2018年秋九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法习题课件(新版)新人教版
精选推荐018-2019学年度九年级数学上册 第二十一章 一元二次方程 21.2 解一元二次方程 21.2.3 解一元二次方

21.2.3解一元二次方程-公式法学校:___________姓名:___________班级:___________一.选择题(共12小题)1.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣32.用公式法解方程4y2=12y+3,得到()A.y=B.y=C.y=D.y=3.已知a是一元二次方程x2﹣3x﹣5=0的较小的根,则下面对a的估计正确的是()A.﹣2<a<﹣1 B.2<a<3 C.﹣3<a<﹣4 D.4<a<54.若一元二次方程x2+x﹣1=0的较大根是m,则()A.m>2 B.m<﹣1 C.1<m<2 D.0<m<15.方程x2﹣3|x|﹣2=0的最小一个根的负倒数是()A.B.C.D.6.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,07.一元二次方程x2﹣4x+3=0的解是()A.x=1 B.x1=﹣1,x2=﹣3 C.x=3 D.x1=1,x2=38.以x=为根的一元二次方程可能是()A.x2+bx+c=0 B.x2+bx﹣c=0 C.x2﹣bx+c=0 D.x2﹣bx﹣c=09.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.﹣1,3,110.方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于()A.3 B.2 C.1 D.11.一元二次方程x2﹣x﹣1=0的两个实数根中较大的根是()A.1+B.C.D.12.关于x的方程x(x+6)=16解为()A.x1=2,x2=2 B.x1=8,x2=﹣4 C.x1=﹣8,x2=2 D.x1=8,x2=﹣2二.填空题(共6小题)13.方程ax2+bx+c=0(a≠0)的判别式是,求根公式是.14.小明同学用配方法推导关于x的一元二次方程ax2+bx+c=0的求根公式时,对于b2﹣4ac >0的情况,他是这样做的:小明的解法从第步开始出现错误;这一步的运算依据应是.15.已知x=(b2﹣4c>0),则x2+bx+c的值为.16.已知代数式7x(x+5)+10与代数式9x﹣9的值互为相反数,则x= .17.利用求根公式解一元二次方程时,首先要把方程化为,确定的值,当时,把a,b,c的值代入公式,x1,x2= 求得方程的解.18.已知等腰三角形的一腰为x,周长为20,则方程x2﹣12x+31=0的根为.三.解答题(共5小题)19.(1)用配方法解方程:3x2﹣12x+9=0.(2)用公式法解方程:3x2﹣9x+4=0.20.x2﹣2x﹣15=0.(公式法)21.用适当的方法解方程:(1)(5x+3)2﹣4=0;(2)2x2﹣4x+1=0.22.(1)解一元二次方程:x2﹣3x=1(2)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,求四边形ABFD 的周长.23.〔1〕若,则x的取值范围是;〔2〕在〔1〕的条件下,试求方程x2+|x﹣1|﹣3=0的解.参考答案与试题解析一.选择题(共12小题)1.解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.2.解:∵4y2=12y+3∴4y2﹣12y﹣3=0∴a=4,b=﹣12,c=﹣3∴b2﹣4ac=192∴y==.故选C.3.解:一元二次方程x2﹣3x﹣5=0,∵a=1,b=﹣3,c=﹣5,∴△=9+20=29,∴x=,则较小的根a=,即﹣2<a<﹣1,故选:A.4.解:∵a=1,b=1,c=﹣1,∴△=1﹣4×1×(﹣1)=5>0,则x=,∴方程的较大根m=,∵2<<3,∴<<1,故选:D.5.解:设|x|=y此方程变形为y2﹣3y﹣2=0,解得:y=,∴|x|=或|x|=<0(舍),则x=或x=﹣,∴最小的根为﹣,它的负倒数是=,故选:A.6.解:解方程2x2﹣2x﹣1=0得:x=1±,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.7.解:a=1,b=﹣4,c=3△=16﹣12=4>0x=解得:x1=3,x2=1;故选D.8.解:根据求根公式知,﹣b是一次项系数,二次项系数是1或﹣1,常数项是﹣c或c.所以,符合题意的只有D选项.故选:D.9.解:方程﹣x2+3x=1整理得:﹣x2+3x﹣1=0,则a,b,c依次为﹣1;3;﹣1.故选:A.10.解:2x2﹣6x+3=0,这里a=2,b=﹣6,c=3,∵△=36﹣24=12,∴x==,即p=;2x2﹣2x﹣1=0,这里a=2,b=﹣2,c=﹣1,∵△=4+8=12,∴x==,即q=,则p+q=+==2.故选:B.11.解:∵一元二次方程x2﹣x﹣1=0中,a=1,b=﹣1,c=﹣1,∴x==,∴一元二次方程x2﹣x﹣1=0的两个实数根中较大的根是.故选:B.12.解:原方程变形为:x2+6x﹣16=0,x==∴x1=﹣8,x2=2,故选:C.二.填空题(共6小题)13.解:方程ax2+bx+c=0(a≠0)的判别式是b2﹣4ac,求根公式为.14.解:小明的解法从第四步开始出现错误;这一步的运算依据应是平方根的定义;故答案为四;平方根的定义.15.解:∵x=(b2﹣4c>0),∴x2+bx+c=()2+b+c=++c===0.故答案为:0.16.解:根据题意得:7x(x+5)+10+9x﹣9=0,整理得:7x2+44x+1=0,这里a=7,b=44,c=1,∵△=442﹣28=1908,∴x==.故答案为:.17.解:利用求根公式解一元二次方程时,首先要把方程化为一般式方程,确定a,b,c的值,当△>0时,把a,b,c的值代入公式,x1,x2=求得方程的解.故答案是:一般式方程;a,b,c;△>0;.18.解:方程x2﹣12x+31=0,变形得:x2﹣12x=﹣31,配方得:x2﹣12x+36=5,即(x﹣6)2=5,开方得:x﹣6=±,解得:x=6+或x=6﹣,当x=6﹣时,2x=12﹣2<20﹣12+2,不能构成三角形,舍去,则方程x2﹣12x+31=0的根为6+.故答案为:6+三.解答题(共5小题)19.解:(1)两边同除以3,得x2﹣4x+3=0,移项,得x2﹣4x=﹣3,配方,得x2﹣4x+4=﹣3+4,(x﹣2)2=1,x﹣2=±1,x1=3,x2=1;(2)∵a=3,b=﹣9,c=4,∴△=b2﹣4a c=(﹣9)2﹣4×3×4=33>0,∴方程有两个不相等的实数根为x=,x1=,x2=.20.解:∵x2﹣2x﹣15=0.∴a=1,b=﹣2,c=﹣15,∴b2﹣4ac=4+60=64>0,∴x=,∴x=5或﹣3.21.解:(1)方程整理得:(5x+3)2=4,开方得:5x+3=2或5x+3=﹣2,解得:x1=﹣,x2=﹣1;(2)这里a=2,b=﹣4,c=1,学习K12教育资料学习K12教育资料 ∵△=16﹣8=8,∴x==.22.解:(1)这里a=1,b=3,c=﹣1, ∵△=9+4=13,∴x=.(2)∵△ABC 沿BC 方向平移2cm 得到△DEF , ∴CF=AD=2cm ,AC=DF ,∵△ABC 的周长为16cm ,∴AB+BC+AC=16cm ,∴四边形ABFD 的周长=AB+BC+CF+DF+AD =AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm .23.解:(1)∵=|x ﹣1|=1﹣x , ∴x ﹣1≤0,即x ≤1.故答案为x ≤1.(2)由x ≤1,方程化为:x 2﹣x ﹣2=0, 则(x ﹣2)(x+1)=0,∴x ﹣2=0或x+1=0,∴x 1=2,x 2=﹣1.。
九年级数学上册 第二十一章 一元二次方程21.2 解一元二次方程21.2.3 因式分解法作业_1

第十八页,共十九页。
内容 总结 (nèiróng)
No 第二十一章 一元二次方程(fāngchéng)。解:x1=0,x2=3。解:x1=x2=-2。解:x1=-5,x2=1。7.请
选择你认为适当的方法解下列方程(fāngchéng).。10.若一元二次方程(fāngchéng)式x2-8x-3×11=0的两根为a, b,。x2-4x-5=0。解:x1=0,x2=4。∴x1=-a,x2=-b.。(4)用因式分解法解方程(fāngchéng)x2-kx-16=0 时,得到的两根均为整数,。2
问题:
(1)方程x2-3x+2=0的两个根是( ) C A.x1=-1,x2=1 B.x1=x2=-1 C.x1=1,x2=2 D.x1=x2=2
第十六页,共十九页。
(2)(2019·通辽)一个菱形的边长是方程(fāngchéng)x2-8x+15=0的一个根,
其中一条对角线长为8,则该菱形的面积为( )
解:直接开平方法,x1=1+ 3 ,x2=1- 3 解:公式法,x1=-12 ,x2=1
(2)x2=2x+4;
(4)3(2x-5)=2x(2x-5).
解:配方法,x1=1+ 5 ,x2=1- 5
解:因式分解法,x1=52,共十九页。
8.方程(fāngchéng)3x(x+1)=3x+3的解为(D ) A.x=1 B.x=-1 C.x1=0,x2=-1 D.x1=1,x2=-1
第十二页,共十九页。
人教版初中数学课标版九年级上册第二十一章 21.2 解一元二次方程因式分解法(共17张PPT)

还
10x - 4.9x 2 = 0
有
其
降 配方法
它
更
次 公式法
简 便
?
的 方
x1=
0
,x2 =
100 49
2.04
法 吗 ?
探究新知
观察方程 10x - 4.9x2 = 0,它有什么特点?你能根据 它的特点找到更简便的方法吗?
10x - 4.9x2 = 0
左边因式分解
x(10 - 4.9x)= 0
用降次法中的因式分解法解一元二次方程.
复习引入
1、解一元二次方程的基本思路是什么? 把二次方程转化为一次方程即降次
2、我们学过了用降次法中的哪几种方法来 解一元二次方程?
配方法和公式法
复习引入
3、什么叫因式分解?因式分解有哪几种方 法?
把一个多项式化成几个整式的积的形式叫做因式 分解或分解因式;
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.8.2421.8.2422:38:5422:38:54August 24, 2021
•
14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月24日星期二下午10时38分54秒22:38:5421.8.24
应用新知
1、用因式分解法解下列方程
(1)3x2+6x=0
(2)y(y-1)=2y-2
解 (1)3x(x+2)=0
:
∴3x=0或x+2=0
∴x1=0,x2=-2
(2)y(y-1)-2(y-1)=0 (y-1)(y-2)=0
∴y-1=0或y-2=0
九年级数学人教版第二十一章一元二次方程21.2.3公式法解方程(同步课本图文结合详解)

x-6.8
九年级数学上册第21章一元二次方程
通过本课时的学习,需要我们掌握: 1.由配方法解一般形式的一元二次方程 ax2+bx+c=0 (a≠0),若 b2-4ac≥0得求根公式:
x b b2 4ac 2a
2.会熟练应用公式法解一元二次方程.
x b b2 4ac (a≠0, b2-4ac≥0) 2a
否则原方程无解. 4、写出方程的解: x1=?, x2=?
九年级数学上册第21章一元二次方程
1.(无锡·中考)关于x的方程(a -5)x2-4x-1=0有实数 根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 【解析】选A.当a-5=0时,有实数解x= 1 ,此时a=5;当
x2 2 3x 3 0
这里 a=1, b= 2 3 , c= 3.
∵b2 - 4ac=( 2 3 )2 - 4×1×3=0,x 2来自3 210
23 2
3,
即:x1= x2= 3
九年级数学上册第21章一元二次方程
2、解方程:(x-2)(1-3x)=6. 【解析】去括号:x-2-3x2+6x=6
4
a 5 0 时,应满足 b2 4ac 16 4(a 5) 0 ,解得a≥1,综上所
述a≥1.
九年级数学上册第21章一元二次方程
2.(烟台·中考)方程x2-2x-1=0的两个实数根分别为x1,x2, 则 (x1-1)(x2-1)=______. 【解析】由求根公式可得方程x2-2x-1=0的两个实数根 为 x1 1 2 ,x2 1 2 ,所以
2
2
(4)配方、用直接开平方法解方程.
(x+ p )2= p2 -q 24
九年级数学上册第21章一元二次方程21.2解一元二次方程21.2.3因式分解法21.2.4一元二次方

两边直接开平方, 得x-2=0, ∴x1=x2=2.
(4)移项, 得(2x-3)2-(3x-2)2=0,
因式分解, 得 [(2x-3)+(3x-2)][(2x-3)-(3x-2)]=0,
即 (5x-5)(-x-1)=0,
∴5x-5=0或-x-1=0, ∴x1=1, x2=-1.
锦囊妙计
选择适当的方法解一元二次方程
已知一元二次方程(含有待定字母)的一个根求 另一个根的方法
(1)根据一元二次方程的根与系数的关系列 二元一次方程组
求解;
(2)把已知根代入原方程, 求出待定字母的 值, 再解一元二次
方程或由根与系数的关系求 出它的另一个根.
题型三 利用一元二次方程的根与系数的关系求代数式的值
例题 3
设 x1, x2 是方程 2x2- 6x-1=0 的两个根, 不解方程, 求下
第二十一章 一元二次
方程
*
因式分解法
一元二次方程的根与系数的关系
第二十一章 一元二次方程
因式分解法
* 一元二次方程的根与系数的
关系
考场对接
考场对接
题型一 选取适当的方法解一元二次方程
例题1 选取适当的方法解方程: (1)9x2-4=0;(2)x2+4x+1=0;
(3)x2-4x+4=0;(4)(2x-3)2=(3x-2)2.
−
=- +2+ =- +2-2=- .
锦囊妙计
常用的代数式变形方法汇总
题型四 根的判别式和根与系数的关系的综合运用
例题4 已知关于x的一元二次方程x2+2(m+ 1)x+m2-1=0.
章丘市九中九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1第1课时直接开平方法

导入新课
复习引入
1.如果 x2=a , 那么x叫做a的平方根. 2.如果 x2=a(a ≥0) , 那么x= a . 3.如果 x2=64 , 那么x=±8 . 4.任何数都可以作为被开方数吗 ?
负数不可以作为被开方数.
讲授新课
一 直接开平方法解形如x2=p(p≥0)的方程 问题 : 一桶油漆可刷的面积为1500dm2 , 李林用 这桶油漆恰好刷完10个同样的正方体形状的盒子的 全部外表面 , 你能算出盒子的棱长吗 ? 解 : 设一个盒子的棱长为x dm , 那 么一个正方体的表面积为6x2dm2 , 可 列出方程 10×6x2=1500 ,
x(x3+3)2=55, , ② 得 x3 5, 或 x3 5.③
于是 , 方程(x+3)2=5的两个根为 x1 3 5,x2 3 5
解题归纳
上面的解法中 , 由方程②得到③ , 实质上 是把一个一元二次方程〞降次” , 转化为两个一 元一次方程 , 这样就把方程②转化为我们会解的 方程了.
典例精析
例2 解以下方程 : 〔1〕(x+1)2= 2 ; 解析 : 第1小题中只要将(x+1)看成是一个整体 , 就可以运用直接开平方式求解.
解 : 〔1〕∵x+1是2的平方根 ,
∴x+1= 2 .
即x1=-1+ 2 ,x2=-1- 2 .
〔2〕(x-1)2-4 = 0 ;
解析 : 第2小题先将-4移到方程的右边 , 再同 第1小题一样地解.
第二十一章 一元二次方程
配方式
第1课时 直接开平方式
导入新课
讲授新课
当堂练习
课堂小结
学习目标 1.会把一元二次方程降次转化为两个一元一次方程. (难点〕 2.运用开平方式解形如x2=p或(x+n)2=p (p≥0)的方程. (重点〕
21.2 解一元二次方程 教学设计与反思

我班共有学生46人。
从整体来说,学生的学习积极性还是比较强的,与上一学年比较学习风气有了明显的好转,学习的兴趣浓了,学习的主动性增强了。但两极分化现象比较严重,尖子生不够突出。学生两极分化十分严重,优等生比例偏小,学习发展生所占比例太大,其中发展生大多数对学习热情不高,不求上进。而其中的优等生大多对学习热情高,但对问题的分析能力、计算能力、、概括能力存在严重的不足,尤其是所涉及的知识拓展和知识的综合能力方面不够好,学生反应能力弱。
教学重难点
重点
解一元二次方程配方法的步骤
难点
解一元二次方程配方法中的“配”
教学策略与设计说明
通过复习旧知识让学生在不知不觉中进入了新知识;自主学习与合作交流:通过自学使学生初步认识配方法的过程,通过交流掌握配方法的每一步要领。在教学中教师注意引领点拨。
教学过程
教学环节(注明每个环节预设的时间)
教师活动
教学设计
基本信息
名称
21.2解一元二次方程
课时
ห้องสมุดไป่ตู้第二节
所属教材目录
人民教育出版社第二十一章一元二次方程
教材分析
本章在已经学习了一元一次方程二元一次方程组以及可化为一元一次方程的分式方程的基础上出现的。因此教学之前应先了解学生过去已学习过有关方程的哪些具体知识,学习中存在的哪些问题等,这样的调查有助于加强本章教学的针对性。还点出了高次方程的解法思想——降次。该章是今后学习二次函数、高中代数等基础,具有承上启下的作用。因此它在整个中学代数中占有重要地位。一元二次方程不论在“解”上还是“列”上都较一元一次方程难的多,因此在教学时注意时时复习,循序渐进。本节学习“配方法”。它是在已学过的“平方根”基础上(复习)引出“特殊”一元二次方程的解法,在此基础上运用“完全平方公式”写成(配方)“特殊”一元二次方程形式(结构),转化为学过的知识进行解一般一元二次方程;把它推广到一般就得到了下节学习的内容——公式法
《21.2解一元二次方程——21.2.2公式法》教学设计【初中数学人教版九年级上册】

第二十一章一元二次方程21.2解一元二次方程公式法教学设计一、教学目标1.探索利用公式法解一元二次方程的一般步骤.2.能够利用公式法解一元二次方程.二、教学重点及难点重点:用公式法解一元二次方程.难点:用公式法解一元二次方程三、教学用具多媒体课件。
四、相关资源《复习配方法解一元二次方程》动画。
五、教学过程【温故知新,提出问题】XE燃解方程s h+2s+c=0此图片是动画绪略图,此处插入交互动画《【数学探完】一元二次方程的儿何解法》,可以通过几何的方法展现一元二次方程的解法。
问题1你能用配方法解卜列方程吗?(1)m+ll=O;(2)9/=12x+14.解:<1)移项,得x2 -7入=一11.配方,得x2-7a-+^|J=-11+r2>7即七2=5 3开方,得x—;=±g.7-757+必所以X]=—-—•^2=—5-(2)移项,得9F-12x=14・,414系数化为1,得『一二工二方.配方,得广一§+仲卜?+停).即厂:<--2=2.开方,得x-|=±>/2,所以“甲®夸问题2用配方法解一元二次方程的步骤?化:把原方程化成r+p.x+q=O的形式.移项:把常数项移到方程的右边,如F+px=迫.配方:方程两边都加上一次项系数一半的平方,如/+px+(W)2=-g+(S(x+S=F+(9求解:解一元一次方程.定解:写出原方程的解.师生活动:学生独立完成,复习归纳。
(X潞瘢配方法任何一个一元二次方程都可以写成一般形式十取-c-m z=0),能否用配方法俾出能否用配方法街出or2me=O(aMO)的观]一元二次方程M+既13(/0)的二次坎系救u,—次敏卒致b以及常敏项c.<1>移项;将方程中含有耒知数的氐移对方程的左边.巧常数璜玛勤方程的右边.ar2—fez=—cQ)二次项系散化为卜若二次项的系敢不为1.划在方程两边同时序以二次项的系敷.将二次项的系敖化为I.X2+-Z=—-a aU>配方,方程的两边鄙加上一次咬系?I一半的平方鸟方程靛左遮配成一个完全平方式・/十打十(粉2=弋十(粉2flHk整电饵(工+y=静因为a*0.4a2>0,代数式62-iac来决定一元二次方程+hx+c=Oia^O)根的唁况.此图片是动画垸略图,此处插入交互动画《【教学探究】配方法》,可以逐步展现配方法的步曜.设计意图:通过复习,巩固旧知,钠垫新知,设置问题,引出新课.【合作探究,形成知识】问题2—元二次方程的一般形式是什么?你能否也用配方法解出方程的根呢?杯+皈+^=0(醇0)己知a『+M+c=0(再0),请用配方法推导出它的两个根.解:移项,得ar2+fer=-c.K c二次项系数化为1,得《?+-X=——.a a配方,得+-X+(A)2=-£+(A)2…gp(X+=)2=\二"(JI).a la a2a2。