sinαD)2无名参数:h s=0.6m外花键作用齿厚上偏差:es V齿形裕度:C F=0.1m可以看出,内花键的小径,与外花键渐开线起始圆直径的最大值有关。

es V需要查表获得,个别的公差等级,还需要通过公式计算。

为了建模方便,定义内外花键的配合为H/h,这样es V=0。

渐开线内花键平齿根和圆齿根,大径公式存在差别,齿顶过渡圆角公式存在差别。

如果先建立了其中一个类型的数模,完全可以通过修改基本公式,生成另一个类型的数模。

当m、z、αD三个基本参数确定后,渐开线花键的所有几何特征,就都可以解析了。

比如分度圆直径、齿顶圆直径、齿根圆直径等公式。

而建立渐开线齿形,还需要用到基圆直径公式,以及生成渐开线的2个变量方程式。

下面开始数模的建立(CATIA版本V5 R21):取消零件设计里的“启用混合设计”。

一、CATIA设置1)显示精度设置点选菜单栏里的“工具—选项”,在窗口中左侧目录树上,选择“常规—显示”,在右侧窗口中选择“性能”。

把“3D精度”设置成0.05;把“2D精度”设置成0.02。

2)读写精度设置点选菜单栏里的“工具—选项”,在窗口中左侧目录树上,选择“常规—参数和测量”,在右侧窗口中选择“单位”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档