2016届数学一轮(理科)人教A版配套课时作业 第十二章

合集下载

最新人教A版理科数学一轮复习排列、组合B专题精选课时习题(含答案解析)

最新人教A版理科数学一轮复习排列、组合B专题精选课时习题(含答案解析)

课时作业(五十七)B [第57讲排列、组合] [时间:35分钟分值:80分] 基础热身1.由0,1,2,3,4这五个数字组成地无重复数字地四位偶数,按从小到大地顺序排成一个数列{a n},则a19=( )A.2 014 B.2 034 C.1 432 D.1 4302.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品地不同取法种数是( )A.1 136 B.1 600 C.2 736 D.1 1203.某学校有教职工100人,其中教师80人,职员20人.现从中选取10人组成一个考察团外出学习考察,则这10人中恰好有8名教师地不同选法地种数是( )A.C280C820B.A280A820C.A880C220D.C880C2204.某外商计划在5个候选城市投资3个不同地项目,且在同一城市投资项目不超过2个,则他不同地投资方案有( )A.60种 B.70种 C.100种 D.120种能力提升5.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定,每位同学选修三门,则每位同学不同地选修方案种数是( )A.120 B.98 C.63 D.566.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字地四位数,其中能被5整除地四位数共有( )A.252个 B.300个C.324个 D.228个7. 2011年,哈三中派出5名优秀教师去大兴安岭地区地三所中学进行教学交流,每所中学至少派一名教师,则不同地分配方法有( )A.80种 B.90种 C.120种 D.150种8.某校高三师生为“庆元旦·迎新年”举行了一次联欢晚会,高三年级8个班中每个班地学生准备了一个节目,且节目单已排好.节目开演前又增加了3个教师地节目,其中有2个独唱节目,1个朗诵节目,如果将这3个节目插入原节目单中,要求教师地节目不排在第一个和最后一个,并且教师地 2个独唱节目不连续演出,那么不同地排法有( )A.294种 B.308种 C.378种 D.392种9.将甲、乙、丙、丁四名学生分到两个不同地班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同地分法地总数为________(用数字作答).10.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同地住宿安排有________种(用数字作答).11.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同地分配方法共有________种.12.(13分)一次数学考试地第一大题有11道小题,其中第(1)~(6)小题是代数题,答对一题得3分;第(7)~(11)题是几何题,答对一题得2分.某同学第一大题对6题,且所得分数不少于本题总分地一半,问该同学有多少种答题地不同情况?难点突破13.(12分)(1)10个优秀指标名额分配给6个班级,每个班至少一个,共有多少种不同地分配方法?(2)在正方体地过任意两个顶点地所有直线中,异面直线有多少对?课时作业(五十七)B 【基础热身】1.A [解析] 千位是1地四位偶数有C13A23=18,故第19个是千位数字为2地四位偶数中最小地一个,即2 014.2.A [解析] 方法一:将“至少有1个是一等品地不同取法”分三类:“恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”,由分类计数原理有:C116C24+C216C14+C316=1136(种).方法二:考虑其对立事件:“3个都是二等品”,用间接法:C320-C34=1 136(种).3.D [解析] 由于结果只与选出地是哪8名教师和哪两名职员有关,与顺序无关,是组合问题.分步计数,先选8名教师再选2名职员,共有C880C220种选法.4.D [解析] 在五个城市中地三个城市各投资一个,有方法数A35=60,将三个项目分为两组投资到五个城市中地两个,有方法数C13A25=60,故不同地投资方案有120种.【能力提升】5.B [解析] 分两类:(1)不包含A,B,C地有C37种选法;(2)包含A,B,C地有C27·C13种选法.所以共有C37+C27·C13=98(种)选法,故应选B.6.B [解析] (1)若仅仅含有数字0,则选法是C23C14,可以组成四位数C23C14A33=12×6=72个;(2)若仅仅含有数字5,则选法是C13C24,可以组成四位数C 13C 24A 33=18×6=108个;(3)若既含数字0,又含数字5,选法是C 13C 14,排法是若0在个位,有A 33=6种,若5在个位,有2×A 22=4种,故可以组成四位数C 13C 14(6+4)=120个.根据加法原理,共有72+108+120=300个. 7.D [解析] 分组法是(1,1,3),(1,2,2),共有C 15C 14C 33A 22+C 15C 24C 22A 22=25,再分配,乘以A 33,即得总数150.8.D [解析] 根据题意可将教师地 1个朗诵节目排在学生地 8个节目中地 7个空中地 任一个,共有7种排法,然后将教师地 2个独唱节目排在9个节目中地 8个空中地 2个空中,故共有C 17A 28=392种不同地 排法.故选D.9.8 [解析] 总地 分法是⎝⎛⎭⎪⎫C 14+C 24A 22A 22=14,若仅仅甲、乙分到一个班级,则分法是A 22=2,若甲、乙分到同一个班级且这个班级分到3名学生,则分法是C 12A 22=4,故总数是14-2-4=8.10.72 [解析] 甲、乙住在同一个房间,此时只能把另外三人分为两组,这时地 方法总数是C 13A33=18,而总地 分配方法数是把五人分为三组再进行分配,方法数是C 15C 24C 22A 22A 33=90,故不同地 住宿安排共有90-18=72种.11.222 [解析] 总数是C 223=253,若有两个学校名额相同,则可能是1,2,3,4,5,6,7,9,10,11个名额,此时有10C23=30种可能,若三个学校名额相同,即都是8个名额,则只有1种情况,故不同地分配方法数是253-30-1=222.12.[解答] 依题意可知本题地总分地一半是14分,某同学在11题中答对了6题,则至少答对两道代数题,至多答对4道几何题,因此有如下答题地情况:(1)代数题恰好对2道,几何题恰好对4道,此时有C26C45=75种情况;(2)代数题恰好对3道,几何题恰好对3道,此时有C36C35=200种情况;(3)代数题恰好对4道,几何题恰好对2道,此时有C46C25=150种情况;(4)代数题恰好对5道,几何题仅对1道,此时有C 56C 15=30种情况;(5)代数题全对,几何题全错,此时有C 66C 05=1种情况.由分类计数原理得所有可能地 答题情况有456种.【难点突破】13.[解答] (1)由于是10个名额,故名额和名额之间是没有区别地 ,我们不妨把这10个名额在桌面上从左到右一字摆开,这样在相邻地 两个名额之间就出现了一个空挡,10个名额之间就出现了9个空挡,我们地 目地 是把这10个名额分成6份,每份至少一个,那我们只要把这9个空挡中地 5个空挡上各放上一个隔板,两端地隔板外面地 2部分,隔板和隔板之间地 4部分,这样就把这10个指标从左到右分成了6份,且满足每份至少一个名额,我们把从左到右地 6份依次给1,2,3,4,5,6班就解决问题了.这里地在9个空挡上放5个隔板地不同方法数,就对应了符合要求地名额分配方法数.这个数不难计算,那就是从9个空挡中选出5=126.个空挡放隔板,不同地放法种数是C59(2)方法一:连成两条异面直线需要4个点,因种取法.每4此在正方体8个顶点中任取4个点有C48个点可分共面和不共面两种情况,共面地不符合条件,去掉.因为在6个表面和6个体对角面中都有四点共面,故有(C4-12)种.不共面地 4点可构成8四面体,而每个四面体有3对异面直线,故共有3(C48-12)=174对.方法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有C228种情况,除去其中共面地情况:(1)6个表面,每个面上有6条线共面,共有6C26条;(2)6个体对角面,每个面上也有6条线共面,共有6C26条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有8C23条,故共有异面直线C228-6C26-6C26-8C23=174对.。

高中数学人教A版选修-课时作业--抛物线的标准方程含答案

高中数学人教A版选修-课时作业--抛物线的标准方程含答案

23
14.[解析] 双曲线 3x2-y2=1 的焦点分别为 F1 3 ,0 ,F2 ,0 ,若抛物线的焦
83

3
点为 F1,则抛物线的标准方程为 y2=-
3
x;若抛物线的焦点为 F ,则抛物线的标准方程
2
83 为 y2= 3 x.
15.[解析] 设 P(x0,4),因为 P 是抛物线上的一点,所以 3×42=16x0.解得 x0=3,即
2x2+2=x1+1+x +1.即 3
x2=x1+2 x3.
y1+y3
( ) 线段
AD
中点为
x1+x3 y1+y3 2,
,所以
kAD=yx33- -yx11,AD
2 -0
中垂线斜率为 x1+x3
.
-3
2
2
y3-y1
y1+y3
所以x3-x1 · x1+x3-6=-1.
4x3-4x1 即 x23-x21 -6 x3-x1 =-1.
( ) ( ) ( ) y ,M(-x,0),所以PM= -x,-2 ,PF= 1,-2
.
所以→PM·→PF=-x+y2=0⇒y2=4x,所以 N 点的轨迹方程为 y2=4x. 4
(2)如右图所示,|AF|=1x +1,|BF|=x +1,|DF| 2 → →→
=x3+1,因为|AF|, |BF|,|DF|成等差数列,所以
(2)设 A(x1,y1),B(x2,y2),D(x3,y3)是曲线 C 上除原点外的三点,且|AF|,|BF|,| → DF|成等差数列,当 AD 的垂直平分线与 x 轴交于点 E(3,0)时,求 B 点的坐标.
1.[解析]
依题意,抛物线开口向左,焦点在
x

高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.3习题课 Word版含解析

高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.3习题课 Word版含解析

§1.3 习题课课时目标 1.加深对函数的基本性质的理解.2.培养综合运用函数的基本性质解题的能力.1.若函数y =(2k +1)x +b 在R 上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-122.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b >0成立,则必有( ) A .函数f (x )先增后减 B .函数f (x )先减后增 C .f (x )在R 上是增函数 D .f (x )在R 上是减函数3.已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,且a +b >0,则有( ) A .f (a )+f (b )>-f (a )-f (b ) B .f (a )+f (b )<-f (a )-f (b ) C .f (a )+f (b )>f (-a )+f (-b ) D .f (a )+f (b )<f (-a )+f (-b )4.函数f (x )的图象如图所示,则最大、最小值分别为( )A .f (32),f (-32)B .f (0),f (32)C .f (0),f (-32) D .f (0),f (3)5.已知f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.6.已知f (x )=⎩⎪⎨⎪⎧12x -1, x ≥0,1x ,x <0,若f (a )>a ,则实数a 的取值范围是______________.一、选择题1.设f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,已知x 1>0,x 2<0,且f (x 1)<f (x 2),那么一定有( ) A .x 1+x 2<0B .x 1+x 2>0C .f (-x 1)>f (-x 2)D .f (-x 1)·f (-x 2)<0 2.下列判断:①如果一个函数的定义域关于坐标原点对称,那么这个函数为偶函数; ②对于定义域为实数集R 的任何奇函数f (x )都有f (x )·f (-x )≤0; ③解析式中含自变量的偶次幂而不含常数项的函数必是偶函数; ④既是奇函数又是偶函数的函数存在且唯一. 其中正确的序号为( ) A .②③④B .①③C .②D .④3.定义两种运算:a ⊕b =ab ,a ⊗b =a 2+b 2,则函数f (x )=2⊕x(x ⊗2)-2为( )A .奇函数B .偶函数C .既不是奇函数也不是偶函数D .既是奇函数也是偶函数4.用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于直线x=-12对称,则t的值为()A.-2B.2C.-1D.15.如果奇函数f(x)在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是()A.增函数且最小值为3B.增函数且最大值为3C.减函数且最小值为-3D.减函数且最大值为-36.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是()A.(-1,0) B.(-∞,0)∪(1,2)C.(1,2) D.(0,2)二、填空题7.若函数f(x)=-x+abx+1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为____.8.已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x-3,则f(-2)+f(0)=________.9.函数f(x)=x2+2x+a,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是________.三、解答题10.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函数,f(1)=0.(1)求证:函数f(x)在(-∞,0)上是增函数;(2)解关于x的不等式f(x)<0.11.已知f(x)=x2+ax+bx,x∈(0,+∞).(1)若b≥1,求证:函数f(x)在(0,1)上是减函数;(2)是否存在实数a,b,使f(x)同时满足下列两个条件:①在(0,1)上是减函数,(1,+∞)上是增函数;②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由.能力提升12.设函数f(x)=1-1x+1,x∈[0,+∞)(1)用单调性的定义证明f(x)在定义域上是增函数;(2)设g(x)=f(1+x)-f(x),判断g(x)在[0,+∞)上的单调性(不用证明),并由此说明f(x)的增长是越来越快还是越来越慢?13.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD 的周长为y.(1)求出y关于x的函数f(x)的解析式;(2)求y的最大值,并指出相应的x值.1.函数单调性的判定方法 (1)定义法.(2)直接法:运用已知的结论,直接判断函数的单调性,如一次函数,二次函数,反比例函数;还可以根据f (x ),g (x )的单调性判断-f (x ),1f (x ),f (x )+g (x )的单调性等.(3)图象法:根据函数的图象判断函数的单调性. 2.二次函数在闭区间上的最值对于二次函数f (x )=a (x -h )2+k (a >0)在区间[m ,n ]上最值问题,有以下结论: (1)若h ∈[m ,n ],则y min =f (h )=k ,y max =max{f (m ),f (n )}; (2)若h ∉[m ,n ],则y min =min{f (m ),f (n )}, y max =max{f (m ),f (n )}(a <0时可仿此讨论). 3.函数奇偶性与单调性的差异.函数的奇偶性是相对于函数的定义域来说的,这一点与研究函数的单调性不同,从这个意义上说,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只是对函数定义域内的每一个值x ,都有f (-x )=-f (x )[或f (-x )=f (x )],才能说f (x )是奇函数(或偶函数).§1.3 习题课双基演练1.D [由已知,令2k +1<0,解得k <-12.] 2.C [由f (a )-f (b )a -b >0,知f (a )-f (b )与a -b 同号,由增函数的定义知选C.]3.C [∵a +b >0,∴a >-b ,b >-a .由函数的单调性可知,f (a )>f (-b ),f (b )>f (-a ). 两式相加得C 正确.]4.C[由图象可知,当x=0时,f(x)取得最大值;当x=-32时,f(x)取得最小值.故选C.]5.130解析偶函数定义域关于原点对称,∴a-1+2a=0.∴a=1 3.∴f(x)=13x2+bx+1+b.又∵f(x)是偶函数,∴b=0. 6.(-∞,-1)解析若a≥0,则12a-1>a,解得a<-2,∴a∈∅;若a<0,则1a>a,解得a<-1或a>1,∴a<-1.综上,a∈(-∞,-1).作业设计1.B[由已知得f(x1)=f(-x1),且-x1<0,x2<0,而函数f(x)在(-∞,0)上是增函数,因此由f(x1)<f(x2),则f(-x1)<f(x2)得-x1<x2,x1+x2>0.故选B.]2.C[判断①,一个函数的定义域关于坐标原点对称,是这个函数具有奇偶性的前提条件,但并非充分条件,故①错误.判断②正确,由函数是奇函数,知f(-x)=-f(x),特别地当x=0时,f(0)=0,所以f(x)·f(-x)=-[f(x)]2≤0.判断③,如f(x)=x2,x∈[0,1],定义域不关于坐标原点对称,即存在1∈[0,1],而-1 [0,1];又如f(x)=x2+x,x∈[-1,1],有f(x)≠f(-x).故③错误.判断④,由于f(x)=0,x∈[-a,a],根据确定一个函数的两要素知,a取不同的实数时,得到不同的函数.故④错误.综上可知,选C.]3.A[f(x)=2xx2+2,f(-x)=-f(x),选A.] 4.D[当t>0时f(x)的图象如图所示(实线)对称轴为x=-t2,则t2=12,∴t=1.]5.D[当-5≤x≤-1时1≤-x≤5,∴f(-x)≥3,即-f(x)≥3.从而f(x)≤-3,又奇函数在原点两侧的对称区间上单调性相同,故f(x)在[-5,-1]上是减函数.故选D.]6.D[依题意,因为f(x)是偶函数,所以f(x-1)<0化为f(|x-1|)<0,又x∈[0,+∞)时,f(x)=x-1,所以|x-1|-1<0,即|x-1|<1,解得0<x<2,故选D.]7.1解析f(x)为[-1,1]上的奇函数,且在x=0处有定义,所以f(0)=0,故a=0.又f(-1)=-f(1),所以--1-b+1=1b+1,故b=0,于是f(x)=-x.函数f(x)=-x在区间[-1,1]上为减函数,当x取区间左端点的值时,函数取得最大值1. 8.-1解析∵f(-0)=-f(0),∴f(0)=0,且f(2)=22-3=1.∴f(-2)=-f(2)=-1,∴f(-2)+f(0)=-1.9.a>-3解析∵f(x)=x2+2x+a=(x+1)2+a-1,∴[1,+∞)为f(x)的增区间,要使f(x)在[1,+∞)上恒有f(x)>0,则f(1)>0,即3+a>0,∴a>-3.10.(1)证明设x1<x2<0,则-x1>-x2>0.∵f(x)在(0,+∞)上是增函数,∴f(-x1)>f(-x2).∵f(x)是奇函数,∴f(-x1)=-f(x1),f(-x2)=-f(x2),∴-f(x1)>-f(x2),即f(x1)<f(x2).∴函数f(x)在(-∞,0)上是增函数.(2)解若x>0,则f(x)<f(1),∴x<1,∴0<x<1;若x<0,则f(x)<f(-1),∴x<-1.∴关于x的不等式f(x)<0的解集为(-∞,-1)∪(0,1).11.(1)证明设0<x1<x2<1,则x1x2>0,x1-x2<0.又b>1,且0<x1<x2<1,∴x1x2-b<0.∵f(x1)-f(x2)=(x1-x2)(x1x2-b)x1x2>0,∴f(x1)>f(x2),所以函数f(x)在(0,1)上是减函数.(2)解设0<x1<x2<1,则f(x1)-f(x2)=(x1-x2)(x1x2-b)x1x2由函数f(x)在(0,1)上是减函数,知x1x2-b<0恒成立,则b≥1. 设1<x1<x2,同理可得b≤1,故b=1.x∈(0,+∞)时,通过图象可知f(x)min=f(1)=a+2=3.故a=1.12.(1)证明设x1>x2≥0,f(x1)-f(x2)=(1-1x1+1)-(1-1x2+1)=x1-x2(x1+1)(x2+1).由x1>x2≥0⇒x1-x2>0,(x1+1)(x2+1)>0,得f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在定义域上是增函数.(2)解g(x)=f(x+1)-f(x)=1(x+1)(x+2),g(x)在[0,+∞)上是减函数,自变量每增加1,f(x)的增加值越来越小,所以f(x)的增长是越来越慢.13.解(1)作OH,DN分别垂直DC,AB交于H,N,连结OD.由圆的性质,H是中点,设OH=h,h=OD2-DH2=4-x2.又在直角△AND中,AD=AN2+DN2=(2-x)2+(4-x2)=8-4x=22-x,所以y=f(x)=AB+2AD+DC=4+2x+42-x,其定义域是(0,2).(2)令t=2-x,则t∈(0,2),且x=2-t2,所以y=4+2·(2-t2)+4t=-2(t-1)2+10,当t=1,即x=1时,y的最大值是10.。

人教A版数学选修1课时作业本、单元试卷-考前过关训练(一)

人教A版数学选修1课时作业本、单元试卷-考前过关训练(一)

考前过关训练(一)常用逻辑用语(30分钟50分)一、选择题(每小题3分,共18分)1.(2016·三明高二检测)命题:“若x2<1,则-1<x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】选D.x2<1的否定为x2≥1;-1<x<1的否定为x≥1或x≤-1,故原命题的逆否命题为若x≥1或x≤-1,则x2≥1.2.(2016·长沙高二检测)命题p:∀x>0,e x>1,则p是( )A.∃x0≤0,≤1B.∃x0>0,≤1C.∀x>0,e x≤1D.∀x≤0,e x≤1【解析】选A.p是∃x 0>0,≤1.3.命题p:x>2是x2>4的充要条件;命题q:若>,则a>b,则( )A.“p∨q”为真B.“p∧q”为真C.p真q假D.p,q均为假【解析】选A.命题p:x>2是x2>4的充要条件是假命题;命题q:“若>,则a>b”是真命题,所以“p∨q”为真.4.(2016·茂名高二检测)“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.若“直线y=x+b与圆x2+y2=1相交”,则圆心到直线的距离为d=<1,即<,不能推出0<b<1;反过来,若0<b<1,则圆心到直线的距离为d=<<1,所以直线y=x+b与圆x2+y2=1相交.【补偿训练】设向量a=(1,x),b=(2,1-x),则“x=-1”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.由a⊥b可得:x+2=0⇒x=2或x=-1,所以“x=-1”是“a⊥b”的充分而不必要条件.5.下列命题中的真命题是( )A.∃x0∈R,使得sinx0cosx0=B.∃x0∈(-∞,0),>1C.∀x∈R,x2>x-1D.∀x∈(0,π),sinx>cosx【解析】选C.由sinx0cosx0=,得sin2x0=>1,故A错误;结合指数函数和三角函数的图象,可知B,D错误;因为x2-x+1=+>0恒成立,所以C正确.6.(2016·安康高二检测)“直线x-y-k=0与圆(x-1)2+y2=2有两个不同的交点”的一个充分不必要条件可以是( )A.-1<k<3B.-1≤k≤3C.0<k<3D.k<-1或k>3【解析】选C.“直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点”等价于<,也就是k∈(-1,3).四个选项中只有(0,3)是(-1,3)的真子集,故充分不必要条件可以是0<k<3.【补偿训练】已知命题p:在△ABC中,“C>B”是“sinC>sinB”的充分不必要条件;命题q:“a>b”是“ac2>bc2”的充分不必要条件,则下列选项中正确的是( )A.p真q假B.p假q真C.“p∨q”为假D.“p∧q”为真【解析】选C.在△ABC中,设角C与角B所对应的边分别为c,b,由C>B,知c>b,由正弦定理=可得sinC>sinB,当sinC>sinB时,易证C>B,故“C>B”是“sinC>sinB”的充要条件.当c=0时,由a>b得ac2=bc2,由ac2>bc2易证a>b,故“a>b”是“ac2>bc2”的必要不充分条件,即命题p是假命题,命题q也是假命题,所以“p∨q”为假.二、填空题(每小题4分,共12分)7.在下列结论中,①“p∧q”为真是“p∨q”为真的充分不必要条件;②“p∧q”为假是“p∨q”为真的充分不必要条件;③“p∨q”为真是“p”为假的必要不充分条件;④“p”为真是“p∧q”为假的必要不充分条件.正确的是.【解析】①“p∧q”为真是同时为真,可得到“p∨q”为真,反之不成立;②“p∧q”为假说明至少一个为假,此时“p∨q”可真可假;③中当“p”为假时可得到“p∨q”为真,所以“p∨q”为真是“p”为假的必要不充分条件;④“p”为真可得“p∧q”为假.答案:①③8.(2016·嘉峪关模拟)已知命题p:不等式|x-1|>m的解集是R,命题q:f(x)=在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的范围是.【解析】因为不等式|x-1|>m的解集是R,所以m<0,即p:m<0.若f(x)=在区间(0,+∞)上是减函数,则2-m>0,即m<2,即q:m<2.若p或q为真命题,p且q为假命题,则p,q一真一假.若p真,q假,则此时m无解,若p假,q真,则解得0≤m<2.综上:0≤m<2.答案:0≤m<2【补偿训练】设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是.【解析】设方程x2+2mx+1=0的两根分别为x1,x2,由得m<-1,所以p:m<-1;由方程x2+2(m-2)x-3m+10=0无实根,可得Δ2=4(m-2)2-4(-3m+10)<0,知-2<m<3,所以q:-2<m<3.由p∨q为真,p∧q为假,可知命题p,q一真一假,当p真q假时,此时m≤-2;当p假q真时,此时-1≤m<3,所以m的取值范围是m≤-2或-1≤m<3.答案:(-∞,-2]∪[-1,3)9.下列结论:①若命题p:∃x 0∈R,tanx0=2;命题q:∀x∈R,x2-x+>0.则命题“p∧(q)”是假命题;②已知直线l1:ax+3y-1=0, l2:x+by+1=0,则l1⊥l2的充要条件是=-3;③“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为:“设a,b∈R,若ab<2,则a2+b2≤4”.其中正确结论的序号为.(把你认为正确结论的序号都填上).【解析】在①中,命题p是真命题,命题q也是真命题,故“p∧(q)”是假命题是正确的.在②中l1⊥l2⇔a+3b=0,所以②不正确.在③中“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为:“设a,b∈R,若ab<2,则a2+b2≤4”,正确.答案:①③三、解答题(每小题10分,共20分)10.(2016·湛江高二检测)已知a,b,c,d均为实数,且2bd-c-a=0.命题p:关于x的方程ax2+2bx+1=0有实根;命题q:关于x的方程cx2+2dx+1=0有实根;证明:“p或q”为真命题.【证明】由ax2+2bx+1=0得Δ1=4b2-4a,由cx2+2dx+1=0得Δ2=4d2-4c,又因为2bd-c-a=0,所以a+c=2bd,所以Δ1+Δ2=4[b2+d2-(a+c)]=4(b2+d2-2bd)=4(b-d)2≥0,即Δ1,Δ2中至少有一个大于或等于0,所以两方程至少有一个有实根,即“p或q”为真命题.11.(2016·临汾高二检测)已知c>0,设命题p:函数y=c x在R上为减函数,命题q:当x∈时,函数f=x+>恒成立.如果“p或q”为真命题,“p且q”为假命题,求c的取值范围.【解题指南】根据指数函数的图象和性质可求出命题p为真命题时,c的取值范围;根据对勾函数的图象和性质,结合函数恒成立问题的解答思路,可求出命题q为真命题时,c的取值范围,进而根据“p或q”为真命题,“p且q”为假命题,可知p 和q一真一假,分类讨论后,综合讨论结果,即可求出答案.【解析】因为c>0,所以如果命题p:函数y=c x在R上为减函数,是真命题,那么0<c<1.如果命题q:当x∈,函数f=x+>恒成立是真命题,又因为函数f=x+≥2,当且仅当x=时,即x=1时,函数f(x)=2,所以当x∈,函数f(x)∈>,所以<2,即c>.又因为p或q为真命题,p且q为假命题,所以p或q一个为真命题一个为假命题. 如果p为真命题q为假命题,那么0<c<1且c≤,所以0<c≤;如果p为假命题q为真命题,那么c≤0或c≥1且c>,所以c≥1.综上所述,c的取值范围为0<c≤或c≥1.。

人教A版数学必修三同步作业:第1章 算法初步 作业12

人教A版数学必修三同步作业:第1章 算法初步 作业12

课时作业(十二)1.k进制数32 501(k),则k不可能是()A.5B.6C.7 D.8答案 A解析k进制数各数字均小于k.2.以下各数中有可能是五进制数的为()A.55 B.106C.732 D.2 134答案 D解析五进制数只能出现0,1,2,3,4.3.三位五进制数表示的最大十进制数是()A.120 B.124C.144 D.224答案 B解析最大的三位五进制数是444(5),化为十进制为444(5)=4×52+4×51+4×50=124(10).4.下列二进制数中最大的数是()A.111(2)B.1 001(2)C.110(2)D.101(2)答案 B解析B中有四位数:1 001=23+1=9(10).5.把213(4)化为九进制数为()A.44(9)B.34(9)C.43(9)D.213(9)答案 C解析213(4)=2×42+1×41+3×40=39.∴213(4)=43(9).6.将数30 012(4)转化为十进制数为()A.524 B.774C.256 D.260答案 B解析30 012(4)=3×44+0×43+0×42+1×41+2×40=774.7.将二进制数10 001(2)化为五进制数为()A.32(5)B.23(5)C.21(5)D.12(5)答案 A解析将10 001(2)化为十进制数为:10 001(2)=1×24+0×23+0×22+0×21+1×20=17,将17化为五进制数为32(5),∴10 001(2)=32(5).8.如图是将二进制数11 111(2)化为十进制数的一个程序框图,判断框内应填入的条件是()A.i≤5 B.i≤4C.i>5 D.i>4答案 D解析11 111(2)=1×20+1×21+1×22+1×23+1×24,故i>4时,即输出S,结束程序.9.1 001 101(2)与下列哪个值相等()A.115(8)B.113(8)C.114(8)D.116(8)答案 A解析先化为十进制数:1 001 101(2)=1×26+1×23+1×22+1×20=77,再化为八进制.∴77=115(8).∴1 001 101(2)=115(8).10.三进制数2 012(3)化为六进制数为abc(6),则a+b+c=________.答案9解析2 012(3)=2×33+0×32+1×31+2×30=59.三进制数2 012(3)化为六进制数为135(6),∴a+b+c=9.11.在计算机的运行过程中,常常要进行二进制数与十进制数的转换与运算.如十进制数8转换成二进制数是1 000,记作8(10)=1 000(2);二进制数111转换成十进制数是7,记作111(2)=7(10)等.二进制的四则运算,如11(2)+101(2)=1 000(2).请计算:11(2)×111(2)=________,10 101(2)+1 111(2)=________.答案10 101(2)100 100(2)解析由题可知,在二进制数中的运算规律是“满二进一”,∴11(2)×111(2)=10 101(2),10 101(2)+1 111(2)=100 100(2).12.将八进制数127(8)化成二进制数为________(2).答案 1 010 111解析将127(8)化为十进制:127(8)=1×82+2×8+7=64+16+7=87,再将十进制数87化为二进制数为:如图∴87=1 010 111(2).13.若六进制数13 m 502(6)化为十进制数等于12 710,数字m=________.答案 4解析由于13m502(6)=1×65+3×64+m×63+5×62+0×61+2×60=216m+11 846,所以令12 710=216m+11 846,解得m=4,所以数字m=4.14.(1)已知71=47(k),求k的值.(2)已知175(8)=120+r,求正整数r.(3)已知a=12(16),b=25(7),c=33(4),则a,b,c的大小关系是如何的?解析(1)∵47(k)=4·k+7,∴71=4k+7,k=16.(2)∵175(8)=1×82+7×81+5×80=125,∴125=120+r.∴r=5.(3)a=2×160+1×16=18,b=5×70+2×71=19,c=3×40+3×41=15,∴b>a>c.1.一个k进制的三位数与某六进制的二位数等值,则k不可能是()A.3 B.4C.5 D.7答案 D解析k进制的最小三位数为k2,六进制的最大二位数为5×6+5=35,由k2≤35,得0<k≤35,故k不可能是7.1. (2016·四川)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )A .9B .18C .20D .25 答案 B解析 由题意得i =2,v =1×2+2=4,i =1;v =4×2+1=9,i =0;v =9×2+0=18,i =-1,此时不满足i ≥0,退出循环,所以输出v =18.故选B. 2.(2016·课标全国Ⅰ)执行下面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x答案 C解析 运行程序,第1次循环得x =0,y =1,n =2,第2次循环得x =12,y =2,n =3,第3次循环得x =32,y =6,此时x 2+y 2≥36,输出x ,y ,满足C 项.3.(2014·新课标全国Ⅰ理)执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203 B.165 C.72D.158答案 D解析 根据程序框图所给的已知条件逐步求解,直到得出满足条件的结果. 当n =1时,M =1+12=32,a =2,b =32;当n =2时,M =2+23=83,a =32,b =83;当n =3时,M =32+38=158,a =83,b =158;当n =4时,终止循环.输出M =158.4.(2014·北京理)当m =7,n =3时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .840 答案 C解析 按照程序框图执行算法,输出结果.程序框图的执行过程如下:m =7,n =3时,m -n +1=5, k =m =7,S =1,S =1×7=7;k =k -1=6>5,S =6×7=42;k =k -1=5=5,S =5×42=210;k =k -1=4<5,输出S =210.故选C.5.(2014·安徽理)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55C.78 D.89答案 B解析根据程序框图所给的条件逐步求解,直到得出满足条件的结果.当输入x=1,y=1,执行z=x+y及z≤50,x=y,y=z后,x,y,z的值依次对应如下:x=1,y=1,z=2;x=1,y=2,z=3;x=2,y=3,z=5;x=3,y=5,z=8;x=5,y=8,z=13;x=8,y=13,z=21;x=13,y=21,z=34;x=21,y=34,z=55.由于55>50不成立,故输出55.故选B.6.(2015·北京)执行如图所示的程序框图,输出的结果为()A.(-2,2) B.(-4,0)C.(-4,-4) D.(0,-8)答案 B解析初始值x=1,y=1,k=0,执行程序框图,则s=0,t=2,x=0,y=2,k=1;s=-2,t=2,x=-2,y=2,k=2;s=-4,t=0,x=-4,y=0,k=3,此时输出(x,y),则输出的结果为(-4,0),选B.7.(2013·陕西)根据下列算法语句,当输入x为60时,输出y的值为()INPUT xIF x<=50 THENy=0.5*xELSEy=25+0.6*(x-50)END IFPRINT yA.25B.30答案 C解析 本题考查程序语句问题.此算法语句的作用实际上是求函数f(x)=⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x>50的值,∴x =60时,y =25+0.6×(60-50)=31.选C.8.(2013·江西)阅读如下程序框图,如果输出i =5,那么在空白矩形框中填入的语句为( )A .S =2*i -2B .S =2*i -1C .S =2*iD .S =2*i +4 答案 C解析 本题考查程序框图.逐一检验知,S =2*i ,其他项不符合输出i =5的条件. 循环次数不多,逐一检验即可.9.(2013·浙江)某程序框图如图所示,若该程序运行后输出的值是95,则( )A .a =4B .a =5C .a =6D .a =7答案 A解析 本题考查循环结构的程序框图. k 1 2 3 4 S32537495故a 应取4.第9题图 第10题图10.(2012·山东)执行如图的程序框图,如果输入a =4,那么输出的n 的值为( )C .4D .5 答案 B解析 逐次计算结果是P =1,Q =3,n =1;P =5,Q =7,n =2;P =21,Q =15,n =3,退出循环,故输出结果是n =3. 11.(2012·广东文)执行如图所示的程序框图,若输入n 的值为6,则输出s 的值为( )A .105B .16C .15D .1 答案 C解析 按照程序过程,通过反复判断循环条件执行程序.执行过程为s =1×1=1,i =3;s =1×3=3,i =5;s =3×5=15,i =7≥6,跳出循环.故输出s 的值为15. 12.(2012·天津文)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为( ) A .8 B .18 C .26 D .80 答案 C解析 程序执行情况为S =31-30=2,n =2;S =2+32-31=8,n =3;S =8+33-32=26,n =4≥4,跳出循环.故输出26,选C.第12题图 第13题图13.(2015·重庆)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( ) A .s ≤34B .s ≤56C .s ≤1112D .s ≤2524答案 C解析 第一次循环,得k =2,s =12;第二次循环,得k =4,s =12+14=34;第三次循环,得k=6,s =34+16=1112,第四次循环,得k =8,s =1112+18=2524,此时退出循环,输出k =8,所以判断框内可填入的条件是s ≤1112,故选C.14.(2014·福建文)阅读右图所示的程序框图,运行相应的程序,输出的n 的值为( ) A .1 B .2 C .3 D .4 答案 B解析 由程序框图所给的条件逐步求解,直到得出满足条件的结果.当n =1时,21>12满足条件,继续循环得n =2,22>22不成立,不满足条件,所以输出n =2.第14题图 第15题图15.(2013·江苏)如图是一个算法的流程图,则输出的n 的值是________. 答案 3解析 本题考查算法的识别和应用. 直接模拟执行,a 8 26 n23输出n 为3. 16.(2016·江苏)如图是一个算法的流程图,则输出的a 的值是________.答案 9解析 执行程序,a =1,b =9,不满足a>b ,第一次循环:a =5,b =7,不满足a>b ;第二次循环:a =9,b =5,满足a>b ,退出循环,故输出a =9. 17.(2013·湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i =________.答案 5解析 从程序框图知,a =10,i =1;a =5,i =2;a =16,i =3;a =8,i =4;a =4,i =5.故输出i =5.1.如图所示的程序框图中,第3个输出的数是( )A .1 B.32 C .2 D.52答案 C解析 N 和A 的值依次为A =1,N =2;A =32,N =3;A =2,N =4.所以,第三个输出的数是2.2.(2017·衡水中学调研)已知函数y =⎩⎪⎨⎪⎧-1 (x >0),0 (x =0),1 (x <0),求该函数值的程序框图,如图所示.则①处应填________;②处应填________.答案①y=-1,②y=1由Ruize收集整理。

创新设计 数学一轮理科 人教A 课时作业 含答案

创新设计 数学一轮理科 人教A 课时作业  含答案

第3讲 等比数列及其前n 项和基础巩固题组 (建议用时:40分钟)一、选择题1.在等比数列{a n }中,a n >0,且a 1·a 10=27,log 3a 2+log 3a 9=( )A .9B .6C .3D .2解析 因为a 2a 9=a 1a 10=27,所以log 3a 2+log 3a 9=log 3a 2a 9=log 327=3. 答案 C2.(2014·福州质量检测)记等比数列{a n }的前n 项积为Ⅱn ,若a 4·a 5=2,则Ⅱ8=( )A .256B .81C .16D .1解析 依题意得Ⅱ8=(a 1a 8)(a 2a 7)(a 3a 6)(a 4a 5)=(a 4a 5)4=24=16. 答案 C3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7=( )A.56B.65C.23D.32解析 设公比为q ,则由题意知0<q <1, 由⎩⎪⎨⎪⎧a 2·a 8=a 4·a 6=6,a 4+a 6=5,得a 4=3,a 6=2, 所以a 5a 7=a 4a 6=32.答案 D4.(2014·云南统一检测)已知等比数列{a n }的前n 项和为S n ,a 4-a 1=78,S 3=39,设b n =log 3a n ,那么数列{b n }的前10项和为( )A.log371 B.692C.50 D.55解析设等比数列{a n}的公比为q,由a4-a1=a1(q3-1)=78,S3=a1+a2+a3=a1(1+q+q2)=39,所以a1(q3-1)a1(1+q+q2)=q-1=7839=2,解得q=3,a1=78q3-1=3,所以a n=3n,b n=log33n=n,则数列{b n}是等差数列,前10项的和为10×(1+10)2=55,故选D.答案 D5.(2015·兰州模拟)已知数列{a n}满足log3a n+1=log3a n+1(n∈N*),且a2+a4+a6=9,则log 13(a5+a7+a9)的值是()A.-15B.-5 C.5 D.15解析由log3a n+1=log3a n+1(n∈N*),得log3a n+1-log3a n=1且a n>0,即log3a n+1a n=1,解得a n+1a n=3,所以数列{a n}是公比为3的等比数列.因为a5+a7+a9=(a2+a4+a6)q3,所以a5+a7+a9=9×33=35.所以log13(a5+a7+a9)=log 1335=-log335=-5.答案 B二、填空题6.(2014·安徽卷)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.解析设{a n}公差为d,则a3=a1+2d,a5=a1+4d,所以(a1+2d+3)2=(a1+1)(a1+4d+5),解得d=-1,所以q =a 3+3a 1+1=a 1+2d +3a 1+1=a 1+1a 1+1=1.答案 17.(2014·杭州质量检测)设数列{a n }是各项均为正数的等比数列,若a 1·a 2n -1=4n ,则数列{a n }的通项公式是______.解析 设数列{a n }的公比为q ,则由题意知a 1>0,q >0.由a 1·a 2n -1=4n 得a 1·a 1q 2n -2=4n ,即(a 1q n -1)2=(2n )2,所以a 1q n -1=2n ,所以数列{a n }的通项公式为a n =2n . 答案 a n =2n8.(2014·甘肃诊断)已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.解析 设等比数列{a n }的首项为a 1,公比为q ,显然q ≠1且q >0,因为S 4=3S 2,所以a 1(1-q 4)1-q =3a 1(1-q 2)1-q ,解得q 2=2,因为a 3=2,所以a 7=a 3q 4=2×22=8. 答案 8 三、解答题9.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,由题意得 d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n ∈N *). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1. 从而b n =3n +2n -1(n ∈N *). (2)由(1)知b n =3n +2n -1(n ∈N *).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1.所以数列{b n }的前n 项和为32n (n +1)+2n -1.10.已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.(1)解 由已知点A n 在y 2-x 2=1上知,a n +1-a n =1, ∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明 ∵点(b n ,T n )在直线y =-12x +1上, ∴T n =-12b n +1,① ∴T n -1=-12b n -1+1(n ≥2),②①②两式相减得b n =-12b n +12b n -1(n ≥2), ∴32b n =12b n -1,∴b n =13b n -1(n ≥2). 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列.能力提升题组 (建议用时:25分钟)11.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n -1)2B.12(9n -1)C .9n -1D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1, 又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B12.(2013·福建卷)已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为qm 2D .数列{c n }为等比数列,公比为qm m 解析 ∵b n =a m (n -1)(q +q 2+…+q m )∴b n +1b n =a mn (q +q 2+…+q m )a m (n -1)(q +q 2+…+q m )=a mn a m (n -1)=q m(常数). b n +1-b n 不是常数.又∵c n =(a m (n -1))m q 1+2+…+m =⎝⎛⎭⎪⎫a m (n -1)q m +12m , ∴c n +1c n =⎝⎛⎭⎪⎫a mn a m (n -1)m=(q m )m =qm 2(常数). c n +1-c n 不是常数.∴选C. 答案 C13.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值是________.解析 ∵-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1, ∵-1,b 1,b 2,b 3,-4成等比数列,∴b 22=(-1)×(-4)=4,∴b 2=±2,若设公比为q ,则b 2=(-1)q 2,∴b 2<0. ∴b 2=-2,∴a 2-a 1b 2=-1-2=12.答案 1214.等比数列{c n }满足c n +1+c n =10·4n -1(n ∈N *),数列{a n }的前n 项和为S n ,且a n =log 2c n . (1)求a n ,S n ;(2)数列{b n }满足b n =14S n -1,T n 为数列{b n }的前n 项和,是否存在正整数m ,k (1<m <k ),使得T 1,T m ,T k 成等比数列?若存在,求出所有m ,k 的值;若不存在,请说明理由.解 (1)设数列{c n }的公比为q ,由题意知, c 1+c 2=10,c 2+c 3=c 1q +c 2q =40, 即⎩⎨⎧c 1+c 1q =10,c 1q +c 1q 2=40,解得⎩⎨⎧c 1=2,q =4, 所以c n =2·4n -1=22n -1, 所以a n =log 222n -1=2n -1,S n =n (a 1+a n )2=n [1+(2n -1)]2=n 2.(2)由(1)知b n =14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 于是T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=n 2n +1. 假设存在正整数m ,k (1<m <k ),使得T 1,T m ,T k 成等比数列,则⎝ ⎛⎭⎪⎫m 2m +12=13×k2k +1,可得3k =-2m 2+4m +1m 2>0,所以-2m 2+4m +1>0, 从而有1-62<m <1+62,由m ∈N *,m >1,得m =2,此时k =12.当且仅当m =2,k =12时,T 1,T m ,T k 成等比数列.。

高考数学一轮复习第一章集合与常用逻辑用语课时作业3简单的逻辑联结词全称量词与存在量词课件理新人教A版

高考数学一轮复习第一章集合与常用逻辑用语课时作业3简单的逻辑联结词全称量词与存在量词课件理新人教A版

A.p∧q B.p∨(綈q) C.p∧(綈q)
D.(綈p)∧q
解析 对于命题p,若α∥β,m∥α,则还需m⊄β才能推出m∥β,所以
命题p为假命题,命题綈p为真命题;对于命题q,若m∥α,m∥β,α∩β=
n,则由线面平行的性质可推出m∥n,所以命题q为真命题,命题綈q为假
命题。所以(綈p)∧q为真命题。故选D。 答案 D
A.∀x∈R,f(-x)≠f(x) B.∀x∈R,f(-x)=-f(x) C.∃x0∈R,f(-x0)≠f(x0) D.∃x0∈R,f(-x0)=-f(x0)
解析 由题意知∀x∈R,f(-x)=f(x)是假命题,则其否定为真命题, ∃x0∈R,f(-x0)≠f(x0)是真命题。故选C。
答案 C
5.已知命题p:∃x0∈R,cosx0=54;命题q:∀x∈R,x2-x+1>0。则 下列结论正确的是( )
课时作业(三) 简单的逻辑联结词、全称量词与存在量词
基础过关组 一、选择题 1.下列语句是“p且q”形式的命题的是( ) A.老师和学生 B.9的平方根是3 C.矩形的对角线互相平分且相等 D.对角线互相平分的四边形是矩形
解析 根据逻辑联结词“且”的含义,可知C符合。A不是命题,B, D不是“p且q”形式。故选C。
答案 D
二、填空题 9.命题p的否定是“对所有正数x, ____。
x >x+1”,则命题p可写为
解析 因为p是綈p的否定,所以只需将全称量词变为特称量词,再对
结论否定即可。 答案 ∃x0∈(0,+∞), x0≤x0+1
10.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“綈q”同时 为假命题,则x=________。
C.0,14
D.0,41

最新人教A版高中数学必修一培优课时作业(十二)基本不等式

最新人教A版高中数学必修一培优课时作业(十二)基本不等式

课时作业(十二) 基本不等式[练基础]1.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =02.若a ≥0,b ≥0且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤33.“a ,b 为正数”是“a +b >2ab ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设x >0,则y =3-3x -1x的最大值是( ) A .3 B .3-2 2 C .3-2 3 D .-15.已知x >0,y >0,且2x +y =1,则xy 的最大值是( )A.14 B .4 C.18D .8 6.(多选)设a ,b ∈R ,则下列不等式一定成立的是( )A .a 2+b 2≥2abB .a +1a≥2 C .b 2+1≥2b D.⎪⎪⎪⎪b a +⎪⎪⎪⎪a b ≥27.若a <1,则a +1a -1与-1的大小关系是________. 8.已知正数x ,y 满足x +2y =2,则1y +8x的最小值为________. 9.已知a >b >c ,你能比较出4与⎝⎛⎭⎫1a -b +1b -c (a -c )的大小吗?10.(1)若x <3,求y =2x +1+1x -3的最大值; (2)已知x >0,求y =2x x 2+1的最大值.[提能力]11.(多选)下列命题中正确的是( )A .y =x +1x()x <0的最大值是-2 B .y =x 2+3x 2+2的最小值是2 C .y =2-3x -4x()x >0的最大值是2-43 D .y =x +4x -1()x >1最小值是5 12.(多选)下列结论正确的是( ) A .若x <0,则y =x +1x的最大值为-2 B .若a >0,b >0,则ab ≤⎝⎛⎭⎫a +b 22C .若a >0,b >0,且a +4b =1,则1a +1b的最大值为9 D .若x ∈[]0,2,则y =x 4-x 2的最大值为213.已知x >0,y >0,且x +2y =3,则xy 的最大值为________,3x +y xy的最小值为________. 14.已知5x 2y 2+y 4=1()x ,y ∈R ,则x 2+2y 2的最小值是________.15.已知正常数a ,b 和正变数x ,y 满足a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b 的值.[培优生]16.《几何原本》中的几何代数法(以几何方法研究代数问题)成了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图,在AB 上取一点C ,使得AC =a ,BC =b ,过点C 作CD ⊥AB 交半圆周于点D ,连接OD .作CE ⊥OD 交OD 于点E .由CD ≥DE 可以直接证明的不等式为( )A.ab ≥2ab a +b (a >0,b >0)B.a +b 2≥ab (a >0,b >0)C. a 2+b 22≥a +b 2(a >0,b >0) D .a 2+b 2≥2ab (a >0,b >0)课时作业(十二) 基本不等式1.解析:当a 2+1=2a ,即(a -1)2=0,即a =1时,等号成立.故选B.答案:B2.解析:因为a 2+b 2≥2ab ,所以(a 2+b 2)+(a 2+b 2)≥(a 2+b 2)+2ab ,即2(a 2+b 2)≥(a +b )2=4,所以a 2+b 2≥2.故选C.答案:C3.解析:若a ,b 为正数,取a =1,b =1,则a +b =2ab ,则“a ,b 为正数”不是“a +b >2ab ”的充分条件;若a +b >2ab ,取a =1,b =0,则b 不是正数,则“a ,b 为正数”不是“a +b >2ab ”的必要条件.故“a ,b 为正数”是“a +b >2ab ”的既不充分也不必要条件.故选D.答案:D4.解析:y =3-3x -1x =3-⎝⎛⎭⎫3x +1x ≤3-23x ·1x =3-23,当且仅当3x =1x ,即x =33时取等号.故选C.答案:C5.解析:由题意得,xy =12×2xy ≤12×⎝⎛⎭⎫2x +y 22=12×⎝⎛⎭⎫122=18, 当且仅当x =14,y =12时等号成立,所以xy 的最大值是18.故选C. 答案:C6.解析:当a ,b ∈R 时,a 2+b 2≥2ab 成立,故A 正确;当a >0时,a +1a≥2,等号成立的条件是a =1,当a <0时,a +1a≤-2,等号成立的条件是a =-1,故B 不正确;当b ∈R 时,b 2+1-2b =(b -1)2≥0,所以b 2+1≥2b ,故C 正确;⎪⎪⎪⎪b a >0,⎪⎪⎪⎪a b >0,所以⎪⎪⎪⎪b a +⎪⎪⎪⎪a b ≥2⎪⎪⎪⎪b a ×⎪⎪⎪⎪a b =2,等号成立的条件是当且仅当⎪⎪⎪⎪b a =⎪⎪⎪⎪a b ,即a 2=b 2时,故D 正确.故选ACD.答案:ACD7.解析:因为a <1,即1-a >0,所以-⎝⎛⎭⎫a -1+1a -1=(1-a )+11-a ≥2(1-a )·11-a=2.即a +1a -1≤-1. 答案:a +1a -1≤-1 8.解析:因为x >0,y >0且x +2y =2,所以1y +8x =x +2y 2y +4x +8y x=5+x 2y +8y x ≥5+2x 2y ·8y x =9(当且仅当x 2y =8y x ,即x =4y =43时取等号),即1y +8x的最小值为9.答案:99.解析:⎝⎛⎭⎫1a -b +1b -c (a -c )≥4,理由如下: 因为a -c =(a -b )+(b -c ), 所以⎝⎛⎭⎫1a -b +1b -c [(a -b )+(b -c )] =2+b -c a -b +a -b b -c, 又a >b >c ,所以b -c a -b +a -b b -c≥2, 故⎝⎛⎭⎫1a -b +1b -c (a -c )≥4, 当且仅当b -c a -b =a -b b -c时,取“=”. 10.解析:(1)因为x <3,所以3-x >0.又因为y =2(x -3)+1x -3+7=-⎣⎡⎦⎤2(3-x )+13-x +7,由基本不等式可得2(3-x )+13-x ≥22(3-x )·13-x =22,当且仅当2(3-x )=13-x,即x =3-22时,等号成立,于是-⎣⎡⎦⎤2(3-x )+13-x ≤-22,-⎣⎡⎦⎤2(3-x )+13-x +7≤7-22,故y 的最大值是7-2 2.(2)y =2x x 2+1=2x +1x.因为x >0,所以x +1x ≥2x ·1x =2,所以0<y ≤22=1,当且仅当x =1x,即x =1时,等号成立.故y 的最大值为1. 11.解析:对于A ,y =x +1x =-⎝⎛⎭⎫-x -1x ≤-2-x ·⎝⎛⎭⎫-1x =-2,当且仅当-x =-1x,即x =-1时,等号成立,所以y =x +1x ()x <0的最大值是-2,故A 正确;对于B ,y =x 2+3x 2+2=x 2+2+1x 2+2>2,因为x 2+2=1x 2+2,即x 2+2=1无解,即等号不成立,所以y =x 2+3x 2+2取不到最小值2,故B 错误;对于C ,y =2-3x -4x (x >0)=2-(3x +4x )≤2-23x ·4x =2-43,当且仅当3x =4x ,即x =233时,等号成立,所以y =2-3x -4x(x >0)的最大值是2-43,故C 正确;对于D ,y =x +4x -1=x -1+4x -1+1≥2()x -1·4x -1+1=5,当且仅当x -1=4x -1,即x =3时,等号成立,所以y =x +4x -1()x >1最小值是5,故D 正确;故选ACD.答案:ACD 12.解析:A 选项,由x <0可得y =x +1x =-⎣⎡⎦⎤()-x +⎝⎛⎭⎫-1x ≤-2()-x ·⎝⎛⎭⎫-1x =-2,当且仅当-x =-1x,即x =-1时,等号成立;即y =x +1x 的最大值为-2;A 正确;B 选项,由a >0,b >0,可得⎝⎛⎭⎫a +b 22-ab =a 2+b 2-2ab 4=⎝⎛⎭⎫a -b 22≥0,即ab ≤⎝⎛⎭⎫a +b 22,故B 正确;C 选项,若a >0,b >0,且a +4b =1,则1a +1b =⎝⎛⎭⎫1a +1b ()a +4b =1+4b a +a b +4≥5+24b a ·a b =9,当且仅当4b a =a b,即⎩⎨⎧a =13b =16时,等号成立;即1a +1b 的最小值为9,故C 错;D 选项,因为0≤x ≤2,所以y =x 4-x 2≤x 2+()4-x 22=2,当且仅当x =4-x 2,即x =2时,等号成立,故D 正确.故选ABD.答案:ABD13.解析:∵x >0,y >0∴x +2y =3≥22xy ,解之得:xy ≤98. 当且仅当x =2y ,即x =32,y =34时,等号成立. ∴xy 的最大值为98. 3x +y xy =3y +1x =13()x +2y ⎝⎛⎭⎫3y +1x =73+13⎝⎛⎭⎫3x y +2y x ≥73+233x y ·2y x =7+263. 当且仅当3x y =2y x ,即x =36-35,y =18-3610时,等号成立. ∴3x +y xy 的最小值为7+263. 另解: ∵x >0,y >0,且x +2y =3∴x =3-2y >0,∴0<y <32. ∴xy =y ()3-2y =-2y 2+3y =-2⎝⎛⎭⎫y -342+98. ∵0<y <32, ∴当y =34时,()xy max =98,此时x =32. 答案:98 7+26314.解析:∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y2 ∴x 2+2y 2=1-y 45y 2+2y 2=15y 2+9y 25≥215y 2·9y 25=65, 当且仅当15y 2=9y 25,即x 2=815,y 2=13时取等号. ∴x 2+y 2的最小值为65. 答案:6515.解析:因为x +y =(x +y )·1=(x +y )·⎝⎛⎭⎫a x +b y=a +b +ay x +bx y≥a +b +2ab =(a +b )2, 当且仅当ay x =bx y, 即y x =b a时,等号成立, 所以x +y 的最小值为(a +b )2=18, 又a +b =10,所以ab =16.所以a ,b 是方程x 2-10x +16=0的两根, 所以a =2,b =8或a =8,b =2.16.解析:由三角形相似,知CD 2=DE ·OD =AC ·BC ,即DE =DC 2OD =ab a +b 2=2ab a +b, 由CD ≥DE ,得ab ≥2ab a +b,故选A. 答案:A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲随机事件的概率基础巩固题组(建议用时:40分钟)一、选择题1.(2015·襄阳模拟)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对解析由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.答案 A2.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为() A.0.7 B.0.65 C.0.35 D.0.3解析事件“抽到的不是一等品”与事件A是对立事件,由于P(A)=0.65,所以由对立事件的概率公式得“抽到的不是一等品”的概率为P=1-P(A)=1-0.65=0.35.答案 C3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是() A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球解析对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.答案 D4.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是()A.0.09 B.0.20 C.0.25 D.0.45解析由频率分布直方图可知,一等品的频率为0.06×5=0.3,三等品的频率为0.02×5+0.03×5=0.25,所以二等品的频率为1-(0.3+0.25)=0.45.用频率估计概率可得其为二等品的概率为0.45.答案 D5.甲、乙两人下棋,两人和棋的概率是12,乙获胜的概率是13,则乙不输的概率是()A.56 B.23 C.12 D.13解析乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为12+13=5 6.答案 A二、填空题6.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件.答案③②①7.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=12,P(B)=16,则出现奇数点或2点的概率为________.解析因为事件A与事件B是互斥事件,所以P(A∪B)=P(A)+P(B)=12+16=23.答案2 38.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率为0.28,若红球有21个,则黑球有________个.解析摸出黑球的概率为1-0.42-0.28=0.30,口袋内球的个数为21÷0.42=50,所以黑球的个数为50×0.30=15.答案15三、解答题9.(2014·陕西卷)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.10.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解法一(利用互斥事件求概率)记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=512,P(A2)=412=13,P(A3)=212=16,P(A4)=1 12,根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件的概率公式,得(1)取出1球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法二(利用对立事件求概率)(1)由法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取出1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-212-112=34.(2)因为A 1∪A 2∪A 3的对立事件为A 4, 所以取出1球为红球或黑球或白球的概率为 P (A 1∪A 2∪A 3)=1-P (A 4)=1-112=1112.能力提升题组(建议用时:25分钟)11.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A +B 与C 是互斥事件,也是对立事件 B .B +C 与D 是互斥事件,也是对立事件 C .A +C 与B +D 是互斥事件,但不是对立事件 D .A 与B +C +D 是互斥事件,也是对立事件解析 由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.故选D. 答案 D12.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡解析 因为710=1-310,而“2张全是移动卡”的对立事件是“至多有一张移动卡”,故选A. 答案 A13.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.解析“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P=11+10+7+86+7+8+8+10+10+11=3 5.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P=1-86+7+8+8+10+10+11=13 15.答案35131514.如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2),∴甲应选择L1.同理,P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B1)<P(B2),∴乙应选择L2.。

相关文档
最新文档