2.2《一元二次方程的解法》专题训练题及答案

合集下载

【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)

【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)

【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)试题部分一、选择题:1. 已知方程x^2 5x + 6 = 0,下列哪个选项是它的一个解?A. x = 2B. x = 3C. x = 4D. x = 52. 方程2x^2 4x + 1 = 0的解为:A. x = 1B. x = 1/2C. x = 1/2D. x = 13. 下列哪个方程是一元二次方程?A. x^2 + 3x 2 = 0B. 2x + 5 = 0C. 3x^3 2x^2 + x 1 = 0D. x^2 + y^2 = 14. 一元二次方程x^2 3x + 1 = 0的解为:A. x = 1,x = 2B. x = 1,x = 1C. x = 2,x = 2D. x = 3,x = 35. 方程x^2 4x + 4 = 0的解是:A. x = 2B. x = 2C. x = 0D. x = 2(重根)6. 已知方程x^2 (2a+1)x + a^2 = 0,若a为正数,则方程的解为:A. x = a,x = 1B. x = a,x = aC. x = a+1,x = a1D. x = 2a,x = 2a7. 方程x^2 5x + 6 = 0的解中,较大的是:A. 2B. 3C. 4D. 58. 若方程x^2 (2k+1)x + k^2 = 0有两个不相等的实数根,则k 的取值范围是:A. k > 0B. k < 0C. k ≠ 0D. k = 09. 方程x^2 2x 3 = 0的解为:A. x = 3,x = 1B. x = 3,x = 1C. x = 3,x = 1D. x = 3,x = 110. 方程x^2 6x + 9 = 0的解是:A. x = 3B. x = 3C. x = 0D. x = 3(重根)二、判断题:1. 一元二次方程的解一定是两个实数根。

2. 方程x^2 2x + 1 = 0的解为x = 1。

《一元二次方程的解法 》(二)配方法—知识讲解 配套 2022人教九年级上册专练

《一元二次方程的解法 》(二)配方法—知识讲解 配套 2022人教九年级上册专练

一元二次方程的解法(二)配方法—知识讲解(提高)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。

【要点梳理】知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. 用配方法解方程: (1)(2020•岳池县模拟)2x 2﹣4x ﹣3=0; (2)(2020春•泰山区期中)3x 2﹣12x ﹣3=0. 【思路点拨】方程(1) (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为2()(0)mx n P P +=≥的形式,然后用直接开平方法求解. 【答案与解析】 解:(1)∵2x 2﹣4x ﹣3=0,∴,∴,∴x ﹣1=±,∴.(2)3x 2﹣12x ﹣3=0,3x 2﹣12x=3, x 2﹣4x=1,x 2﹣4x+4=1+4, (x ﹣2)2=5, x ﹣2=,x 1=2+,x 2=2﹣;【点评】配方要注意一次项的符号决定了左边的完全平方式中是两数和的平方还是两数差的平方.举一反三:【变式】 用配方法解方程 (1)(2)20x px q ++=【答案】(1)2235x x +=2253x x -=-25322x x -=-2225535()()2424x x -+=-+ 251()416x -=5144x -=±123,12x x ==.(2)20x px q ++=222()()22p px px q ++=-+224()24p p qx -+=①当240p q -≥时,此方程有实数解,221244,p p q p p qx x -+----==; ②当240p q -<时,此方程无实数解.类型二、配方法在代数中的应用2. 用配方法证明21074x x -+-的值小于0.【思路点拨】本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致. 【答案与解析】22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=--+-=---⎪ ⎪⎝⎭⎝⎭. ∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭,即210740x x -+-<.故21074x x -+-的值恒小于0.【点评】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明. 举一反三:【变式】试用配方法证明:代数式223x x -+的值不小于238. 【答案】 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2112348x ⎛⎫=--+ ⎪⎝⎭2123248x ⎛⎫=-+ ⎪⎝⎭.∵ 1204x ⎛⎫-≥ ⎪⎝⎭,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭.即代数式223x x -+的值不小于238.3. (2020春•宜兴市校级月考)若把代数式x 2+2bx+4化为(x ﹣m )2+k 的形式,其中m ,k 为常数,则k ﹣m 的最大值是 . 【答案】;【解析】解:x 2+2bx+4=x 2+2bx+b 2﹣b 2+4 =(x+b )2﹣b 2+4; ∴m=﹣b ,k=﹣b 2+4,则k ﹣m=﹣(b ﹣)2+.∵﹣(b ﹣)2≤0, ∴当b=时,k ﹣m 的最大值是.故答案为:.【点评】此题考查利用完全平方公式配方,注意代数式的恒等变形. 举一反三: 【变式】(1)的最小值是 ;(2)的最大值是 .【答案】(1)222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦;所以的最小值是152-(2)22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+所以的最大值是9.4. 分解因式:42221x x ax a +++-. 【答案与解析】42221x x ax a +++-4222221x x x ax a =+-++-4222212x x x ax a =++--+()()2221x x a =+--()()22(1)(1)x x a x x a =++-+-+.【点评】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB 、AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于( ).A .70°B .64°C .62°D .51°2.在半径为27m 的圆形广场中心点O 的上空安装了一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面SAB 的顶角为120°(如图所示),则光源离地面的垂直高度SO 为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.(2020•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A.80° B.100° C.80°或100° D.160°或200°8.如图所示,AB、AC与⊙O分别相切于B、C两点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是( ).A.65° B.115° C.65°或115° D.130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.(2020•巴彦淖尔)如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC ;③AE=2EC ;④劣弧是劣弧的2倍;⑤AE=BC ,其中正确的序号是 .13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________. 14.已知正方形ABCD 2a ,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要____ ____m2的毛毡.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2020•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴. 4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.7.【答案】C ;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时, 圆周角为413608092⨯⨯=°°.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交;【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】21)a ; 2(222)a ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =2x ,∴ 22x x a +=,(21)x a=-,即正八边形的边长为(21)a-.222224[(21)](222)AELS S S a x a a a=-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n边形内角和为(n-2)180°,前n条弧的弧长的和为(2)1801(2)3602nn-=-个以某定点为圆心,以1为半径的圆周长,∴ n条弧的弧长的和为121(2)(2)2n nππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,nα,则12(2)180nnααα+++=-…°,∴ n条弧长的和为1212111()180180180180nnαπαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n nππ=-⨯=-.16.【答案】720π;【解析】∵ S=πr2,∴ 9π=πr2,∴ r=3.∴ h1=4,∴2215l h r=+=,∴223523 3.5152136S S S rl rhπππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720Sππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH是⊙O的切线∴OF⊥FH∵FH∥BC ,∴OF垂直平分BCAB CDEO12∴BF FC =∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB , ∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形.19.【答案与解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=A BCDEO 12345H.20. 【答案与解析】(1)如选命题①.证明:在图(1)中,∵∠BON=60°,∴∠1+∠2=60°.∵∠3+∠2=60°,∴∠1=∠3.又∵ BC=CA,∠BCM=∠CAN=60°,∴△BCM≌△CAN,∴ BM=CM.如选命题②.证明:在图(2)中,∵∠BON=90°,∴∠1+∠2=90°.∵∠3+∠2=90°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=90°,∴△BCM≌△CDN,∴ BM=CN.如选命题③.证明:在图(3)中,∵∠BON=108°,∴∠1+∠2=108°.∵∠2+∠3=108°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=108°,∴△BCM≌△CDN,∴ BM=CN.(2)①答:当∠BON=(2)180nn°时结论BM=CN成立.②答:当∠BON=108°时.BM=CN还成立.证明:如图(4),连接BD、CE在△BCD和△CDE中,∵ BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴ BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴ BM=CN.。

《一元二次方程的解法》典型例题及解析

《一元二次方程的解法》典型例题及解析

《一元二次方程的解法》典型例题及解析1.以配方法解3x2+4x+1 = 0时,我们可得出下列哪一个方程式( )A.(x+2) 2= 3 B.(3x+)2 =C.(x+)2 =D.(x+)2 =答案:D说明:先将方程3x2+4x+1 = 0的二次项系数化为1,即得x2+x+= 0,再变形得x2+x+()2 =()2−,即(x+)2 =,答案为D.2.想将x2+x配成一个完全平方式,应该加上下列那一个数( )A. B. C.D.答案:D说明:题目所给的式子中x2系数为1,因此,要将它配成一个完全平方式只需加上一次项系数一半的平方,即,所以答案为D.3.下列方程中,有两个不相等的实数根的是( )A.x2−9x+100 = 0 B.5x2+7x+5 = 0C.16x2−24x+9 = 0 D.2x2+3x−4 = 0答案:D说明:方程x2−9x+100 = 0中b2−4ac = 81−400<0;方程5x2+7x+5 = 0中b2−4ac = 49−4×5×5 = 49−100<0;方程16x2−24x+9 = 0中b2−4ac = 576−4×16×9 = 0;方程2x2+3x−4 = 0中b2−4ac = 9+32 = 41>0,所以方程2x2 = 3x−4 = 0有两个不相等的实数根,故选D.4.下列方程中,有两个相等实数根的是( )A.4(x−1)2−49 = 0 B.(x−2)(x−3)+(3−x) = 0C.x2+(2+1)x+2= 0 D.x(x−)+1 = 0答案:B说明:A中方程整理为一般形式为4x2−8x−45 = 0,这里b2−4ac = 64+720 = 784>0;B中方程整理为一般形式为:x2−6x+9 = 0,这里b2−4ac = 36−36 = 0;C中方程b2−4ac = 21+4−8= 21−4>0;D中方程整理为一般形式为x2−x+1 = 0,这里b2−4ac = 5−4 = 1>0;所以只有方程(x−2)(x−3)+(3−x) = 0有两个相等实数根,答案为B.5.下列方程4x2−3x−1 = 0,5x2−7x+2 = 0,13x2−15x+2 = 0中,有一个公共解是( )A.x =B.x = 2 C.x = 1 D.x = −1 答案:C说明:方程4x2−3x−1 = 0可变形为(4x+1)(x−1) = 0,方程5x2−7x+2 = 0可变形为(x−1)(5x−2) = 0,方程13x2−15x+2 = 0可变形为(x−1)(13x+2) = 0,所以这三个方程的公共解为x = 1,答案为C.6.用适当的方法解下列一元二次方程.(1)(x+4)2−(2x−1)2 = 0(2)x2−16x−4 = 0(3)2x2−3x−6 = 0(4)(x−2)2 = 256(5)(2t+3)2 = 3(2t+3)(6)(3−y)2+y2 = 9(7)(1+)x2−(1−)x = 0解:(1)平方差公式分解因式,方程变形为[(x+4)+(2x−1)][(x+4)−(2x−1)] = 0,化简后即3(x+1)(5−x) = 0,因此,可求得x1 = −1,x2 = 5.(2)用配方法,方程可变形为(x−8)2 = 68,两边开方化简可得x = 8±2(3)用公式法,b2− 4ac = (−3)2−4×2×(−6) = 57,所以x =(4)方程两边直接开方,得x−2 = ±16,即x1 = 18,x2 = −14(5)方程可化为(2t+3)(2t+3−3) = 0,即2t(2t+3) = 0,解得t1 = 0,t2 = −(6)方程变形为(y−3)2+y2−9 = 0,(y−3)[(y−3)+(y+3)] = 0,即2y(y−3) = 0,解得y1 = 0,y2 = 3(7)用因式分解法,方程可变形为x[(1+)x−1+] = 0,所以x1 = 0,x2 === 2−3扩展资料一元二次方程,数学史上的一场论战中世纪的欧洲,代数学的发展几乎处于停滞的状态,其真正的起步,始于公元1535年的一场震动数学界的论战.大家知道,尽管在古代的巴比伦或古代的中国,都已掌握了某些类型一元二次方程解法.但一元二次方程的公式解法,却是由中亚数学家阿尔·花拉子米于公元825年给出的.花拉子米是把方程x2+px+q = 0配方后改写为:的形式,从而得出了方程的两个根为:在欧洲,被誉为“代数学鼻祖”的古希腊的丢番图,虽然也曾得到过类似的式子,但由于丢番图认定只有根式下的数是一个完全平方数,且根为正数时,方程才算有解,因而数学史上都认为阿尔·花拉子米为求得一元二次方程一般解的第一人.花拉子米之后,许多数学家都致力于三次方程公式解的探求,但在数百年漫漫的历史长河中,除了取得个别方程的特解外,都没有人取得实质性进展,许多人因此怀疑这样的公式解根本不存在!话说当时意大利的波伦亚大学,有一位叫费洛的数学教授,也潜心于三次方程公式解这一当时世界难题的研究,功夫不负有心人,他终于取得了重大突破.公元1505年,费洛宣布自己已经找到了形如x3 + px = q方程的一个特别情形的解法,但他没有公开自己的成果,为的是能在一次国际性的数学竞赛中一放光彩.遗憾的是,费洛没能等到一个显示自己的才华的机会就抱恨逝去,临死前他把自己的方法传给了得意门生,威尼斯的佛罗雷都斯.现在话转另外一头,在意大利北部的布里西亚,有一个颇有名气的年轻人,叫塔塔里亚(Nicolo Tartaglia,1500-1557),此人从小天资聪明,勤奋好学,在数学方面表现出超人的才华,尤其是他发表的一些论文,思路奇特,见地高远,因而一时间名闻遐迩.塔塔里亚自学成才自然受到了当时一些习惯势力的歧视,公元1530年,当时布里西亚的一些人公开向塔塔里亚发难,提出以下两道具有挑战性的问题:(1)求一个数,其立方加上平方的3倍等于5;(2)求三个数,其中第二个数比第一个数大2,第三个数又比第二个数大2,它们的积为1000.读者不难知道,对第一个问题,若令所求数为x,则依题意有:x3+3x2 = 5而对第二个问题,令第一个数为x,则第二、三数分别为x+2,x+4,于是依题意有:x(x+2)(x+4)=1000化简后x3+6x2+8x−1000 = 0以上是两道三次方程的求解问题,塔塔里亚求出了这两道方程的实根,从而赢得了这场挑战,并为此名声大震!消息传到了波伦亚,费洛的门生佛罗雷都斯心中顿感震怒,他无法容忍一个不登大雅之堂的小人物与他平起平坐!于是双方商定,在1535年2月22日,于意大利的米兰,公开举行数学竞赛,各出30道问题,在两小时内决定胜负.赛期渐近,塔塔里亚因自己毕竟是自学出身而感到有些紧张.他想:佛罗雷都斯是费洛的得意弟子,难保他不会拿解三次方程来对付自己,那么自己所掌握的一类方法与费洛的解法究竟相距多远呢?他苦苦思索着,脑海中的思路不断进行着各种新的组合,这些新的组合终于撞击出灵感的火花,在临赛前八天,塔塔里亚终于找到了解三次方程的新方法,为此他欣喜若狂,并充分利用剩下的八天时间,一面熟练自己的新方法,一面精心构造了30道只有运用新方法才能解出的问题.2月22日那天,米兰的大教堂内,人头攒动,热闹非凡,大家翘首等待着竞赛的到来.比赛开始了,双方所出的30道题都是令人眩目的三次方程问题,但见塔塔里亚从容不迫,运笔如飞,在不到两小时的时间内,解完了的佛罗雷都斯的全部问题.与此同时,佛罗雷都斯却提笔拈纸,望题兴叹,一筹莫展,终于以0:30败下阵来!消息传出,数学界为之震动.在米兰市有一个人坐不住了,他就是当时驰名欧洲的医生卡当(Girolamo Cardano,1501-1576).卡当其人,不仅医术颇高,而且精于数学.他也潜心于三次方程的解法,但无所获.所以听到塔塔里亚已经掌握三次方程的解法时,满心希望能分享这一成果.然而当时的塔塔里亚已经誉满欧洲,所以并不打算把自己的成果立即发表,而醉心于完成《几何原本》的巨型译作.对众多的求教者,则一概拒之门外.当过医生的卡当,熟谙心理学的要领,软缠硬磨,终于使自己成了唯一的例外.公元1539年,塔塔利亚终于同意把秘诀传授给他,但有一个条件,就是要严守发现的秘密.然而卡当实际上没有遵守这一诺言.公元1545年,他用自己的名字发表了《大法》一书,书中介绍了不完全三次方程的解法,并写道:“大约30年前,波伦亚的费洛就发现了这一法则,并传授给威尼斯的佛罗雷都斯,后者曾与塔塔里亚进行过数学竞赛,塔塔里亚也发现了这一方法.在我的恳求下,塔塔里亚把方法告诉了我,但没有给出证明.借助于此,我找到了若干证明,因其十分困难,特叙述如下.”卡当指出:对不完全三次方程x3+px+q = 0,公式给出了它的解,这就是今天我们所说的卡当公式.《大法》发表第二年,塔塔里亚发表了的《种种疑问及发明》一文,谴责卡当背信弃义,并要求在米兰与卡当公开竞赛,一决雌雄.然而到比赛那一天,出阵的并非卡当本人,而是他的天才学生斐拉里(Ferrari L.,1522-1565),此时斐拉里,风华正茂,思维敏捷,他不仅掌握了解三次方程的全部要领,而且发现了一般四次方程的极为巧妙的解法.塔塔里亚自然不是他的对手,终于狼狈败退,并因此番挫折,心神俱伤,于公元1557年溘然与世长辞!没想到,正是这场震动数学界的论战,使沉沦了一千三百多年的欧洲代数学,揭开了划时代的新篇章!。

华师大版初中数学九年级上册《22.2 一元二次方程的解法》同步练习卷

华师大版初中数学九年级上册《22.2 一元二次方程的解法》同步练习卷

华师大新版九年级上学期《22.2 一元二次方程的解法》2019年同步练习卷一.选择题(共27小题)1.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18 2.用配方法解下列方程时,配方有错误的是()A.x2+8x+9=0化为(x+4)2=25B.x2﹣2x﹣99=0化为(x﹣1)2=100C.2t2﹣7t﹣4=0化为D.3x2﹣4x﹣2=0化为3.一元二次方程﹣x2+8x+1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15 4.用配方法解一元二次方程2x2﹣6x+1=0时,此方程配方后可化为()A.(x﹣)2=B.2(x﹣)2=C.(x﹣)2=D.2(x﹣)2=5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=6.在《九章算术》“勾股”章里有求方程x2+34x﹣71000=0的正根才能解答的题目,以上方程用配方法变形正确的是()A.(x+17)2=70711B.(x+17)2=71289C.(x﹣17)2=70711D.(x﹣17)2=712897.解一元二次方程4x2﹣8x﹣1=0,配方后正确的是()A.(2x﹣2)2=0B.4(x﹣1)2=5C.(2x﹣2)2=﹣3D.4(x﹣1)2=2 8.用配方法解方程2x2+3x﹣1=0,则方程可变形为()A.(3x+1)2=1B.C.D.9.利用配方法解方程2x2﹣x﹣2=0时,应先将其变形为()A.B.C.D.10.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0B.3x2﹣5x+1=0C.3x2﹣5x﹣1=0D.3x2+5x﹣1=0 11.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=12.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=13.利用求根公式求的根时,a,b,c的值分别是()A.5,,6B.5,6,C.5,﹣6,D.5,﹣6,﹣14.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3D.a=4,b=﹣5,c=﹣315.一元二次方程x(x﹣5)=0的解是()A.0B.5C.0和5D.0和﹣516.三角形的两边长分别为3和6,第三边的长是方程x2﹣10x+21=0的一个根,则该三角形第三边的长是()A.6B.3或7C.3D.717.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或1418.若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A.10B.11C.10或11D.以上都不对19.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m<1B.m>1C.m=1D.m≤120.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2 21.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k22.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实根,则k的取值范围是()A.k<B.k<且k≠1C.0≤k≤D.k≠123.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.24.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.m≤3D.m≥325.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.26.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.1527.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2B.﹣1C.D.﹣2二.填空题(共11小题)28.方程(x﹣5)2=4的解为.29.一元二次方程(2x+1)2﹣81=0的根是.30.一元二次方程x2+2x﹣6=0的根是.31.已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=.32.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.33.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.34.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.35.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.36.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=.37.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=.38.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为.三.解答题(共12小题)39.解方程:(3x+1)2=6440.解方程:2x2+4x﹣1=0(用配方法).41.用公式法解方程:3x2﹣6x+1=2.42.用公式法解方程:2x(x﹣3)=x2﹣1.43.(1)计算:﹣32﹣(π﹣3.14)0+(tan30°)﹣1﹣2+(2)解方程:2x2﹣4x﹣1=044.用配方法解方程3x2﹣5x﹣2=0.45.(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣)﹣2+(2)解方程:x2+4x﹣2=046.(1)解方程x2+4x﹣2=0(2)计算tan30°tan60°﹣sin260°+cos245°47.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=048.(1)计算:(5﹣)÷×(2)解方程:x2+3=2x.49.已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.50.已知关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m的取值范围.华师大新版九年级上学期《22.2 一元二次方程的解法》2019年同步练习卷参考答案与试题解析一.选择题(共27小题)1.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18【分析】移项,配方,即可得出选项.【解答】解:x2﹣8x+2=0,x2﹣8x=﹣2,x2﹣8x+16=﹣2+16,(x﹣4)2=14,故选:A.【点评】本题考查了解一元二次方程,能够正确配方是解此题的关键.2.用配方法解下列方程时,配方有错误的是()A.x2+8x+9=0化为(x+4)2=25B.x2﹣2x﹣99=0化为(x﹣1)2=100C.2t2﹣7t﹣4=0化为D.3x2﹣4x﹣2=0化为【分析】利用配方法对各选项进行判断.【解答】解:A、x2+8x+9=0化为(x+4)2=7,所以A选项的配方错误;B、x2﹣2x﹣99=0化为(x﹣1)2=100,所以B选项的配方正确;C、2t2﹣7t﹣4=0先化为t2﹣t=2,再化为,所以C选项的配方正确;D、3x2﹣4x﹣2=0先化为x2﹣x=,再化为(x﹣)2=,所以D选项的配方正确.故选:A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.一元二次方程﹣x2+8x+1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【分析】移项,系数化成1,再配方,即可得出选项.【解答】解:﹣x2+8x+1=0,﹣x2+8x=﹣1,x2﹣8x=1,x2﹣8x+16=1+16,(x﹣4)2=17,故选:C.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键.4.用配方法解一元二次方程2x2﹣6x+1=0时,此方程配方后可化为()A.(x﹣)2=B.2(x﹣)2=C.(x﹣)2=D.2(x﹣)2=【分析】先移项,再将二次项系数化为1后,继而两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵2x2﹣6x+1=0,∴2x2﹣6x=﹣1,则x2﹣3x=﹣,∴x2﹣3x+=﹣+,即(x﹣)2=,故选:A.【点评】本题主要考查解一元二次方程﹣配方法,解题的关键是掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.6.在《九章算术》“勾股”章里有求方程x2+34x﹣71000=0的正根才能解答的题目,以上方程用配方法变形正确的是()A.(x+17)2=70711B.(x+17)2=71289C.(x﹣17)2=70711D.(x﹣17)2=71289【分析】移项后两边配上一次项系数一半的平方即可得.【解答】解:x2+34x﹣71000=0x2+34x=71000x2+34x+172=71000+172(x+17)2=71289故选:B.【点评】题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.7.解一元二次方程4x2﹣8x﹣1=0,配方后正确的是()A.(2x﹣2)2=0B.4(x﹣1)2=5C.(2x﹣2)2=﹣3D.4(x﹣1)2=2【分析】先把二次项系数化为1,再把常数项移到方程的右边,进行把方程两边加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方的形式即可.【解答】解:4x2﹣8x﹣1=0,4x2﹣8x=1,4(x2﹣2x+1)=5,4(x﹣1)2=5.故选:B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8.用配方法解方程2x2+3x﹣1=0,则方程可变形为()A.(3x+1)2=1B.C.D.【分析】先把常数项移到方程右侧,两边除以2,然后方程两边加上,再把方程左边写成完全平方的形式即可.【解答】解:x2+x=,x2+x+=+,(x+)2=.故选:B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.利用配方法解方程2x2﹣x﹣2=0时,应先将其变形为()A.B.C.D.【分析】将方程常数项移到右边,方程左右两边同时除以2,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,变形后即可得到正确答案.【解答】解:2x2﹣x﹣2=0,移项得:2x2﹣x=2,左右两边同时除以2得:x2﹣x=1,配方得:x2﹣x+=1+,即(x﹣)2=,故选:B.【点评】考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0B.3x2﹣5x+1=0C.3x2﹣5x﹣1=0D.3x2+5x﹣1=0【分析】用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值;②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.【解答】解:A.3x2+5x+1=0中,x=,不合题意;B.3x2﹣5x+1=0中,x=,不合题意;C.3x2﹣5x﹣1=0中,x=,不合题意;D.3x2+5x﹣1=0中,x=,符合题意;故选:D.【点评】本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法.11.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=【分析】先计算判别式的值,然后根据判别式的意义可判断方程根的情况.【解答】解:∵△=12﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根,即x=.故选:D.【点评】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.12.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=【分析】求出b2﹣4ac的值,再代入公式求出即可.【解答】解:﹣3x2+5x﹣1=0,b2﹣4ac=52﹣4×(﹣3)×(﹣1)=13,x==,故选:C.【点评】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.13.利用求根公式求的根时,a,b,c的值分别是()A.5,,6B.5,6,C.5,﹣6,D.5,﹣6,﹣【分析】根据一元二次方程的定义来解答:二次项系数是a、一次项系数是b、常数项是c.【解答】解:由原方程,得5x2﹣6x,根据一元二次方程的定义,知二次项系数a=5,一次项系数b=﹣6,常数项c=;故选:C.【点评】本题是一道易错题,学生在作答时往往把一次项系数﹣6误认为6,所以,在解答时要注意这一点.14.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3D.a=4,b=﹣5,c=﹣3【分析】用公式法求一元二次方程时,首先要把方程化为一般形式.【解答】解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.【点评】此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式.15.一元二次方程x(x﹣5)=0的解是()A.0B.5C.0和5D.0和﹣5【分析】利用因式分解法求解可得.【解答】解:∵x(x﹣5)=0,∴x=0或x﹣5=0,解得:x1=0,x2=5,故选:C.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.16.三角形的两边长分别为3和6,第三边的长是方程x2﹣10x+21=0的一个根,则该三角形第三边的长是()A.6B.3或7C.3D.7【分析】把方程的左边利用十字相乘法分解因式,根据两数之积为0,两因式至少有一个为0,转化为两个一元一次方程,分别求出两方程的解即可得到原方程的解,进而得到三角形的第三边长.【解答】解:方程x2﹣10x+21=0可化为:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∴三角形的第三边长为3或6,当第三边长为3时,由3+3=6,得到三边不能构成三角形,舍去;所以第三边长为7,故选:D.【点评】此题考查了运用因式分解法解一元二次方程,以及三角形的三边关系,运用因式分解的方法解一元二次方程的前提必须是方程坐标利用因式分解的方法把和的形式化为积的形式,右边为0,此方法的理论依据为ab=0,得到a=0或b=0,三角形的三边关系为:三角形的两边之和大于第三边,两边之差小于第三边,利用此性质把求出的方程的解x=3舍去.17.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或14【分析】先求出方程的解,再得出三角形的三边长,最后求出即可.【解答】解:解方程x2﹣6x+8=0得:x=4或2,当三角形的三边为5,2,2时,2+2+<5,不符合三角形三边关系定理,此时不能组成三角形;当三角形的三边为5,4,4时,符合三角形三边关系定理,此时三角形的周长为5+4+4=13,故选:B.【点评】本题考查了解一元二次方程和等腰三角形的性质,三角形的三边关系定理等知识点,能求出符合的所有情况是解此题的关键.18.若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A.10B.11C.10或11D.以上都不对【分析】先利用因式分解的方法解方程得到x1=3,x2=4,根据题意讨论:当腰为3,底边为4时;当腰为4,底边为3时,然后分别计算出等腰三角形的周长.【解答】解:∵x2﹣7x+12=0,∴(x﹣3)(x﹣4)=0,∴x﹣3=0或x﹣4=0,∴x1=3,x2=4,当腰为3,底边为4时,等腰三角形的周长为3+3+4=10;当腰为4,底边为3时,等腰三角形的周长为3+4+4=11.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.19.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m<1B.m>1C.m=1D.m≤1【分析】根据方程的系数结合根的判别式△<0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵一元二次方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m<0,∴m>1.故选:B.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.20.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.21.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k【分析】根据一元二次方程的定义和根的判别式得出k+2≠0且△=(﹣3)2﹣4(k+2)•1≥0,求出即可.【解答】解:∵关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,∴k+2≠0且△=(﹣3)2﹣4(k+2)•1≥0,解得:k且k≠﹣2,故选:C.【点评】本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.22.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实根,则k的取值范围是()A.k<B.k<且k≠1C.0≤k≤D.k≠1【分析】根据一元二次方程的定义和△的意义得到k﹣1≠0且△>0,即(﹣2)2﹣4(k﹣1)×3>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实数根,∴k﹣1≠0,即k≠1,△=(﹣2)2﹣4(k﹣1)×3=﹣12k+16,∵方程有两个不相等的实数解,∴△>0,∴﹣12k+16>0,∴k<,∴k的取值范围是k<且k≠1.故选:B.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了一元二次方程的定义23.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.【分析】把a=2,b=﹣k,c=3代入△=b2﹣4ac进行计算,然后根据方程有两个相等的实数根,可得△=0,再计算出关于k的方程即可.【解答】解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.24.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.m≤3D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.25.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.【分析】根据根与系数的关系可得出α+β=﹣、αβ=﹣3,将其代入+=中即可求出结论.【解答】解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.26.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.15【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=,αβ=﹣,然后利用整体代入的方法计算.【解答】解:∵α为2x2﹣5x﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x2﹣5x﹣1=0的两个实数根,∴α+β=,αβ=﹣,∴2α2+3αβ+5β=5×+3×(﹣)+1=12.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.27.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2B.﹣1C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.二.填空题(共11小题)28.方程(x﹣5)2=4的解为x1=7,x2=3.【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣5)2=4,开方得:x﹣5=±2,解得:x1=7,x2=3,故答案为x1=7,x2=3.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.29.一元二次方程(2x+1)2﹣81=0的根是x1=4;x2=﹣5.【分析】先变形为(2x+1)2=81,再两边开方得到2x+1=±9,然后解两个一次方程即可.【解答】解:(2x+1)2=81,2x+1=±9,所以x1=4,x2=﹣5.故答案为x1=4,x2=﹣5.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.30.一元二次方程x2+2x﹣6=0的根是x1=,x2=﹣3.【分析】找出a,b,c的值,代入求根公式即可求出解.【解答】解:这里a=1,b=2,c=﹣6,∵△=8+24=32,∴x=,即x1=,x2=﹣3.故答案为:x1=,x2=﹣3.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.31.已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=.【分析】找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.【解答】解:∵x1、x2是方程2x2﹣3x﹣1=0的两根,∴x1+x2=.x1x2=﹣,∴x12+x22=,故答案为:【点评】此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.32.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.33.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.34.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为0.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.35.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由两根关系,得根x1+x2=5,x1•x2=a,解方程得到x1+x2=5,即x1﹣x2=2,即可得到结论.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.36.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=47.【分析】根据α、β是方程(x+1)(x﹣4)=﹣5的两实数根,得到α+β=3,αβ=1,根据完全平方公式得到α4+β4=47,于是得到结论.【解答】解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.【点评】本题考查了根与系数的关系,难度较大,关键是根据已知条件对进行变形.37.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.38.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为﹣1或﹣3.【分析】利用根与系数的关系可以得到代数式,再把所求代数式利用完全平方公式变形,结合前面的等式即可求解.【解答】解:∵这个方程的两个实数根为x1、x2,∴x1+x2=﹣(m+3),x1•x2=m+1,而x12+x22=4,∴(x1+x2)2﹣2x1•x2=4,∴(m+3)2﹣2m﹣2=4,∴m2+6m+9﹣2m﹣6=0,m2+4m+3=0,∴m=﹣1或﹣3,故答案为:﹣1或﹣3【点评】本题主要考查一元二次方程根的判别式和根与系数的关系的应用,关键是利用根与系数的关系和完全平方公式将代数式变形分析.三.解答题(共12小题)39.解方程:(3x+1)2=64【分析】利用直接开平方法解方程得出答案.【解答】解:(3x+1)2=64,则:(3x+1)2=256,故3x+1=±16,解得:x1=﹣,x2=5.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.40.解方程:2x2+4x﹣1=0(用配方法).【分析】先把方程的二次项系数化为1,再利用完全平方公式变形为(x+1)2=,然后利用直接开平方法求解.【解答】解:x2+2x﹣=0,x2+2x+1=+1,(x+1)2=x+1=±,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.41.用公式法解方程:3x2﹣6x+1=2.【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程.【解答】解:3x2﹣6x﹣1=0,△=(﹣6)2﹣4×3×(﹣1)=48,x===,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.42.用公式法解方程:2x(x﹣3)=x2﹣1.【分析】先把方程化为一般式,然后利用求根公式解方程.【解答】解:方程整理为x2﹣6x+1=0,△=(﹣6)2﹣4×1=32,x==3±2,所以x1=3+2,x2=3﹣2.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.43.(1)计算:﹣32﹣(π﹣3.14)0+(tan30°)﹣1﹣2+(2)解方程:2x2﹣4x﹣1=0【分析】(1)根据特殊角的三角函数值、零指数幂、二次根式、负指数幂的性质化简,二次根式的混合运算,然后根据实数运算法则进行计算即可得出结果.(2)根据配方法求解即可.【解答】解:(1)原式=﹣9﹣1+()﹣1﹣++1=﹣9+;(2)2x2﹣4x﹣1=0,x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±∴x1=1+,x2=1﹣.【点评】本题考查的是解一元二次方程,实数的运算,熟知二次根式的运算、数的开方及乘方法则、负整数指数幂的运算法则特殊角的三角函数值是解答此题的关键.44.用配方法解方程3x2﹣5x﹣2=0.【分析】移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:3x2﹣5x﹣2=0,3x2﹣5x=2,x2﹣x=,x2﹣x+()2=+()2,(x﹣)2=,x﹣=±,x1=﹣,x2=2.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法等.45.(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣)﹣2+(2)解方程:x2+4x﹣2=0【分析】(1)先计算乘方、取绝对值符号、计算负整数指数幂、化简二次根式,再计算加减可得;(2)把常数项2移项后,应该在左右两边同时加上一次项系数4的一半的平方,写成完全平方式,再开方可得.【解答】解:(1)原式=1+3﹣﹣4+3=2;(2)∵x2+4x﹣2=0,∴x2+4x=2,则x2+4x+4=2+4,即(x+2)2=6,∴x+2=±,∴x=﹣2±,即x1=﹣2+、x2=﹣2﹣.【点评】本题考查了配方法解方程和实数的混合运算.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.46.(1)解方程x2+4x﹣2=0(2)计算tan30°tan60°﹣sin260°+cos245°【分析】(1)根据一元二次方程的解法即可求出答案.(2)根据特殊角锐角三角函数的值即可求出答案.【解答】解:(1)x2+4x+4=6(x+2)2=6x=﹣2±(2)原式=×﹣+=1=【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.47.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=0【分析】(1)先算乘方和开方,再算乘法,最后算加减即可;(2)先求出b2﹣4ac的值,再判断即可.【解答】解:(1)原式=5﹣3﹣4+1=﹣1;(2)x2﹣4x+5=0,b2﹣4ac=(﹣4)2﹣4×1×5=﹣1<0,所以此方程无解.【点评】本题考查了解一元二次方程、零指数幂、平方差公式、二次根式的混合运算,能求出每一部分的值是解(1)的关键,能熟记公式是解(2)的关键.48.(1)计算:(5﹣)÷×(2)解方程:x2+3=2x.【分析】(1)先把二次根式化为最简二次根式.再把括号内合并后进行二次根式的乘除运算;(2)先把方程化为一般式,然后利用配方法解方程.【解答】解:(1)运算=(10﹣3)÷×=7÷×=7=14;(2)x2﹣2x+()2=0,(x﹣)2=0,x﹣=0,所以x1=x2=.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了二次根式的混合运算.49.已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.【分析】(1)根据方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)得到m的最小整数,可得方程为x2+2x+1=0,再解一元二次方程即可.【解答】解:(1)∵一元二次方程x2﹣4(2m+2)x+m2﹣3=0有实根,∴△=(2m+2)2﹣4(m2﹣3)=8m+16≥0,∴m≥﹣2;(2)m满足条件的最小值为m=﹣2,此时方程为x2+2x+1=0,解得x1=x2=﹣1.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0时方程有两个不相等的实数根;(2)△=0时方程有两个相等的实数根;(3)△<0时方程没有实数根.50.已知关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m的取值范围.【分析】(1)计算方程根的判别式,判断其符号即可;(2)求方程两根,结合条件则可求得m的取值范围.【解答】(1)证明:∵关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0,∴△=[﹣(m+1)]2﹣4(3m﹣6)=m2﹣10m+25=(m﹣5)2≥0,∴方程总有两个实数根;(2)解:由求根公式可求得x=3或x=m﹣2,若方程有一个根为负数,则m﹣2<0,解得m<2.综上可知,若方程有一个根是负数,m的取值范围为m<2.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是。

(完整版)一元二次方程的解练习题及答案

(完整版)一元二次方程的解练习题及答案

【考点训练】一元二次方程的解-1一、选择题(共5小题)1. (7.7分)若0是关于x的方程(m-2)x2+3x+m2- 4=0的解,则m的值是()A. 土2B.- 2C. 2D. 02. (7.7分)关于x的方程x2+3x+a=0有一个根为-1,则a的值为()A. 1B.- 1C. 2D.- 23. (7.7分)若2-逅是方程x2-4x+c=0的一个根,贝U c的值是()A. 1B. A」C. 「; D t4. (7.7分)下列说法不正确的是()A.方程x2=x有一根为0B•方程x2-仁0的两根互为相反数C•方程(x- 1)2-仁0的两根互为相反数D.方程x2- x+2=0无实数根5. (7.7分)已知x=1是方程x2- 2x+c=0的一个根,则实数c的值是()A.- 1B. 0C. 1D. 2二、填空题(共5小题)(除非特别说明,请填准确值)6. (7.7分)请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为1;②有一个根为-2.则你构造的一元二次方程是__________ .7. (7.7分)若关于x的方程x2+mx+2=0的一个根是1,则m的值为_______ .8. (7.7分)已知x=2是关于x的方程x2-2mx+3m=0的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ ABC的周长为 ________ . 9. ______ (7.7分)已知m是方程x2- 4x- 2=0的一个根,则代数式2m2- 8m+1的值为__ .10 . (7.7分)若方程x^+mx- 3=0的一根为3,则m等于_______ .三、解答题(共3小题)(选答题,不自动判卷)11 . (7.7分)已知x=0是—-兀二次方程〔叩F+Sx+m,- 2=0的一个根,求m 的值.12. (7.7分)已知2是关于x的方程x2-2mx+3m=0的一个根,而这个方程的两个根恰好是等腰厶ABC的两条边长.(1)求m的值;(2)求厶ABC的周长.13. (7.6 分)已知:关于x 的一元二次方程x2-( 2m+3) x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作ABC中AB AC( AB V AC)的边长,当BC=二时,△ ABC是等腰三角形,求此时m的值.【考点训练】一元二次方程的解-1参考答案与试题解析一、选择题(共5小题)1. (7.7分)若0是关于x的方程(m-2)x2+3x+m2-4=0的解,则m的值是()A. 土2B.- 2C. 2D. 0【解答】解:把x=0代入方程(m - 2)x2+3x+m2- 4=0得方程m2-4=0,解得m i=2, m2=- 2,所以m=±2.故选:A.2. (7.7分)关于x的方程x2+3x+a=0有一个根为-1,则a的值为()A. 1B.- 1C. 2D.- 2【解答】解:把x=- 1代入方程得1 - 3+a=0,解得a=2.故选:C.3. (7.7分)若2-贡是方程x2-4x+c=0的一个根,贝U c的值是()A. 1B.C. 「;D. -;【解答】解:把2-典代入方程x2- 4x+c=0,得(2 W3)2-4 (2-宾)+c=0, 解得c=1; 故选:A.4. (7.7分)下列说法不正确的是()A.方程x2=x有一根为0B•方程x2-仁0的两根互为相反数C•方程(x- 1)2-仁0的两根互为相反数D.方程x2- x+2=0无实数根【解答】解:A、x2=x,移项得:x2- x=0,因式分解得:x (x- 1)=0, 解得x=0或x=1,所以有一根为0,此选项正确;B、x2-仁0,移项得:x2=1,直接开方得:x=1或x=- 1,所以此方程的两根互为相反数,此选项正确;C、(x- 1)2-仁0,移项得:(x- 1)2=1,直接开方得:x- 1=1或x-仁-1,解得x=2或x=0,两根不互为相反数,此选项错误;D、x2-x+2=0,找出a=1, b=- 1 , c=2,则厶=1 - 8=- 7v0,所以此方程无实数根,此选项正确.所以说法错误的选项是C.故选:C.5. (7.7分)已知x=1是方程x2- 2x+c=0的一个根,则实数c的值是()A.- 1B. 0C. 1D. 2【解答】解:根据题意,将x=1代入x2- 2x+c=0,得:1 - 2+c=0, 解得:c=1, 故选:C.二、填空题(共5小题)(除非特别说明,请填准确值)6. (7.7分)请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为1;②有一个根为-2 .则你构造的一元二次方程是2/ - 8=0 .【解答】解:满足二次项系数不为1,有一个根为-2的一元二次方程可为2x2-8=0.故答案为2x2- 8=0.7. (7.7分)若关于x的方程x2+mx+2=0的一个根是1,则m的值为 -3【解答】解:令x=1代入x2+mx+2=01+m+2=0m=- 3故答案为:-38. (7.7分)已知x=2是关于x的方程x2-2mx+3m=0的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ ABC的周长为14 . 【解答】解:••• 2是关于x的方程x2- 2mx+3m=0的一个根,•••把x=2代入方程整理得:4 - 4m+3m=0,•••解得m=4,•原方程为:x2-8x+12=0,•方程的两个根分别是2, 6,又•••等腰三角形ABC的腰和底边长恰好是这个方程的两个根,•••若2是等腰三角形ABC的腰长,贝U 2+2=4v 6构不成三角形,•等腰三角形ABC的腰长为6,底边长为2,•三角形ABC的周长为:6+6+2=14,故答案是:14.9. (7.7分)已知m是方程x2-4x- 2=0的一个根,则代数式2m2-8m+1的值为5 .【解答】解:I m是方程x2- 4x- 2=0的一个根,•m2- 4m - 2=0,•m2- 4m=2,•2m2- 8m+1=2 (m2- 4m)+1=2x 2+1=5.故答案为5.10. (7.7分)若方程x^+mx- 3=0的一根为3,则m等于 -2 .【解答】解:把x=3代入方程x2+mx- 3=0得9+3m - 3=0,解得m=- 2.故答案为-2.三、解答题(共3小题)(选答题,不自动判卷)11. (7.7分)已知x=0是— -兀—次方程F+3计即‘ -2=0的一个根,求m 的值.【解答】解:当x=0时,m2- 2=0,解得m i=旳,m2=-::.••• m-产0,••• m=- _ :.12. (7.7分)已知2是关于x的方程x2-2mx+3m=0的一个根,而这个方程的两个根恰好是等腰厶ABC的两条边长.(1)求m的值;(2)求厶ABC的周长.【解答】解:(1)把x=2代入方程得4- 4m+3m=0,解得m=4;(2)当m=4 时,原方程变为x2- 8x+12=0,解得x i=2, X2=6,•••该方程的两个根恰好是等腰厶ABC的两条边长,且不存在三边为2, 2, 6的等腰三角形•△ ABC的腰为6,底边为2,•△ ABC的周长为6+6+2=14.13. (7.6 分)已知:关于x 的一元二次方程x2-( 2m+3) x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作ABC中AB AC( AB V AC)的边长,当BC=- 时,△ ABC是等腰三角形,求此时m的值.【解答】解:(1)v x=2是方程的一个根,•- 4 —2 (2m+3) +m2+3m+2=0,•m=0 或m=1 ;(2)v^ = (2m+3) 2-4 (m2+3m+2) =1,=1;•、—-Lil _ + -.・x --z•X1=m+2, X2=m+1,••• AB AC (AB V AC的长是这个方程的两个实数根,•AC=m+2, AB=m+1.••• BC= -,△ ABC是等腰三角形,•••当AB=BC时,有m+仁!.,-m=Js - 1 ;当AC=BC寸,有m+2=.,• m= . 2,综上所述,当m朋-1或m祢-2时,△ ABC是等腰三角形.。

一元二次方程练习题 含答案(解法20题 题海111题)

一元二次方程练习题 含答案(解法20题 题海111题)

经典解法20题(1)(3x+1)^2=7(2)9x^2-24x+16=11(3) (x+3)(x-6)=-8(4) 2x^2+3x=0(5) 6x^2+5x-50=0 (选学)(6)x^2-4x+4=0 (选学)(7)(x-2)^2=4(2x+3)^2(8)y^2+2√2y-4=0(9)(x+1)^2-3(x+1)+2=0(10)x^2+2ax-3a^2=0(a为常数)(11)2x^2+7x=4.(12)x^2-1=2 x (13)x^2 + 6x+5=0(14) x ^2-4x+ 3=0(15)7x^2 -4x-3 =0(16)x ^2-6x+9 =0(17)x²+8x+16=9(18)(x²-5)²=16(19)x(x+2)=x(3-x)+1(20) 6x^2+x-2=0海量111题1)x^2-9x+8=0(2)x^2+6x-27=0(3)x^2-2x-80=0(4)x^2+10x-200=0(5)x^2-20x+96=0(6)x^2+23x+76=0(7)x^2-25x+154=0(8)x^2-12x-108=0(9)x^2+4x-252=0(10)x^2-11x-102=0(11)x^2+15x-54=0(12)x^2+11x+18=0(13)x^2-9x+20=0(14)x^2+19x+90=0(15)x^2-25x+156=0(16)x^2-22x+57=0(17)x^2-5x-176=0(18)x^2-26x+133=0(19)x^2+10x-11=0(20)x^2-3x-304=0(21)x^2+13x-140=0(23)x^2+5x-176=0(24)x^2+28x+171=0(25)x^2+14x+45=0(26)x^2-9x-136=0(27)x^2-15x-76=0(28)x^2+23x+126=0(29)x^2+9x-70=0(30)x^2-1x-56=0(31)x^2+7x-60=0(32)x^2+10x-39=0(33)x^2+19x+34=0(34)x^2-6x-160=0(35)x^2-6x-55=0(36)x^2-7x-144=0(37)x^2+20x+51=0(38)x^2-9x+14=0(39)x^2-29x+208=0(40)x^2+19x-20=0(41)x^2-13x-48=0(42)x^2+10x+24=0(43)x^2+28x+180=0(45)x^2+23x+90=0(46)x^2+7x+6=0(47)x^2+16x+28=0(48)x^2+5x-50=0(49)x^2+13x-14=0(50)x^2-23x+102=0(51)x^2+5x-176=0(52)x^2-8x-20=0(53)x^2-16x+39=0(54)x^2+32x+240=0(55)x^2+34x+288=0(56)x^2+22x+105=0(57)x^2+19x-20=0(58)x^2-7x+6=0(59)x^2+4x-221=0(60)x^2+6x-91=0(61)x^2+8x+12=0(62)x^2+7x-120=0(63)x^2-18x+17=0(64)x^2+7x-170=0(65)x^2+6x+8=0(67)x^2+24x+119=0(68)x^2+11x-42=0(69)x^20x-289=0(70)x^2+13x+30=0(71)x^2-24x+140=0(72)x^2+4x-60=0(73)x^2+27x+170=0(74)x^2+27x+152=0(75)x^2-2x-99=0(76)x^2+12x+11=0(77)x^2+17x+70=0(78)x^2+20x+19=0(79)x^2-2x-168=0(80)x^2-13x+30=0(81)x^2-10x-119=0(82)x^2+16x-17=0(83)x^2-1x-20=0(84)x^2-2x-288=0(85)x^2-20x+64=0(86)x^2+22x+105=0(87)x^2+13x+12=0(89)x^2+26x+133=0(90)x^2-17x+16=0(91)x^2+3x-4=0(92)x^2-14x+48=0(93)x^2-12x-133=0(94)x^2+5x+4=0(95)x^2+6x-91=0(96)x^2+3x-4=0(97)x^2-13x+12=0(98)x^2+7x-44=0(99)x^2-6x-7=0 (100)x^2-9x-90=0 (101)x^2+17x+72=0 (102)x^2+13x-14=0 (103)x^2+9x-36=0 (104)x^2-9x-90=0 (105)x^2+14x+13=0 (106)x^2-16x+63=0 (107)x^2-15x+44=0 (108)x^2+2x-168=0 (109)x^2-6x-216=0(111)x^2+18x+32=0答案(1)(3x+1)^2=7解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= (±√7-1)/3(2)9x^2-24x+16=11解:9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= (±√11+4)/3 ∴原方程的解为x1=(√11+4)/3 x2=(-√11+4)/3(3) (x+3)(x-6)=-8解:(x+3)(x-6)=-8 化简整理得x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。

-一元二次方程的解法(全)

-一元二次方程的解法(全)
2 2 2 配方,得x 4 x 3 1 1. 2 3 5 32 5 2 xx 1. x .所以 2) 即x 即 4x 4 1. 所以( 2 4 2 2 所以x 2 1或x 2 1. 3 5 所以 x 所以x1 3或 x2 2 1. 2 . 3 5 3 5 即x1 ,x1 . 2 2
2
此方程无解。
方程
ax c 0 a 0 一定有解吗?
2
2
c a0 x a ;
1当
c a
0时,方程的根是 x ;
c a
2当
c a
0时,原方程无实数根。
2 2
提问:下列方程有解吗?
(1) x 4 3; (2) 3x 1 3;
2
可见,上面的 2 x 4 实际 上就是求4的平 方根。
x 4 x 2 x1 2 ; x2 2
以上解某些一元二次方程的方法叫 做直接开平方法。
初试锋芒
用直接开平方法解下列方程:
(1) y 121 0 ;
2
将方程化成
(2) x 2 0 (3)
2
x b
2
(b≥0)的形 式,再求解
归纳 小结
用直接开平方法可解下列类型 的一元二次方程:
x b b 0 或
2
x a
2
b b 0 .
根据平方根的定义,要特别注意: 由于负数没有平方根, 所以,当b<0时,原方程无解。
(第2课时)
知识回顾
用直接开平方法可解下列类型的一元二次方程:
x b b 0 或
共同回顾:一元二次方程
只含有一个未知数,并且未知数的最 高次数是2的整式方程叫做一元二次方程。

解一元二次方程练习题(超经典含答案)

解一元二次方程练习题(超经典含答案)

第二十一章 一元二次方程21.2 解一元二次方程1.一元二次方程2360x -=的解是A .6x =B .6x =-C .16x =,26x =-D .1x =,2x =2.一元二次方程2x 2-5x -2=0的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.方程2x +x =0的解是A .x =±1B .x =0C .1x =0,2x =–1D .x =14.方程2x –8x +17=0的根的情况是A .两实数根的和为–8B .两实数根的积为17C .有两个相等的实数根D .没有实数根5.用配方法解下列方程时,配方正确的是A .方程x 2–6x –5=0,可化为(x –3)2=4B .方程y 2–2y –2017=0,可化为(y –1)2=2017C .方程a 2+8a +9=0,可化为(a +4)2=25D .方程2x 2–6x –7=0,可化为2323()24x -=6.一元二次方程x (x –3)=0根是A .x =3B .x =–3C .x 1=–3,x 2=0D .x 1=3,x 2=07.一元二次方程x 2+3x +2=0的两个根为A .1,–2B .–1,–2C .–1,2D .1,28.一元二次方程x 2–9=0的根是A .x =3B .x =–3C .x 1=3,x 2=–3D .x 1=9,x 2=–99.方程x 2–2=0的根是__________. 10.方程2(1)4x -=的根是__________.11.一元二次方程2360x x -=的解是__________.12.关于x 的一元二次方程(a –1)x 2+x +a 2–1=0的一个根为0,则a 的值为__________. 13.解方程:x 2+3x –2=0.14.解方程:2520x x -+=.15.解方程:x 2–10x +18=0.16.解方程:2510x x --=.17.关于x 的一元二次方程(a –1)x 2+x +a 2–1=0的一个根是0,则a 的值为A .1B .–1C .1或–1D .1218.三角形的两边长分别为3米和6米,第三边的长是方程x 2–6x +8=0的一个根,则这个三角形的周长为A .11B .12C .11或13D .1319.一元二次方程x 2+2x –3=0的两个根中,较小一个根为A .3B .–3C .–2D .–120.关于x 的方程kx 2+3x –1=0有实数根,则k 的取值范围是A .k ≤94B .k ≥–94且k ≠0 C .k ≥–94D .k >–94且k ≠0 21.关于x 的方程kx 2–2x –1=0有两个不相等的实数根,则k 的最小整数值为__________. 22.已知x 1,x 2是方程x 2+6x +3=0的两实数根,则2112x x x x +的值为__________. 23.关于x 的一元二次方程x 2+(m –2)x +m +1=0有两个相等的实数根,则m 的值是__________. 24.若关于x 的一元二次方程(a –1)x 2–x +1=0有实数根,则a 的取值范围为__________. 25.关于x 的一元二次方程220x x c ++=有两个不相等的实数根,写出一个满足条件的实数c 的值:c =__________.26.已知一元二次方程x 2+7x –1=0的两个实数根为α,β,则(α–1)(β–1)的值为__________. 27.若方程x 2–kx +6=0的两根分别比方程x 2+kx +6=0的两根大5,则k 的值是__________. 28.若关于x 的方程x 2–5x +k =0的一个根是0,则另一个根是__________,k =__________. 29.已知数轴上A 、B 两点对应的数分别是一元二次方程(x +1)(x –2)=0的两个根,则A 、B 两点间的距离是__________. 30.解关于x 的方程:bx 2–1=1–x 2(b ≠–1). 31.用适当方法解下列方程:2430x x --=.32.解方程:3x 2+2x +1=0.33.已知a、b分别是一元二次方程220170+-=的不相等的两根,求a2+2a+b的值.x x34.(2018·泰安市)一元二次方程根的情况是A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 35.(2018·桂林市)已知关于x的一元二次方程有两个相等的实根,则k的值为A.B.C.2或3 D.或36.(2018·湘潭市)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是A.m≥1 B.m≤1C.m>1 D.m<137.(2018·泰州市)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<038.(2018·眉山市)若α,β是一元二次方程3x2+2x-9=0的两根,则的值是A.B.-C.-D.39.(2018·宜宾市)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A .﹣2B .1C .2D .040.(2018·淮安市)一元二次方程x 2﹣x =0的根是__________.41.(2018·邵阳市)已知关于x 的方程x 2+3x ﹣m =0的一个解为﹣3,则它的另一个解是__________.42.(2018·聊城市)已知关于x 的方程(k ﹣1)x 2﹣2kx +k ﹣3=0有两个相等的实根,则k 的值是__________.43.(2018·内江市)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.44.(威海市2018)关于x 的一元二次方程(m ﹣5)x 2+2x +2=0有实根,则m 的最大整数解是__________.45.(2018·江西省)一元二次方程的两根为,则的值为__________. 46.(2018·德州市)若是一元二次方程的两个实数根,则=__________.47.(2018·南京市)设、是一元二次方程的两个根,且,则__________,__________.48.(2018·随州市)己知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围; (2)若1211=1x x +-,求k 的值.49.(2018·黄石市)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.50.(2018·成都市)若关于的一元二次方程有两个不相等的实数根,求的取值范围.3.【答案】C【解析】通过提取公因式法对等式的左边进行因式分解.由原方程得到:x (x +1)=0,解得1x =0,2x =–1.故选C . 4.【答案】D【解析】Δ=()28-–4×1×17=–4<0,由此可得出方程没有实数根.故选D . 5.【答案】D【解析】A ,由原方程得到:方程x 2–6x +32=5+32,可化为(x –3)2=14,故本选项错误;B ,由原方程得到:方程y 2–2y +12=2017+12,可化为(y –1)2=2018,故本选项错误;C ,由原方程得到:方程a 2+8a +42=–9+42,可化为(a +4)2=7,故本选项错误;D ,由原方程得到:方程x 2–3x +(32)2=72+(32)2,可化为2323()24x -=,故本选项正确.故选D . 6.【答案】D【解析】x (x –3)=0,可得x =0或x –3=0,解得:x 1=0,x 2=3.故选D . 7.【答案】B【解析】利用因式分解法解方程,即(x +1)(x +2)=0,可得x +1=0或x +2=0,所以x 1=–1,x 2=–2.故选B . 8.【答案】C【解析】∵x 2–9=0,∴x 2=9,∴x =±3,故选C .9.【答案】【解析】移项得x 2=2,∴x =.故答案为: 10.【答案】x 1=–1,x 2=3【解析】∵2(1)4x -=,∴x –1=–2或x –1=2,x 1=–1,x 2=3.故答案是:x 1=–1,x 2=3. 11.【答案】0x =或2x =【解析】由236=0x x -,得3(2)0x x -=,∴0x =或2x =.14.【答案】1x 2x =【解析】∵a =1,b =–5,c =2,∴224(5)412170b ac -=--⨯⨯=>,∴代入求根公式得,x ===,∴x 1,2x =.15.【答案】x 1,x 2=5【解析】∵x 2–10x +18=0,∴x 2–10x =–18,∴x 2–10x +25=7,∴(x –5)2=7,∴x –,∴x 1,x 2=5.16.【答案】1x =,2x = 【解析】∵2510x x --=,∴222555()()1022x x -+--=,∴2525()124x -=+,∴25254()244x -=+,∴52x -=,∴52x =±,即x =1x =2x = 17.【答案】B【解析】根据方程的解的定义,把x =0代入方程,即可得到关于a 的方程a 2–1=0且a –1≠0,解得:a =–1.故选B . 18.【答案】D【解析】∵x 2–6x +8=0,即(x –2)(x –4)=0,∴x –2=0或x –4=0,解得:x =2或x =4,若x =2,则三角形的三边2+3<6,构不成三角形,舍去;当x =4时,这个三角形的周长为3+4+6=13,故选D .21.【答案】1【解析】∵关于x 的一元二次方程kx 2–2x –1=0有两个不相等的实数根,∴k ≠0且Δ>0,即(–2)2–4×k ×(–1)>0,解得k >–1且k ≠0.∴k 的取值范围为k >–1且k ≠0.故k 的最小整数值为1. 22.【答案】10【解析】首先由判别式大于0可知方程存在两个不相等的实数根,根据根与系数的关系得到x 1+x 2=–6,x 1x 2=3,再运用通分和完全平方公式变形得到2112x x x x +=2121212()2x x x x x x +-然后利用整体代入的方法计算得,2112x x x x +366301033-===.故答案为:10. 23.【答案】0或8【解析】根据关于x 的一元二次方程x 2+(m –2)x +m +1=0有两个相等的实数根,可得,Δ=(m –2)2–4(m +1)=0,即m 2–8m =0,解得m =0或m =8. 24.【答案】a ≤54且a ≠1. 【解析】由题意得:Δ=(–1)2–4(a –1)×1≥0,解得a ≤54,又a –1≠0,∴a ≤54且a ≠1. 25.【答案】0(答案不唯一);【解析】∵方程有两个不相等的实数根,∴Δ=b 2–4ac =22–4c >0,解得:c <1,故答案为任意一个小于1的数均可以,比如:0.(答案不唯一)28.【答案】5,0【解析】根据一元二次方程的解,设方程的另一个根为t,根据题意得0+t=5,0⋅t=k,所以t=5,k=0.故答案为5,0.29.【答案】3【解析】∵一元二次方程(x+1)(x–2)=0的两个根是–1和2,∴对应数轴上的两点A、B的距离为3.故答案是:3.30.【答案】b>–1时,x b<–1时,方程无解.【解析】方程整理得:(b+1)x2=2,即x2=21b+(b≠–1,即b+1≠0),若b+1>0,即b>–1时,两边开平方得:x,即x若b+1<0,即b<–1时,方程无解.31.【答案】x12+,x2=2【解析】∵1a=,4b=-,3c=-,∴Δ=b2–4ac=16+12=28,∴2x==±x12+,x2=2.32.【答案】原方程没有实数根.【解析】∵a=3,b=2,c=1,∴b2–4ac=4–4×3×1=–8<0.∴原方程没有实数根.33.【答案】2016【解析】∵a、b是原方程的两个实数根,∴220170a a+-=,a+b=–1,∴22017a a+=,∴222a ab a a a b++=+++=2017+(–1)=2016.34.【答案】D【解析】(x +1)(x ﹣3)=2x ﹣5,整理得:x 2﹣2x ﹣3=2x ﹣5,则x 2﹣4x +2=0,(x ﹣2)2=2,解得:x 1=2+>3,x 2=2﹣,故有两个正根,且有一根大于3. 故选D .【名师点睛】本题主要考查了一元二次方程的解法,正确解方程是解题的关键.35.【答案】A 【解析】∵方程有两个相等的实根, ∴∆=k 2-4×2×3=k 2-24=0,解得:k =. 故选A .【名师点睛】本题考查了根的判别式,熟练掌握“当∆=0时,方程有两个相等的实数根”是解题的关键.36.【答案】D 【解析】∵方程有两个不相同的实数根,∴()2240m ∆=-->,解得m <1.故选D .【名师点睛】本题考查了根的判别式,牢记“当∆>0时,方程有两个不相等的实数根”是解题的关键.37.【答案】A【解析】∵∆=(﹣a )2﹣4×1×(﹣2)=a 2+8>0,∴x 1≠x 2,选项A 中的结论正确;∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1+x 2=a ,∵a 的值不确定,∴选项B 中的结论不一定正确;∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1•x 2=﹣2,选项C 中的结论错误;∵x 1•x 2=﹣2,∴x1<0,x2>0,选项D中的结论错误.故选A.【名师点睛】本题考查了根的判别式以及根与系数的关系,牢记“当 >0时,方程有两个不相等的实数根”是解题的关键.38.【答案】C【解析】∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选C.【名师点睛】本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.39.【答案】D【解析】∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴根据根与系数的关系,得x1x2=0.故选D.40.【答案】x1=0,x2=1【解析】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.41.【答案】0【解析】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为0.42.【答案】【解析】∵关于x的方程(k-1)x2-2kx+k-3=0有两个相等的实根,∴()()()21024130k k k k ∆-≠⎧⎪⎨=----=⎪⎩, 解得k =. 故答案为.44.【答案】m =4【解析】∵关于x 的一元二次方程(m ﹣5)x 2+2x +2=0有实根, ∴∆=4﹣8(m ﹣5)≥0,且m ﹣5≠0,解得m ≤5.5,且m ≠5,则m 的最大整数解是m =4.故答案为m =4.45.【答案】2 【解析】由题意得:+2=0,=2, ∴=-2,=4, ∴=-2+4=2, 故答案为2.46.【答案】−3【解析】由根与系数的关系可知:x 1+x 2=﹣1,x 1x 2=﹣2, ∴x 1+x 2+x 1x 2=﹣3故答案为﹣3.47.【答案】 ,【解析】∵、是一元二次方程的两个根, ∴, ∵, ∴m =1, ∴ 解得=−2,=3.故答案为:−2,3.48.【答案】(1)k >﹣;(2)k =3.【解析】(1)∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根, ∴∆=(2k +3)2﹣4k 2>0,解得:k >﹣;(2)∵x 1、x 2是方程x 2+(2k +3)x +k 2=0的实数根, ∴x 1+x 2=﹣2k ﹣3,x 1x 2=k 2, ∴12212121123=1x x k x x x x k +--+==-, 解得:k 1=3,k 2=﹣1,经检验,k 1=3,k 2=﹣1都是原分式方程的根,又∵k >﹣,∴k =3.49.【答案】(1)m <1;(2)0.【解析】(1)由题意得:∆=(﹣2)2﹣4×1×m =4﹣4m >0, 解得:m <1,即实数m 的取值范围是m <1;50.【答案】【解析】∵关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,∴∆=[−(2a+1)]2-4a2=4a+1>0,解得a>14 -.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法
根据平方根的意义解一元二次方程 专题训练题
1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( )
A .2
B .0
C .0或2
D .0或-2
2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( )
A .a +b +c =1
B .a +b +c =0
C .a -b +c =0
D .a -b +c =1
3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( )
A .1
B .0
C .-1
D .2
4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( )
A .1
B .-1
C .0
D .-2
5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( )
A .m ≥-34
B .m ≥0
C .m ≥1
D .m ≥2
6.方程x 2-3=0的根是( )
A .x =3
B .x 1=3,x 2=-3
C .x = 3
D .x 1=3,x 2=- 3
7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( )
A .x -6=-4
B .x -6=4
C .x +6=4
D .x +6=-4
8.方程-4x 2+1=0的解是( )
A .x =12
B .x =-12
C .x =±12
D .x =±2 9.方程(x -4)2=11的根为( )
A .x 1=-4+11,x 2=-4-11
B .x 1=4+11,x 2=4-11
C .x 1=11+4,x 2=11-4
D .x 1=4+11,x 2=-4-11
10.对于形如(x +m )2=n 的方程,它的解的正确表述为( )
A .都能用直接开平方法求解得x =-m ±n
B .当n ≥0时,x =m ±n
C .当n ≥0时,x =-m ±n
D .当n ≥0时,x =±n -m
11.下列方程中,适合用直接开平方法求解的是( )
A .x 2+5x +1=0
B .x 2-6x -4=0
C .(x +3)2=16
D .(x +2)(x -2)=4x
12.方程4x 2-81=0的解为________.
13.解下列方程:
(1)16x 2=25;
(2)(2x +1)2-1=0.
14.若3x 2-6的值是21,则x 的值一定是( )
A .x =±3
B .x =-3
C .x =8
D .x =±3
15.若分式x 2-9x -3
的值为零,则x 的值为( ) A .3 B .-3 C .±3 D .9
16.已知一元二次方程(x -3)2=1的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )
A .10
B .10或8
C .9
D .8
17.若关于x 的方程(ax -1)2-16=0的一根为2,则a 的值为( )
A.52 B .-32 C .-52或32 D.52或-32
18.已知方程(x -2)2=0的根也是方程x 2-2mx +1=0的一个解,则m 的值是( )
A .2
B .-2 C.54 D.45
19.一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =_____.
20.若方程(a 2+b 2-1)2=25,那么a 2+b 2=______.
21.用平方根的意义解一元二次方程4(2x -1)2-25(x +1)2=0.
解:移项得4(2x -1)2=25(x +1)2,
直接开平方得2(2x -1)=5(x +1),②∴x =-7.③
上述解题过程,有无错误,如有,错在第______步,原因是_____________________________,请写出正确的解答过程.
22.解下列方程:
(1)16x 2-81=0;
(2)(2x +3)2-25=0;
(3)(x -3)2=(2x +1)2.
23.市区内有一块边长为15米的正方形绿地,经城市规划,需扩大绿化面积,预计规划后的正方形绿地面积将达到289平方米,这块绿地的边长增加了多少米?
24.阅读材料:对于任何实数,我们规定符号⎪⎪⎪⎪⎪⎪a b c d 的意义是⎪⎪⎪⎪⎪⎪a b c d =ad -bc .例如:⎪⎪⎪⎪
⎪⎪1 23 4
=1×4-2×3=-2,⎪⎪⎪⎪
⎪⎪-2 43 5=(-2)×5-4×3=-22. (1)按照这个规定请你计算⎪⎪⎪⎪
⎪⎪5 67 8的值; (2)按照这个规律请你计算:当x 2-4x +4=0时,⎪⎪⎪⎪
⎪⎪x +1 2x x -1 2x -3的值.
答案:
1----11 ABAAB DDCBC C
12. x =±92
13. (1) 解:x =±54
(2) 解:x 1=0,x 2=-1 14---18 ABADC
19. 1
20 6
21. ②
漏掉了2(2x -1)=-5(x +1)
解:正确解答过程如下:移项得4(2x -1)2=25(x +1)2,直接开平方得2(2x -1)=±5(x +1),
即2(2x -1)=5(x +1)或2(2x -1)=-5(x +1).∴x 1=-7,x 2=-13
22. (1) 解:x =±94
(2) 解:x 1=1,x 2=-4
(3) 解:x 1=-4,x 2=23
23. 解:(1)⎪⎪⎪⎪
⎪⎪5 67 8=5×8-6×7=-2 (2)由x 2-4x +4=0得x =2,⎪⎪⎪⎪
⎪⎪x +1 2x x -1 2x -3=⎪⎪⎪⎪⎪⎪3 41 1=3×1-4×1=-1。

相关文档
最新文档