初中数学一元二次方程的解法
初中数学一元二次方程的解法

初中数学一元二次方程的解法
一元二次方程指的是只含有一个未知数,并且未知数项的最高次数是2的整式方程。
初中数学一元二次方程的解法有开平方法、配方法、求根公式法和因式分解法等等。
(一)因式分解法
(1)将方程右边化为0;
(2)将方程左边分解为两个一次式的积;
(3)令这两个一次式分别为0,得到两个一元一次方程;
(4)解这两个一元一次方程,它们的解就是原方程的解。
(二)配方法
(1)把原方程化为一般形式;
(2)方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
(3)方程两边同时加上一次项系数一半的平方;
(4)把左边配成一个完全平方式,右边化为一个常数;
(5)进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(三)求根公式法
(1)把方程化成一般形式aX²+bX+c=0,确定a,b,c的值(注意符号);
(2)求出判别式△=b²-4ac的值,判断根的情况。
当Δ>0时,x=[-b±(b²-4ac)^(1/2)]/2a,方程有两个不相等的实数根;
当Δ=0 时,方程有两个相等的实数根;
当Δ<0时,方程无实数根,但有2个共轭复根。
解一元二次方程五种方法

解一元二次方程五种方法解一元二次方程五种方法解一元二次方程是初中数学中的基础知识,也是高中数学中的重要内容,掌握多种解法对于提高数学能力和解题能力有着重要作用。
下面介绍五种解一元二次方程的方法。
方法一:配方法(也称为配方根公式)配方法是一种常见的解一元二次方程的方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项分离出完全平方项;2. 将方程化为完全平方形式,即形如(x + a) = b;3. 对方程两边取平方根,得到x的两个解:x = -a ± b。
方法二:公式法公式法是解一元二次方程的常用方法之一,它的公式为:x = (-b ±√(b-4ac)) / 2a其中a、b、c分别为一次项系数、二次项系数和常数项。
方法三:图像法图像法是一种直观的解题方法,它的步骤如下:1. 将方程化为标准形式:ax+bx+c=0;2. 将方程左侧变形为y=ax+bx+c的二次函数的图像;3. 通过观察二次函数的图像,得到x的解。
方法四:因式分解法如果一元二次方程的左侧可以因式分解,那么可以使用因式分解法解题。
例如:x+5x+6=0,可以因式分解为(x+2)(x+3)=0。
因此,x的解为x=-2或x=-3。
方法五:完全平方公式完全平方公式是解一元二次方程的一种简便方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项计算出Δ=b-4ac;2. 如果Δ是完全平方数,那么方程的解为x=(-b±√Δ)/2a。
以上是解一元二次方程的五种方法,希望对大家有所帮助。
掌握多种解题方法可以提高数学思维和解题能力,也可以在考试中提高解题速度和准确性。
初中数学必备 一元二次方程的解法—知识讲解

x2
−
7 10
x
+
49 400
−
49 400
−
4
=
−10
x
−
7 20
2
−
49
400
−
4
=
−10
x
−
7 20
2
+
49 40
−
4
=
−10
x
−
7 20
2
−
111 40
.
∵
−10
x
−
7 20
2
0
,∴
−10
x
+
7 4
2
=
25 16
,
直接开平方,得 x + 7 = 5 . 44
∴
x1
=
−
1 2
,
x2
=
−3
.
【总结升华】方程(1)的二次项系数是 1,方程(2)的二次项系数不是 1,必须先化成 1,才能配方,这是
关键
的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为
(mx + n)2 = P(P 0) 的形式,然后用直接开平方法求解.同时要注意一次项的符号决定了左
【典型例题】 类型一、用配方法解一元二次方程
1. 用配方法解方程: (1) x2 − 4x −1 = 0 ;
【答案与解析】 (1)移项,得 x2 − 4x = 1 .
(2) 2x2 + 7 x + 3 = 0 .
九年级数学一元二次方程的解法根的判别式

典型例题
例1不解方程,判断下列方程根的情况: 不解方程,判断下列方程根的情况: x(1)-x2+ 2 6 x-6=0 (2)x2+4x=2 +1=(3)4x2+1=-3x 2mx+4 (4)x2-2mx+4(m-1)=0 解(1)∵b2-4ac=24-4×(-1)×(-6)=0 ) × ) ) ∴该方程有两个相等的实数根
尝试:
不解方程,你能判断下列方程根的情况吗? 不解方程,你能判断下列方程根的情况吗?
⑴ x2+2x-8 = 0 - ⑵ x2 = 4x-4 - ⑶ x2-3x =-3 -
答案:( )有两个不相等的实数根; 答案:(1)有两个不相等的实数根; :( (2)有两个相等的实数根; )有两个相等的实数根;
当一元二次方程有两个不相等的实数根时, 当一元二次方程有两个不相等的实数根时,b2-4ac>0 当一元二次方程有两个相等的实数根时, 当一元二次方程有两个相等的实数根时, b2-4ac = 0 当一元二次方程没有实数根时, 当一元二次方程没有实数根时,b2-4ac < 0
概念巩固
1.方程 2+2=4x的判别式 2-4ac= -8 方程3x 的判别式b 方程 的判别式 . 所以方程的根的情况是 方程无实数根
典型例题
为任意实数, 例2 :m为任意实数,试说明关于 的方程 为任意实数 试说明关于x的方程 x2-(m-1)x-3(m+3)=0恒有两个不相等 ( ) ( ) 恒有两个不相等 的实数根。 的实数根。
解:b 2 − 4ac = [− (m − 1)]2 − 4[3(m + 3)]
= m 2 + 10m + 37
典型例题
2
初中数学一元二次方程的解法_公式法

a 2a
a 2a
左边写成完全平方式,右边通分,得
(4)开平方…
(x b )2 b2 4ac .
2a
4a2
(x
b )2 2a
b2 4ac 4a2
.
∵a≠0, 4a2>0,
∴当b2-4ac≥0时,
b2
4ac 4a2
0,
∴ x b b2 4ac .
2a
2a
x b
b2 4ac .
2a
当△>0,即
a<
5 4
时,
x
5
25 20a
2a
;
5
当△=0,即 a= 4 时,x=2;
当△<0,即
a>
5 4
时,方程无解。
(2008年北京市)已知 :关于 mx2 (3m 2)x 2m 2 0(m 0) 的一元二次方程 (1)求证:方程有两个不相等的实数根;
【解析】⑴ mx2 (3m 2)x 2m 2 0 是关于 x 的一元二次方程,
(3) 当 b2 4ac 0 时,方程没有实数根.
一元二次方程 ax2 bx c 0 (a 0).
的根由方程的系数a,b,c确定.
解一元二次方程时,可以先将方程化为一般形式
当 b2 4ac 0 时,将a,b,c代入式子
x b b2 4ac 2a
一元二次方程的 求根公式
利用它解一元二次方程的方法叫做公式法,
解:∵ 一元二次方程kx2-2x+3=0有实数根.
∴ k≠0,
b2 4ac 0
又∵ b2 4ac (2)2 4 k 3 = 4-12k
∴ 4-12k ≥0,解得 k 1
∴ 当 k1
解一元二次方程的方法

解一元二次方程的方法一元二次方程是初中数学中的重要内容,解一元二次方程是数学学习的基础,也是数学建模和实际问题求解的基础。
下面我们将介绍几种解一元二次方程的方法。
首先,我们来介绍一元二次方程的标准形式,ax^2 + bx + c = 0。
其中,a、b、c分别是一元二次方程的系数,a≠0。
解一元二次方程的方法有,因式分解法、配方法、公式法和求根公式法。
1. 因式分解法。
当一元二次方程可以因式分解时,我们可以利用因式分解法来解方程。
例如,对于方程x^2 5x + 6 = 0,我们可以将其因式分解为(x 2)(x 3) = 0,从而得到方程的解x=2和x=3。
2. 配方法。
当一元二次方程不能直接因式分解时,我们可以利用配方法来解方程。
例如,对于方程x^2 + 6x + 9 = 0,我们可以将其配方为(x+3)^2=0,从而得到方程的解x=-3。
3. 公式法。
一元二次方程的一般解为x = (-b±√(b^2-4ac))/(2a),这就是一元二次方程的求根公式。
我们可以利用这个公式来解一元二次方程。
例如,对于方程x^2 4x + 3 = 0,我们可以直接代入a=1,b=-4,c=3,然后利用求根公式来求得方程的解。
4. 求根公式法。
当一元二次方程的系数较为复杂时,我们可以利用求根公式法来解方程。
求根公式法是一种通过求根公式来求得一元二次方程的解的方法,适用于所有一元二次方程的解法。
例如,对于方程2x^2 5x + 3 = 0,我们可以直接代入a=2,b=-5,c=3,然后利用求根公式来求得方程的解。
综上所述,解一元二次方程的方法有很多种,我们可以根据具体的方程形式和系数情况来选择合适的方法来解方程。
通过掌握这些方法,我们可以更加灵活地解决实际问题中的一元二次方程,提高数学建模和实际问题求解的能力。
希望通过本文的介绍,能够帮助大家更好地掌握解一元二次方程的方法,提高数学学习的效率和水平。
初三数学一元二次方程解题技巧分析详解

初三数学一元二次方程解题技巧分析详解一元二次方程是初中数学中较为重要的知识点之一,掌握解题技巧对于学生来说至关重要。
本文将对初三数学一元二次方程解题技巧进行详细分析,并给出实例进行解释,帮助学生更好地理解和掌握。
一、一元二次方程的基本形式及代数解法一元二次方程的基本形式为ax^2 + bx + c = 0,其中a、b、c为已知实数且a≠0。
解一元二次方程的常用方法有因式分解法、配方法和求解判别式。
下面将分别对这三种方法进行详解。
1. 因式分解法因式分解法是一种快速解一元二次方程的方法。
对于形如(x+m)(x+n)=0的方程,可以直接得到x=-m或x=-n为方程的解。
例如,对于方程x^2 - 5x + 6 = 0,可以将其因式分解为(x-2)(x-3)=0,从而得到x=2或x=3为方程的解。
2. 配方法配方法是一种常用的解一元二次方程的方法。
对于形如ax^2 + bx +c = 0的方程,可通过适当的配方使其化为一个完全平方。
具体步骤如下:(1)将方程的常数项c分解为两个数的乘积,这两个数的和为b;(2)根据分解出的两个数进行配方,将二次项和一次项分别进行平方。
例如,对于方程x^2 + 5x + 6 = 0,可以将6分解为2和3的乘积,得到x^2 + 2x + 3x + 6 = 0。
然后,根据配方,将前两项进行平方,得到(x + 2)^2 + 3x = 0。
继续进行化简,得到(x + 2)^2 = -3x。
由于方程左边是完全平方,所以方程有解。
3. 求解判别式求解判别式是解一元二次方程的一种常用方法。
判别式Δ=b^2 - 4ac 可以判断一元二次函式的解的情况。
当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根。
例如,对于方程x^2 - 2x + 1 = 0,根据判别式Δ=(-2)^2 -4×1×1=0,因此方程有两个相等的实数根x=1。
一元二次方程的解法

一元二次方程的解法一元二次方程是初中数学中的重要内容,它在数学中有着广泛的应用。
掌握一元二次方程的解法对于学生来说是十分重要的,因为它不仅能够帮助学生解决实际问题,还能够培养学生的逻辑思维和解决问题的能力。
本文将介绍一元二次方程的解法,并通过实例进行说明。
一、解法一:因式分解法对于形如ax^2 + bx + c = 0的一元二次方程,我们可以尝试使用因式分解法来解决。
例如,对于方程x^2 + 5x + 6 = 0,我们可以将其因式分解为(x + 2)(x + 3) = 0。
根据乘法逆元的性质,我们知道只有当(x + 2) = 0或者(x + 3) = 0时,方程才能成立。
因此,方程的解为x = -2或者x = -3。
二、解法二:配方法如果一元二次方程无法通过因式分解法解决,我们可以尝试使用配方法。
例如,对于方程x^2 + 6x + 8 = 0,我们可以通过配方法将其转化为(x + 2)(x + 4) = 0。
然后,我们可以得到(x + 2) = 0或者(x + 4) = 0,进而求得方程的解为x = -2或者x = -4。
三、解法三:求根公式如果一元二次方程无法通过因式分解法或者配方法解决,我们可以尝试使用求根公式。
一元二次方程的求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。
其中,a、b、c分别为方程ax^2 + bx + c = 0中的系数。
例如,对于方程2x^2 + 5x + 3 = 0,我们可以通过求根公式得到x = (-5 ± √(5^2 - 4*2*3)) / (2*2)。
进一步计算可得x = -1或者x = -1.5。
因此,方程的解为x = -1或者x = -1.5。
四、解法四:图像法除了上述的解法,我们还可以通过绘制一元二次方程的图像来求解方程。
例如,对于方程x^2 - 4x + 3 = 0,我们可以绘制出它的图像。
通过观察图像,我们可以发现方程的解为x = 1或者x = 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解一元二次方程:
例1 x 2-4-(2x+4)=0
(因式分解法)解:(x+2)(x-2)-2(x+2)=0
(x+2)[(x-2)-2]=0
(x+2)(x-4)=0
所以 x 1=-2 , x 2=4.
(配方法)解:x 2-2x-8=0
X 2-2x=8
X 2-2x+(-1)2=8+(-1)2
即(x-1)2=9
X-1=±3
所以 x 1=4 , x 2=-2.
(公式法)解:x 2-2x-8=0
→Δ=(-2)2-4×1×(-8)
=36>0
所以 x 1,2=1236
)2--⨯±(
即x 1=4 , x 2=-2.
(“x 2+(a+b)x+ab=0→(x+a)(x+b)=0”法)
解:x 2-2x+(-4)2⨯=0
(X-4)(x+2)=0
所以 x 1=4 , x 2=-2.
1
例2 用配方法解下列一元二次方程:
(1) x 2-6x+5=0; (2) 2x 2+4x-3=0;
(3) 9x 2+6x-1=0;
(4) 4x 2-12x+m=0 (m 为任意实数).
解:(1) x 2-6x=-5
X 2-6x+(-3)2=-5+(-3)2
即(x-3)2=4
X-3=±2
所以 x 1=5 , x 2=1.
(2) x 2+2x=23
X 2+2x+12=23
+12
(X+1)2=25
X+1=±210
所以 x 1=-1+210
, x 2=-1-210
(3) (3x)2+2×3x=1
(3x)2+2×3x ×1+12=1+12
(3x+1)2=2
3x+1=2±
所以x 1=32
1-+ ,x 2=-32
1+.
2
(4) (2x)2-2×2x ×3=-m
(2x)2-2×2x ×3+32=-m+32
(2x-3)2=9-m
所以 ①当9-m ≥0即m ≤9时 ,2x-3=m -9±
X 1=2-93m
+ , x 2=2-9-3m
;
②当9-m<0即m>9时 ,方程无实根.
例3 用公式法解下列一元二次方程:
(1) 2x 2-3x+1=0; (2) 3x 2+1=2x;
(3) x(1-2x)+3=0; (4) x 2-2x=t (t 为任意实数). 解:(1)由一元二次方程的一般式知 a=2,b=-3,c=1; →Δ=b 2-4ac
=(-3)2-4×2×1
=1>0
所以 x 1,2=221
3--⨯±)(
即x 1=1 , x 2=2
1.
(2)方程整理为3x 2-2x+1=0
→Δ=(-2)2-4×3×1
=-8<0
所以 方程无实根.
3
(3) 方程变形为2x 2-x-3=0
→Δ=(-1)2-4×2×(-3) =25>0
所以 x 1,2=2225
1--⨯±)(
即x 1=2
3 , x 2=-1. (4) X 2-2x-t=0
→Δ=(-2)2-4×1×(-t)
=4(t+1)
① 当Δ≥0即t ≥-1时,x 1,2=
121)t 42--⨯+±()( 即x 1=1+1t + , x 2=1-1t +. ② 当Δ<0即t<-1时,方程无解.
例4 用因式分解法解下列方程:
(1) (2x+3)2-2x=3; (2) (y-1)2+2y(y-1)=0;
(3) (2x-1)2-1=x 2-2x; (4) t 2-5t-6=0. 解: (1) 原方程可变形为(2x+3)2-(2x+3)=0 (2x+3)[(2x+3)-1]=0
即2(2x+3)(x+1)=0
故 2x+3=0 或 x+1=0
所以 x 1=-2
3 , x 2=-1. (2) 提取公因式得(y-1)[(y-1)+2y]=0
即(y-1)(3y-1)=0 4
故y-1=0 或3y-1=0
1.
所以y1=1 , y2=
3
(3) 原方程移项,整理得(2x-1)2-(x2-2x+1)=0
(2x-1)2-(x-1)2=0
[(2x-1)+(x-1)][(2x-1)-(x-1)]=0
即x(3x-2)=0
2.
所以x1=0 , x2=
3
(4) (变形1)t2-1-5t-5=0
(t+1)(t-1)-5(t+1)=0
提取公因式得(t+1)[(t-1)-5]=0
即(t+1)(t-6)=0
所以t1=-1 , t2=6.
(变形2)t2+t-6t-6=0
t(t+1)-6(t+1)=0
提取公因式得(t+1)(t-6)=0
所以t1=-1 , t2=6
5。