一元二次方程的解法详细解析

合集下载

一元二次方程的解法比较

一元二次方程的解法比较

一元二次方程的解法比较一元二次方程是指形如 ax^2 + bx + c = 0 的方程,其中 a、b、c 是已知实数且a ≠ 0。

解一元二次方程是数学中的重要内容,它有多种解法,本文将比较常见的两种解法:配方法和公式法。

一、配方法解一元二次方程配方法是一种通过变换使得方程能够因式分解的解法。

具体步骤如下:1. 对方程两边进行配方:将方程左右两边都乘以一个适当的数,使得方程的左边成为一个完全平方。

2. 将方程左边的完全平方进行因式分解:将方程左边的完全平方进行因式分解,得到一个形如 (m + n)^2 的结果。

3. 利用因式分解后的方程得出解:根据因式分解后的方程形式,可以得到方程的两个解。

下面通过一个具体的例子来说明配方法的解题过程。

例题:解方程 x^2 + 5x + 6 = 0解题过程:1. 为了使方程左边成为一个完全平方,我们令 x^2 + 5x = (x + m)^2。

2. 将完全平方进行因式分解:(x + m)^2 = x^2 + 2mx + m^2。

3. 将方程转化为形如 (x + m)^2 = x^2 + 2mx + m^2 的形式。

x^2 + 5x = x^2 + 2mx + m^25x = 2mx + m^24. 比较系数得出:5 = 2m,m^2 = 0。

因此,m = 5/2,m^2 = 0。

5. 将得到的 m 值代入原方程,得到 (x + 5/2)^2 = 0。

由于一个实数的平方等于零当且仅当这个实数等于零,所以我们可以解得 x + 5/2 = 0,即 x = -5/2。

6. 因此,方程 x^2 + 5x + 6 = 0 的解为 x = -5/2。

通过配方法,我们成功解出了一元二次方程 x^2 + 5x + 6 = 0 的解为x = -5/2。

二、公式法解一元二次方程公式法是一种利用求根公式解一元二次方程的方法。

求根公式如下:对于一元二次方程 ax^2 + bx + c = 0,它的解可以通过以下公式计算:x = (-b ± √(b^2 - 4ac)) / (2a)其中 ±表示两个解,一个是加号,一个是减号。

初中数学必备 一元二次方程的解法—知识讲解

初中数学必备  一元二次方程的解法—知识讲解


x2

7 10
x
+
49 400

49 400


4
=
−10

x

7 20
2


49
400

4
=
−10

x

7 20
2

+
49 40

4
=
−10

x

7 20
2


111 40


−10


x

7 20
2


0
,∴
−10
x
+
7 4
2

=
25 16

直接开平方,得 x + 7 = 5 . 44

x1
=

1 2

x2
=
−3

【总结升华】方程(1)的二次项系数是 1,方程(2)的二次项系数不是 1,必须先化成 1,才能配方,这是
关键
的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为
(mx + n)2 = P(P 0) 的形式,然后用直接开平方法求解.同时要注意一次项的符号决定了左
【典型例题】 类型一、用配方法解一元二次方程
1. 用配方法解方程: (1) x2 − 4x −1 = 0 ;
【答案与解析】 (1)移项,得 x2 − 4x = 1 .
(2) 2x2 + 7 x + 3 = 0 .

培优专题01 一元二次方程的解法-解析版

培优专题01 一元二次方程的解法-解析版

培优专题01 一元二次方程的解法◎方法一直接开平方法(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,.对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a(2)直接开平方法适用于解形如x2 = p或(mx+a)2 = p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

1.(2022·浙江绍兴·八年级期末)一元二次方程x2 -1=0的根是()A.x1=x2=1B.x1=1,x2=-1C.x1=x2=-1D.x1=1,x2=0【答案】B【分析】先移项,再两边开平方即可.【详解】解:∵x2-1=0,∴x2=1,∴x=±1,即x1=-1,x2=1.故选:B.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.(2022·安徽滁州·八年级期末)如果关于x 的方程2(9)4x m -=+可以用直接开平方法求解,那么m 的取值范围是( )A .3m >B .3m ³C .4m >-D .4m ³-【答案】D【分析】根据直接开平方法求解可得.【详解】解:∵2(9)4x m -=+,且方程2(9)4x m -=+可以用直接开平方法求解,∴40m +³,∴4m ³-.故选:D .【点睛】此题主要考查了直接开平方法解一元二次方程,正确化简方程是解题关键.3.(2022·全国·九年级课时练习)关于x 的方程2x p =.(1)当0p >时,方程有__________的实数根;(2)当0p =时,方程有__________的实数根;(3)当0p <时,方程__________.4.(2022·安徽合肥·八年级期末)方程290x -=的解为______.5.(2022·全国·九年级单元测试)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成a cb d ,定义a cad bcb d=-,上述记号就叫做2阶行列式.(1)若21493xx=,求x的值.(2)若11611x xx x+-=-+,求x的值.◎方法二 配方法1、配方法的一般步骤可以总结为:一移、二除、三配、四开;2、把常数项移到等号的右边;3、方程两边都除以二次项系数;4、方程两边都加上一次项系数一半的平方,把左边配成完全平方式;5、若等号右边为非负数,直接开平方求出方程的解。

一元二次方程的解法—知识讲解

一元二次方程的解法—知识讲解

一元二次方程及其解法(一)直接开平方法—知识讲解(提高)【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是否关于x的一元二次方程:(1)a2(x2-1)+x(2x+a)=3x+a;(2)m2(x2+m)+2x=x(x+2m)-1.【答案与解析】(1)经整理,得它的一般形式(a2+2)x2+(a-3)x-a(a+1)=0,其中,由于对任何实数a都有a2≥0,于是都有a2+2>0,由此可知a2+2≠0,所以可以判定:对任何实数a,它都是一个一元二次方程.(2)经整理,得它的一般形式(m2-1)x2+(2-2m)x+(m3+1)=0,其中,当m≠1且m≠-1时,有m2-1≠0,它是一个一元二次方程;当m=1时方程不存在,当m=-1时,方程化为4x=0,它们都不是一元二次方程.【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数的限定条件是m≠±1.例如,一个关于x的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-4≠0,即m≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x的一元二次方程(a-1)x2+(2a+1)x+a2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”.类型二、一元二次方程的一般形式、各项系数的确定2. 已知关于y的一元二次方程m2(y2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m的取值范围.【答案与解析】将原方程整理为一般形式,得(m2-8)y2-(3m-1)y+m3-1=0,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件m2-8≠0,即 m≠±.可知它的各项系数分别是a=m2-8(m≠±),b=-(3m-1),c=m3-1.参数m的取值范围是不等于±的一切实数.【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.举一反三:【变式】关于x的方程的一次项系数是-1,则a .【答案】原方程化简为x2-ax+1=0,则-a=-1,a=1.类型三、一元二次方程的解(根)3. (2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定【思路点拨】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【答案】B;【解析】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【总结升华】本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键. 举一反三: 【变式】(1)x=1是的根,则a= .(2)已知关于x 的一元二次方程 22(1)210m x x m -++-=有一个根是0,求m 的值.【答案】(1)当x=1时,1-a+7=0,解得a=8. (2)由题意得类型四、用直接开平方法解一元二次方程4.解方程(x-3)2=49.【答案与解析】把x-3看作一个整体,直接开平方,得 x-3=7或x-3=-7. 由x-3=7,得 x=10. 由x-3=-7,得 x=-4.所以原方程的根为x=10或x=-4.【总结升华】应当注意,如果把x+m 看作一个整体,那么形如(x+m)2=n(n ≥0)的方程就可看作形如x 2=k 的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n 可成为任何一元二次方程变形的目标.举一反三:【变式】解方程: (1) (2014秋•宝安区期末)(3x+2)2=4(x ﹣1)2;(2) (2014•锡山区期中) (x-2)2=25.【答案】解:(1) 3x+2=±2(x ﹣1),∴3x+2=2x ﹣2或3x+2=﹣2x+2, ∴x 1=﹣4;x 2=0.(2) (x-2)=±5∴x-2=5或x-2=-5 ∴x 1=7,x 2=-3.一元二次方程的解法(二)配方法—知识讲解(提高)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。

专题05一元二次方程的概念及解法(知识点串讲)(解析版)

专题05一元二次方程的概念及解法(知识点串讲)(解析版)

专题05一元二次方程的概念及解法知识框架重难突破一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.备注:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.备注:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a -b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a -b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.例1.(2020·山东省初二期中)下列方程中,关于x 的一元二次方程是( ) A .20ax bx c ++= B .21120x x+-=C .x (x -3)=2+x 2D x 2-【答案】D【解析】解:A 、当a ≠0,b 、c 为常数时,是一元二次方程,故此选项错误; B 、是分式方程,故此选项错误; C 、是一元一次方程,故此选项错误; D 、是关于x 的一元二次方程,故此选项正确; 故选:D .练习1.(2020·河北联邦国际学校初二期中)方程:①2113x x-=,②22250x xy y -+=,③2710x +=,④202y =中,一元二次方程是( ). A .①和② B .②和③ C .③和④ D .①和③【答案】C【解析】解:①2113x x-=不是一元二次方程; ②22250x xy y -+=不是一元二次方程; ③2710x +=是一元二次方程;④202y =是一元二次方程.综上:一元二次方程是③和④ 故选C .练习2.(2020·重庆巴蜀中学初二月考)如果(2)20mm xx ++-=是关于x 的一元二次方程,那么m 的值为________. 【答案】2【解析】解:(2)20mm xx ++-=是关于x 的一元二次方程,∴202m m +≠⎧⎨=⎩,解得:2m =. 故答案为:2.例2.(2020·哈尔滨市松雷中学校初二月考)方程2x 2﹣6x ﹣5=0的二次项系数、一次项系数、常数项分别为( ) A .6、2、5 B .2、﹣6、5 C .2、﹣6、﹣5 D .﹣2、6、5【答案】C【解析】试题分析:一元二次方程ax 2+bx+c=0(a ,b ,c 是常数且a≠0)的a 、b 、c 分别是二次项系数、一次项系数、常数项.方程2x 2﹣6x ﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5. 故选C练习1.(2020·重庆南开中学初二月考)将一元二次方程﹣3x 2﹣2=﹣4x 化成一般形式ax 2+bx+c =0(a >0)后,一次项和常数项分别是( ) A .﹣4,2 B .﹣4x ,2 C .4x ,﹣2 D .3x 2,2【答案】B【解析】解:把一元二次方程-3x 2-2=-4x 化成一般形式ax 2+bx+c=0得: -3x 2+4x -2=0, ∵a >0, ∴3x 2-4x+2=0,∴一次项和常数项分别是:-4x ,2, 故选:B .例3.(2019·北京人大附中初二期中)若关于x 的一元二次方程22(3)130m x x m m -+++-=有一个根为1,则实数m 的值_____________. 【答案】5-【解析】∵关于x 的一元二次方程22(3)130m x x m m -+++-=有一个根为1,∴231130m m m -+++-=, 整理得:22150m m +-=, 即()()530m m +-=, 解得:5m =-或3m =, ∵30m -≠, ∴5m =-. 故答案为:5-.练习1.(2019·长沙市开福区青竹湖湘一外国语学校初二期中)若关于x 的一元二次方程260ax bx ++=的一个根为2x =-,则代数式841a b -+的值为________. 【答案】-11【解析】将2x =-代入方程260ax bx ++=得:4260a b -+=, ∴84120a b -+=, ∴84111a b -+=-. 故答案为:﹣11.练习2.(2020·海门市东洲中学初二期中)已知关于x 的方程260x x p --=的一个根是1,则p =_____________; 【答案】-5【解析】解:∵关于x 的方程260x x p --=的一个根是1,∴160p --=, 解得:5p =-, 故答案为:-5.二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.备注:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.配方法解一元二次方程(1)配方法解一元二次方程(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.备注:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式 (2)配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.备注:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.3、公式法解一元二次方程(1)一元二次方程的求根公式 一元二次方程,当时,.(2)一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.(3)用公式法解一元二次方程的步骤2222()a ab b a b ±+=±用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.备注:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程,用配方法将其变形为:.①当时,右端是正数.因此,方程有两个不相等的实根:.② 当时,右端是零.因此,方程有两个相等的实根:.③ 当时,右端是负数.因此,方程没有实根.4、因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. (2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 备注:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,2x =240b ac ∆=-=1,22b x a =-240b ac ∆=-<0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.例1.(2019·湖南省师大附中梅溪湖中学初三期末)一元二次方程240x -=的解是( ) A .x 1=2,x 2=-2 B .x =-2 C .x =2 D .x 1=2,x 2=0【答案】A【解析】原方程移项可得:24x =, 解得:12x =,22x -=, 故选:A.练习1.(2019·上海市市西初级中学初二期中)关于x 的方程2221b x x -=-的解是________.【答案】x 1=21b +,x 2=-21b +【解析】2221b x x -=-2221b x x +=()2211bx +=2211x b =+ ∴±故x 1=21b +,x 2=-21b +故答案为:x 1=,x 2=-例2.(2019·北京人大附中初二期中)用配方法解方程2640x x ++=时,原方程变形为( ) A .2(3)9x += B .2(3)14x += C .2(3)5x += D .2(3)6x +=【答案】C【解析】方程2640x x ++=, 变形得:264x x +=-,配方得:222666422x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即2(3)5x +=, 故选:C .练习1.(2020·哈尔滨市松雷中学校初二月考)将方程2410x x -+=化成()2x m n +=的形式是( ) A .()2112x -=B .()223x -=C .()210x -=D .()224x -=【答案】B【解析】解:∵x 2-4x+1=0, ∴x 2-4x=-1, ∴x 2-4x+4=-1+4, ∴()223x -=. 故选B .例3.(2020·扬州市梅岭中学初二期中)关于代数式 −x 2+4x -2 的取值,下列说法正确的是( ) A .有最小值-2 B .有最大值2 C .有最大值−6 D .恒小于零【答案】B【解析】解:−x 2+4x -2=22(2)42(2)2x x --+-=--+∵2(2)0x --≤,∴2(2)22x --+≤,当且仅当2x =时等号成立,∴−x 2+4x -2有最大值2 故选B .练习1.(2019·重庆西南大学附中初二期中)代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A 【解析】解:2222244619(3)(2)10x xy y x x x y -+++=++-+∵22(3)0,(2)0x x y +≥-≥∴代数式22244619x xy y x -+++的最小值是10. 故选:A .练习2.(2020·江阴市敔山湾实验学校初一期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∴(x +2)2+1≥1,∴x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【解析】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0, ∴(x ﹣1)2+1>0, ∴x 2﹣1>2x ﹣3.例4.(2020·温州外国语学校初二月考)x =是下列哪个一元二次方程的根( ) A .23210x x +-= B .22410x x +-= C .2x 2x 30--+= D .23210x x --= 【答案】D 【解析】解:对于一元二次方程()200++=≠ax bx c a ,方程的根为:x =.因为x =3a =,2b =-,1c =-,所以对应的一元二次方程是:23210x x --=.故选:D .练习1.(2019·高唐县赵寨子中学初三月考)用公式法解231x x -+=时,先求出a 、b 、c 的值,则a 、b 、c 依次为( )A .1-,3,1-B .1,3-,1-C .1-,3-,1-D .1-,3,1 【答案】A【解析】把方程231x x -+=化为一元二次方程的一般形式为2310x x -+=,∴a =1,b =−3,c =1.但选项里没有这组值,方程两边同乘以−1,得:2310x x -+-=,此时a =−1,b =3,c =−1.故选:A.练习2.(2020·兰州市外国语学校初三二模)方程x 2+x ﹣1=0的一个根是( )A .1﹣√5B .1−√52C .﹣1+√5D .√5−12 【答案】D【解析】∵a =1,b =﹣1,c =﹣1,∴△=b 2﹣4ac =12﹣4×(﹣1)=5,则x =-1±√52×1, 所以x 1=-1+√52 ,x 2=-1-√52 . 故选:D .例5.(2020·天津初三一模)方程x 2+x -12=0的两个根为( )A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=3【答案】D【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3.练习1.(2020·浙江省初三其他)已知三角形的两边长分别是3和4,第三边是方程x 2﹣12x+35=0的一个根,则此三角形的周长是( )A .12B .14C .15D .12或14 【答案】A【解析】:解方程212350,x x -+= 得125,7x x ==,即第三边的边长为5或7. ∵1<第三边的边长<7,∴第三边的边长为5.∴这个三角形的周长是3+4+5=12.故选A.练习2.(2020·浙江省初二月考)方程(1)(1)2(1)x x x -+=+的解是________.【答案】121,3x x =-=【解析】解:由(1)(1)2(1)x x x -+=+,可得(1)(1)2(1)0x x x -+-+=,所以(1)(12)0x x +--=,即(1)(3)0x x +-=,所以10x +=或30x -=,解得11x =-,23x =,故答案为:11x =-,23x =.例6.(2020·海门市东洲中学初二期中)用指定的方法解下列方程:(1)用配方法解方程:22830x x -+=;(2)用公式法解方程:5x 2+2x ﹣1=0;(3)用因式分解法解方程:2450x x -=+【答案】(1)12x =+,22x =(2)1x =,2x =;(3)121,5x x ==-. 【解析】(1)22830x x -+=()22430x x -+=()2244830x x -+-+=()2225x -= ()2522x -=2x -=22x =±故方程的解为122x =+,222x =-; (2)5x 2+2x ﹣1=0125b x a --±===故方程的解为1x =,2x =; (3)2450x x -=+()()150x x -+=解得,121,5x x ==-故方程的解为121,5x x ==-.练习1.(2020·重庆市璧山来凤中学校初三月考)解下列方程: (1)3x 2﹣2x ﹣1=0(2)(x ﹣1)2﹣16=0【答案】(1)x =1或x =13-;(2)x =5或x =﹣3.【解析】(1)∵3x 2﹣2x ﹣1=0,∴(x ﹣1)(3x +1)=0,∴x =1或13x =﹣;(2)∵(x ﹣1)2﹣16=0,∴(x ﹣1)2=16,∴x ﹣1=±4,∴x =5或x =﹣3。

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。

考点08 一元二次方程的解法(解析版)

考点08 一元二次方程的解法(解析版)

2021年八年级数学《暑假作业�新课程无忧衔接》(苏科版)考点08一元二次方程的解法【新课程无忧衔接】【知识点梳理】一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;值得注意的几个问题:(1)开平法:对于形如x²=n或(ax+b)²=n(a≠0)的一元一次方程,即一元一次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解。

(2)配方法:通过配方的方法把一元一次方程转化为(x+m)²=n的方程,再运用开平方法求解。

(3)公式法:一元一次方程ax²+bx²+c=0(a≠0)的根当b²-4ac>0时,方程有两个实数根,且这两个实数根不相等当b²-4ac=0时,方程有两个实数根,且这两个实数根相等,写为当b²-4ac<0时,方程无实根解(4)因式分解法:因式分解法的一般步骤:若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。

【新课程预习练·无忧衔接】一、单选题1.对任意实数x ,点()2,2P x x x +一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】由220x x +=,解得0,2x x ==-,分情况讨论22x x +的符号.根据点在平面直角坐标系中各个象限坐标的符号特点解答即可.【详解】解:220x x +=,解得0,2x x ==-,(1)当-2<x <0时,x +2>0,x <0,x 2+2x =x (x +2)<0,故点P 在第三象限;(2)当x >0时, x 2+2x =x (x +2)>0,故点P 在第一象限;(3)当x <-2时,x +2<0,x 2+2x =x (x +2)>0,点P 在第二象限.(4)当0,2x x ==-时点P (x , 22x x +)为P (0,0)或(-2,0)在x 轴上,故对任意实数x ,点P 可能在第一、二、三象限或x 轴上,一定不在第四象限,故选D .【点睛】考查象限点的特征,根据点的横坐标的取值范围,分类考虑函数值的符号是解题关键. 2.如图,在平面直角坐标系中,直线y x =与函数()0k y x x=>的图象交于点A ,直线1y x =-与函数()0k y x x=>的图象交于点B ,与x 轴交于点C .若点B 的横坐标是点A 的横坐标的2倍,则k 的值为( )A .23B .2C .1D .49【答案】D【分析】根据直线y x =与函数()0k y x x=>有交点,解方程组求解交点坐标,再使用待定系数法求出k . 【详解】 解:y x =与()0k y x x=>相交, ∴k >0,设A 坐标为(),a a ,B 坐标为()2,21a a -, 代入k y x =得()2221k a k a a ⎧=⎪⎨=-⎪⎩∴()2221,a a a =- ∴0a =(舍去)或2=3a , ∴ 2224=()=39k a = 故答案选:D【点睛】考查了反比例函数与一次函数的交点问题,掌握待定系数法是解题关键.3.关于x 的一元二次方程()2310x k x k ---+=的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .无实数根D .无法确定【答案】A 【分析】先计算判别式,再根据一元二次方程根与判别式的关系即可得答案.【详解】∴=[-(k -3)]2-4(-k +1)=k 2-6k +9+4k -4=(k -1)2+4,∴(k -1)2≥0,∴(k -1)2+4≥4,∴方程有两个不相等的实数根,故选:A .【点睛】考查的是根的判别式,对于一元二次方程ax 2+bx +c =0(a ≠0),判别式∴=b 2-4ac ,当∴>0时,方程有两个不相等的实数根;当∴=0时,方程有两个相等的实数根;当∴<0时,方程无实数根.4.定义新运算“∴”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠B .54k ≤C .54k ≤且0k ≠D .54k ≥ 【答案】C【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∴[x 2+1,x ]∴[5−2k ,k ]=0,∴()()21520k x k x ++-=. 整理得,()2520kx k x k +-+=. ∴方程有两个实数根,∴判别式0≥且0k ≠.由0≥得,()225240k k --≥, 解得,54k ≤. ∴k 的取值范围是54k ≤且0k ≠. 故选:C【点睛】考查了新定义运算、一元二次方程的根的判别等知识点5.如图,B ,C 是反比例函数1k y x =()0x <图象上的两点,()2,A m 是反比例函数22y x-=()0x >图象上一点,连接AB ,BC ,AC ,若90BCA ∠=︒,AC 恰好经过原点,AB 与y 轴交于点()0,5D ,则k 的值为( )A .233-B .172C .-8D .-10【答案】C【分析】先求得A 点坐标,进而根据待定系数法求得直线AC 、AB 的解析式,进一步求得直线BC 的解析式,与直线AB 联立,解方程组求得B 的坐标,根据反比例函数图象上点的坐标特征即可求得关于k 的方程,解方程即可求得.【详解】∴A (2,m )是反比例函数22y x -=(x >0)图象上一点,∴2m =-2,∴ m =-1, ∴A (2,-1),∴AC 恰好经过原点,∴直线AC 为y =-12x , 解12y x k y x ⎧=-⎪⎪⎨⎪=⎪⎩,得x y ⎧=⎪⎨=⎪⎩或x y ⎧=⎪⎨=⎪⎩(舍去), ∴C(,2),∴AB 与y 轴交于点D (0,5),∴设直线AB 的解析式为y =kx +5,代入A 的坐标得,-1=2k +5,解得k =-3,∴直线AB 为y =-3x +5,∴∴BCA =90°,∴设直线BC 的解析式为y =2x +b把C (2代入得,2b =- 解得 b=2, ∴直线BC 为y,解235y x y x ⎧=⎪⎨⎪=-+⎩,得12+2x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴B (12 , ∴B 是反比例函数1k y x =(x<0)图象上的点, ∴k=(1, 整理得,2k +8x+16=0,解得1k =-8,2k =-2(不合题意,舍去),经检验为方程的根,∴k =-8,故选:C .【点睛】考查反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,表示出点的坐标是解题的关键.6.将关于x 的一元二次方程20x px q +=﹣变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如()32x x x x px q =⋅==﹣…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且0x >,则31x +的值为( )A .1B .1C .3D .3+【答案】D【分析】利用x 2=x +1,得x 2+x +1=(x +1)+x +1=2x +2,用一元二次方程求根公式得x ,且x >0,所以x 取12+,代入即可求得. 【详解】解:∴x 2﹣x ﹣1=0,∴x ,且x 2=x +1, ∴x 3+1=x •x 2+1=x (x +1)+1=x 2+x +1=(x +1)+x +1=2x +2,∴x >0,∴3122223x x +=+==, 故选:D .【点睛】考查了整体降次的思想方法,但降次后得到的是x 的代数式,还要利用一元二次方程求根公式求出x 的值,代入化简后的2x +2中计算出结果.7.对于函数n m y x x =+,我们定义11n m y nx mx '--=+(m ,n 为常数).例如:42y x x =+,则342y x x '=+.已知:()322123y x m x m x =+-+,若方程0y '=有两个相等的实数根,则m 的值为( ) A .0 B .12 C .32 D .1【答案】D【分析】先求出y ',再利用一元二次方程根的判别式即可得.【详解】 解:由题意得:()2213223y x m x m '=⨯+-+,即()2222y x m x m '=+-+, 方程()22220x m x m +-+=有两个相等的实数根, ∴此方程根的判别式()222240m m ∆=--=⎡⎤⎣⎦, 解得1m =,故选:D .【点睛】考查了一元二次方程根的判别式,根据新定义求出y '是解题关键.8.定义;如果一元二次方程20ax bx c ++=(a ≠0)满足a +b +c =0,那么我们称这个方程为“蜻蜓”方程.已知关于x 的方程20ax bx c ++=(a ≠0)是“蜻蜓”方程,且有两个相等的实数根,则下列结论中正确的是( ) A .a =c ≠bB .a =b ≠cC .b =c ≠aD .a =b =c【答案】A【分析】由条件可知a +b +c =0,再根据方程根的判别式得到到b 2-4ac =0,整理可得出结论.【详解】解:由条件可知a +b +c =0,所以-b =a +c ,又因为方程有两个相等的实数根,所以∴=0,即b 2-4ac =0,所以(a +c )2-4ac =0,整理可得(a -c )2=0,所以a =c ,所以,a =c ≠b故选:A .【点睛】考查一元二次方程判别式与根的情况的判定,由条件到到知a +b +c =0和b 2-4ac =0是解题的关键.9.已知1x ,2x 是一元二次方程22(21)10x m x m +++-=的两不相等的实数根,且221212170x x x x ++-=,则m 的值是( )A .53或3-B .3-C .53D .53- 【答案】C【分析】先利用判别式的意义得到m >−54,再根据根与系数的关系的12(21)x x m +=-+,2121x x m =-,则由221212170x x x x ++-=可得()()22211170m m ---+=,然后解关于m 的方程,最后确定满足条件的m 的值.【详解】解:根据题意得∴=222141m m --(+)()>0,解得m >−54,根据根与系数的关系的12(21)x x m +=-+,2121x x m =-,∴221212170x x x x ++-=,∴()21212170x x x x --+=,∴()()22211170m m ---+=, 整理得234150m m -+=,解得153m =,23m =-, ∴m >−54, ∴m 的值为53. 故选:C . 【点睛】考查了一元二次方程根的判别式及根与系数的关系10.对于实数 a ,b ,定义运算“#”如下:a #b =a 2-ab ,如:3#2=32-3×2=3,则方程(x +1)#3=2的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【答案】D【分析】本题根据题目所给新定义将方程(x +1)#3=2变形为一元二次方程的一般形式,即20ax bx c ++=的形式,再根据根的判别式24b ac ∆=-的值来判断根的情况即可.【详解】解:根据题意得(x +1)#3=2可以变形为: 2(1)(1)32x x +-+⨯=,提公因式可得:(1)[(1)3]2x x ++-=,化简得:(1)(2)2x x +-=,222x x --=,240x x --=,根据根的判别式2141(4)170∆=-⨯⨯-=>可知该方程有两个不等的实数根.故选D .【点睛】考查新定义运算,将新定义方程化为一元二次方程的一般形式,根的判别式,根据题目所给的定义对方程进行变形后依据∆的值来判断根的情况,注意0∆>时有两个不相等的实数根;0∆=时有一个实数根或两个相等的实数根;∆<0时没有实数根.11.当10k -<<时,关于x 的一元二次方程240x x k +-=根的情况是( )A .有两个相等的实数根B .有两个不等的实数根C .有一个实数根D .没有实数根【答案】B【分析】计算根的判别式,利用k 的取值范围进行判断其符号即可求得答案.【详解】解:∴在一元二次方程240x x k +-=中a =1,b =4,c =-k , ∴24164b ac k ∆=-=+,∴当10k -<<时,1640k ∆=+>,∴方程有两个不等的实数根,故选:B .【点睛】考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.12.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( ) A .94m > B .94m <- C .94m ≤- D .94m < 【答案】D【分析】根据题意,得一元二次方程的根的判别式大于零,建立不等式求解即可.【详解】∴关于x 的一元二次方程230x x m -+=有两个不相等的实数根,∴∴=24b ac ->0,∴2(3)4m -->0, ∴94m <, 故选D .【点睛】考查了一元二次方程根的判别式二、填空题13.已知:如图,在平面直角坐标系中,菱形OABC 的顶点C 在x 轴上,点A 的坐标为(,经过点A 的反比例函数图象交BC 于点D ,则CD 的长为__________.【答案】2【分析】先根据点A的坐标、菱形的性质求出点C的坐标,再利用待定系数法求出反比例函数的解析式、直线OA的解析式、直线BC的解析式,然后将直线BC的解析式与反比例函数的解析式联立求解可得点D 的坐标,最后利用两点之间的距离公式即可得.【详解】解:四边形OABC是菱形,(A,2OC OA∴===,//BC OA,(2,0)C∴,设反比例函数的解析式为kyx =,将点(A代入得:1k==则反比例函数的解析式为y=,设直线OA的解析式为y ax=,将点(A代入得:a=则直线OA的解析式为y=,又//BC OA,∴可设直线BC的解析式为y b=+,将点(2,0)C代入得:0b =,解得b =-则直线BC的解析式为y =-联立y y ⎧=⎪⎨⎪=-⎩,解得1x y ⎧=⎪⎨=⎪⎩1x y ⎧=⎪⎨=⎪⎩,点D 位于第一象限,(1D ∴,则2CD ==,故答案为:2.【点睛】考查了反比例函数与一次函数的综合、解一元二次方程、菱形的性质等知识点,熟练掌握待定系数法和菱形的性质是解题关键.14.如图,反比例函数()0k y k x=≠的图象经过第二象限内的点()()3,2,E m F n --,,若OE OF =,则k =__________ .【答案】-6.【分析】根据点()()3,2,E m F n --,在反比例函数()0k y k x =≠的图象上得出32m n =,设23m n a ==,由OE OF ==,解方程即可.【详解】解:点()()3,2,E m F n --,在反比例函数()0k y k x =≠的图象上, ∴32k m n =-=-, ∴32,23m n m n ==, 设23m n a ==,2,3m a n a ==, 又∴OE OF =,, 解得:1a =±,∴点()()3,2,E m F n --,在第二象限内0,0m n >>,∴1a =,∴366k m a =-=-=-.故答案为:-6.【点睛】考查待定系数法求反比例函数解析式,利用反比例函数确定,m n 关系,利用勾股定理建立方程是解题关键.15.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:结合他们的对话,请解答下列问题:(1)当a b =时,a 的值是__________.(2)当a b 时,代数式b a a b+的值是__________. 【答案】2-或1 7【分析】(1)将a b =代入222a a b +=+解方程求出a ,b 的值,再代入222b b a +=+进行验证即可; (2)当a b 时,求出30++=a b ,再把b a a b+通分变形,最后进行整体代入求值即可. 【详解】解:已知222222a a b b b a ⎧+=+⎨+=+⎩①②,实数a ,b 同时满足∴,∴,∴-∴得,22330a b a b -+-=∴()(3)0a b a b -++=∴0a b -=或30++=a b∴+∴得,22+=4a b a b --(1)当a b =时,将a b =代入222a a b +=+得,220a a +-=解得,11a =,22a =-∴11b =,22b =-把=1a b =代入222b b a +=+得,3=3,成立;把=2a b =-代入222b b a +=+得,0=0,成立;∴当a b =时,a 的值是1或-2故答案为:1或-2;(2)当a b 时,则30++=a b ,即=3a b +-∴22+=4a b a b --∴22+=7a b∴222()=+2+9a b a ab b +=∴1ab = ∴227=71b a a b a b ab ++== 故答案为:7.【点睛】考查了用因式分解法解一元二次方程16.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x +-=,且0x >.则4323x x x -+的值为________.【答案】6-【分析】先利用210x x +-=得到21x x =-,再利用x 的一次式表示出3x 和4x ,则4323x x x -+化为24x -+,然后解方程210x x +-=得12x -=,从而得到4323x x x -+的值. 【详解】解:210x x +-=,21x x ∴=-,()322(111)2x x x x x x x x x x ∴==-=--=-=-,()()432·2122132x x x x x x x x x x ==-=-=--=-+,()432332221344x x x x x x x ∴-+=-+--+=-+解方程210x x +-=得1x =,2x =, 0x,x ∴=4323446x x x ∴-+=-+=-故答案为:6-【点睛】考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.三、解答题17.通过“列表、描点、连线”画出函数图象,观察图象得出函数的性质是研究函数的常用方法.某兴趣小组对函数61y x =-的图象和性质进行了探究,探究过程如下,请补充完整: (1)函数61y x =-的自变量取值范围是______. (2)列表:则表中m的值为_______.(3)描点,连线:根据表中数据,在如图所示平面直角坐标系中描点,并画出函数图象.(4)观察函数图象,写出该函数的一条性质:______.(5)直线11366y x=-+与函数61yx=-的图象的交点个数是______个.【答案】(1)1x≠;(2)3;(3)见解析;(4)∴图像在第一象限y随x增大而减小,∴图像关于点(1,0)成中心对称;(5)1【分析】(1)由分式有意义分母不为零10x-≠即可(2)把x=3时代入函数解析式求值即可;(3)根据表格在平面直角坐标系中描出下列个点,用平滑曲线连接,(4)∴图像在第一象限y随x增大而减小,∴图像关于点(1,0)成中心对称;(5)联立方程组1136661y xyx⎧=-+⎪⎪⎨⎪=⎪-⎩消去y整理得214490x x-+=,∴=0,方程有等根即可.【详解】解:(1)∴10x-≠,∴1x≠,故答案为:1x≠;(2)当x=3时,663312m===-,故答案为:3;(3)根据表格在平面直角坐标系中描出下列个点(-3,32-),(-2,-2),(-1,-3),(0,-6),(2,6),(3,3),(4,2),(5,32),用平滑曲线连接,(4)∴图像在第一象限y 随x 增大而减小,∴图像关于点(1,0)成中心对称;(5)联立方程组1136661y x y x ⎧=-+⎪⎪⎨⎪=⎪-⎩,消去y 得1136661x x -+=-, 去分母得整理得214490x x -+=,∴=()2144490--⨯=,∴方程有两个相等的根,∴x =7,∴经检验x =7是原方程的根, 直线11366y x =-+与函数61y x =-的图象的交点个数是1. 故答案为:1.【点睛】考查函数自变量取值范围,函数值,画函数图像,函数的性质,图像的交点个数,一元二次方程,掌握函数自变量取值范围,函数值,画函数图像,函数的性质,图像的交点个数,一元二次方程是解题关键.18.背景:点A 在反比例函数()0k y k x=>的图象上,AB x ⊥轴于点B , AC y ⊥轴于点C ,分别在射线,AC BO 上取点,D E ,使得四边形ABED 为正方形.如图1,点A 在第一象限内,当4AC =时,小李测得3CD =.探究:通过改变点A 的位置,小李发现点D ,A 的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k 的值.(2)设点,A D 的横坐标分别为,x z ,将z 关于x 的函数称为“Z 函数”.如图2,小李画出了0x >时“Z 函数”的图象.∴求这个“Z 函数”的表达式.∴补画0x <时“Z 函数”的图象,并写出这个函数的性质(两条即可).∴过点()3,2作一直线,与这个“Z 函数”图象仅有一个交点,求该交点的横坐标.【答案】(1)4;(2)∴4z x x=-;∴图见解析,性质如下(答案不唯一):函数的图象是两个分支组成的曲线;函数的图象关于直角坐标系的原点成中心对称;当0x >时,函数值z 随自变量x 的增大而增大,当0x <时,函数值z 随自变量x 的增大面增大;∴2,3,4,6.【分析】(1)利用待定系数法解题;(2)∴设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,继而解得点D 的横坐标为4z x x =-,根据题意解题即可;∴根据解析式在网格中描点,连线即可画出图象,根据图象的性质解题;∴分两种种情况讨论,当过点3,2()的直线与x 轴垂直时,或当过点3,2()的直线与x 轴不垂直时,结合一元二次方程解题即可.【详解】解:(1)由题意得,1AB AD ==,∴点A 的坐标是(4,1),所以414k =⨯=;(2)∴设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,所以点D 的横坐标为4z x x =-, 所以这个“Z 函数”表达式为4z x x =-; ∴画出的图象如图:性质如下(答案不唯一);(a )函数的图象是两个分支组成的,是两条曲线(b )函数的图象关于直角坐标系的原点成中心对称.(c )当0x >时,函数值z 随自变量x 的增大而增大,当0x <时,函数值z 随自变量x 的增大面增大. ∴第一种情况,当过点3,2()的直线与x 轴垂直时,3x =;第二种情况,当过点3,2()的直线与x 轴不垂直时,设该直线的函数表达式为'(0)z mx b m =+≠,23m b ∴=+,即32b m =-+,'32z mx m ∴=-+, 由题意得,432x mx m x-=-+ 22432x mx mx x ∴-=-+,2(1)(23)40m x m x ∴-+-+=(a )当1m =时,40x -+=,解得4x =;(b )当1m ≠时,2224(23)4(1)4928200b ac m m m m -=---⨯=-+=,解得12102,9m m ==, 当12m =时,()2244020x x x -+=-=,.解得122x x ==; 当2109m =时,()2221440,12360,6093x x x x x -+=-+=-=,解126x x == 所以x 的值为2,3,4,6.【点睛】考查反比例函数的图象与性质、求一次函数的解析式、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.19.一次函数y =kx +b (k ≠0)的图像与反比例函数m y x =的图象相交于A (2,3),B (6,n )两点 (1)求一次函数的解析式(2)将直线AB 沿y 轴向下平移8个单位后得到直线l ,l 与两坐标轴分别相交于M ,N ,与反比例函数的图象相交于点P ,Q ,求PQ MN的值 【答案】(1)一次函数y=142x -+,(2)12PQ MN =. 【分析】(1)利用点A (2,3),求出反比例函数6y x=,求出 B (6,1),利用待定系数法求一次函数解析式; (2)利用平移求出y=142x --,联立1426y x y x ⎧=--⎪⎪⎨⎪=⎪⎩,求出P (-6,-1),Q (-2,-3),在Rt ∴MON 中,由勾股定理MN=PQ=【详解】解:(1)∴反比例函数m y x=的图象过A (2,3), ∴m =6,∴6n =6,∴n =1,∴B (6,1)一次函数y =kx +b (k ≠0)的图像与反比例函数6y x=的图象相交于A (2,3),B (6,1)两点, ∴6123k b k b +=⎧⎨+=⎩, 解得124k b ⎧=-⎪⎨⎪=⎩,一次函数y=142x -+, (2)直线AB 沿y 轴向下平移8个单位后得到直线l ,得y=142x --, 当y =0时,1402x ,8x =-,当x =0时,y =-4,∴M (-8,0),N (0,-4),1426y x y x ⎧=--⎪⎪⎨⎪=⎪⎩, 消去y 得28120x x ++=,解得122,6x x =-=-,解得1123x y =-⎧⎨=-⎩,2261x y =-⎧⎨=-⎩, ∴P (-6,-1),Q (-2,-3),在Rt∴MON中,∴MN=∴PQ=∴12 PQMN==.【点睛】考查待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理,掌握待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理是解题关键.20.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣3=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)等腰三角形ABC中,AB=3,若AC、BC为方程x2﹣(k+1)x+2k﹣3=0的两个实数根,求k的值.【答案】(1)见解析;(2)k=3【分析】(1)先根据题意求出∴的值,再根据一元二次方程根的情况与判别式∴的关系即可得出答案;(2)根据∴ABC的两边AC、BC的长是这个方程的两个实数根,则3是方程的一个根,代入方程即可求出k的值.【详解】解:(1)∴∴=[﹣(k+1)]2﹣4×1×(2k﹣3)=k 2+2k +1﹣8k +12=(k -3)2+4,∴无论k 为何实数,(k -3)2≥0,∴(k -3)2+4>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)∴AC 、BC 为方程x 2﹣(k +1)x +2k ﹣3=0的两个实数根,由(1)可得,AC ≠BC ,∴∴ABC 为等腰三角形,∴AC =AB =3或BC =AB =3,∴方程x 2﹣(k +1)x +2k ﹣3=0必有一根为x =3,∴32﹣3(k +1)+2k ﹣3=0,解得k =3.【点睛】考查了根的判别式,一元二次方程根的情况与判别式24b ac =-的关系:(1)∴>0∴方程有两个不相等的实数根;(2)∴=0∴方程有两个相等的实数根;(3)∴<0∴方程没有实数根.。

一元二次方程的解法总结

一元二次方程的解法总结

一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。

一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0).顶点式: y=a(x—h)²+k(a≠0,a、h、k为常数)交点式:y=a(x—x₁)(x—x₂)(a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²-4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x—m)²=n(n≥0)的方程,其解为x=m±配方法:1.将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根)2.将二次项系数化为13.将常数项移到等号右侧4。

等号左右两边同时加上一次项系数一半的平方5.将等号左边的代数式写成完全平方形式6。

左右同时开平方7.整理即可得到原方程的根公式法:1。

化方程为一般式:ax²+bx+c=0 (a≠0)2。

确定判别式,计算Δ(=b²—4ac);3。

若Δ〉0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ〈0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。

用因式分解法解一元二次方程的步骤1. 将方程右边化为0;2. 将方程左边分解为两个一次式的积;3. 令这两个一次式分别为0,得到两个一元一次方程;4. 解这两个一元一次方程,它们的解就是原方程的解。

用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法详细解析
说明:公式法可以用于解任何一元二次方程,在找不到简单方法时,即考虑化为一般形式后使用公式法。

但在应用时要先明确公式中字母在题中所表示的量,再求出判别式的值,解得的根要进行化简。

例5:用分解因式法解下列方程。

(1);(2)分析:分解因式法是把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

第(1)题已经是一般式,可直接对左边分解因式;第(2)题必须先化简变为一般式后再进行分解因式。

相关文档
最新文档