华师大版七年级上册数学有理数练习题(有理数分题型专项练习)
华师大版七年级上册第二章有理数复习单元测试题

有理数单元检测试卷学校 班级 姓名 成绩 一、选择题(每小题3分,共30分)1.如果+20%表示增加20%,那么%8-表示( )A.增加%12B.增加 %8-C.减少%8D.减少%28 2.下列各组数:①31,31-;②)6(+-,6;③π-,π;④21-,()21-.其中互为相反数的是( )A. 1组B. 2组C. 3 组D. 4组3.如图,数轴上点A 表示的数加上点B 表示的数,结果是( ) A.2 B. -2 C.82 D. -84.一个数减去12-等于5-,则这个数是( )A.17B.7C.17-D.7-5.下列说法正确的个数是( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A.1B. 2C. 3D. 46.有理数a 、b 在数轴上对应的位置如图所示,则正确的是( )A.0<abB.a+b>0C.a-b=0D.a-b>07.把算式9)7()3(2-++--写成省略正、负号的代数和的形式,正确的是( )A.9732-++B.9732---C.9732-++D.9732++- 8.如图,数轴上的点A 所表示的是有理数a ,则点A 到原点的距离是( ) A.a B.-a B C.a ± D.-|a| 9.将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109 C.6.011×1010 D .0.601 1×1011 10.在-5,-101,-3.5,-0.001,-2,-212各数中,最大的数是( )A. -0.001B.-101C. -12D.-5二、填空题(每小题3分,共24分)11.在数轴上,大于-2.5且小于3.6的整数有___ ___. 12.若x 的相反数是4,|y|=5,则x+y 的值为_________.13.甲、乙两同学进行数字猜谜游戏.甲说:一个数a 的相反数等于它本身;乙说:一个数b 的倒数也等于它本身.请你猜一猜:|b+a|=_______. 14.-0.4的倒数的绝对值是________. 15.计算()()20162015425.0-⨯-=___ ___. 16.31002.2⨯精确到 位.17.在数轴上,点A 表示数1,点B 与点A 相距3个单位长度,点B 表示数_______.18.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,…,你能从中发现底数为3的幂的个位数字有什么规律吗?根据你发现的规律回答:20163的个位数字是________. 三、解答题(共46分)19.(4分)把下列各数填在相应的大括号内:6,12.2-,32-,0,14159.3- 正数:{ ,…}; 非负整数:{ ,…}; 整数:{ ,…}; 负分数:{ , …}. 20.(10分)计算下列各题:(1)+4.3--4+-2.3-+4; (2)-4-2×32+-2×32;(3)-48÷-23--25×-4+-22 . (4)⎪⎭⎫⎝⎛+-⨯--21413112221.(4分)在数轴上标出下列各数:5.0,3-,0,313,并把它们用“>”连接起来.22.(8分)比较下列各对数的大小.(1)54-与43-; (2)54+-与54+-;(3)232⨯与2)32(⨯; (4)31-与%33-23.(6分)10袋小麦以每袋150 kg 为标准,超过的千克数记为正数,不足的千克数记为负数, 分别记为:-6,-3,-1,-2,+7,+3,+4,-3,-2,+1,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?24.(6分)出租车司机老张某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,-10,-3,+6,-5,-2,-7,+4,+6,-9,-11.(1)将第几名乘客送到目的地时,老张刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老张距上午出发点多远?(3)若汽车耗油量为0.4 L/ km,这天上午老张耗油多少升?25.(8分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):(1)本周四生产了多少辆摩托车?(2)本周实际生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?(3)产量最多的一天比产量最少的一天多生产了多少辆?有理数单元检测参考答案 12345678910CDACBACBCA 11.-2,-1,0,1,2,3 12. 1或9- 13. 1 14.25 15. -416.十位 17. -2或4 18.119.解:正数:{ 6 ,…};非负整数:{ 6 、 0 ,…}; 整数:{ 6 、 0 ,…};负分数:{ 12.2- 、 32-、 14159.3- , …}.20.解:(1)2 (2)132- (3)90- (4)9- 21.略 22.略23.解:因为 -6+-3+-1+-2+7+3+4+-3+-2+1=-2, 所以与标准质量相比较,这10袋小麦总计少了2 kg. 10袋小麦的总质量是1 500-2=1 498kg. 每袋小麦的平均质量是1 498÷10=149.8kg. 24.解:(1)因为+8++4+-10+-3++6+-5=0,所以将第6名乘客送到目的地时,老张刚好回到上午出发点. (2)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)+(-2)+(-7)+(+4)+(+6)+(-9)+(-11)=-19,所以将最后一名乘客送到目的地时,老张距上午出发点19 km.(3)因为|+8|+|+4|+|-10|+|-3|+|+6|+|-5|+|-2|+|-7|+|+4|+|+6|+|-9|+|-11| =75(km),75×0.4=30(L),所以这天上午老张耗油30 L.25.解:(1)本周四生产了摩托车304+(辆).4300=(2)本周实际生产量为(300-5)+(300+7)+(300-3)+(300+4)+(300+10)+(300-9)+(300-25)=2 079(辆),计划生产量为300×7=2 100辆,2 100-2 079=21辆,所以本周实际生产量与计划生产量相比减少了,减少了21辆. (3)产量最多的一天比产量最少的一天多生产了300+10-300-25=35 辆。
华师大版七年级上册《2.1有理数》同步练习含答案

华师大新版七年级上册《2.1有理数》同步练习一.选择题(共11小题)1.某种品牌的洗面奶,外包装标明净含量为500±10g,表明了这种洗面奶的净含量x的范围是()A.490<x<510 B.490≤x≤510 C.490<x≤510 D.490≤x<510 2.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A.36 B.37 C.38 D.393.某种蔬菜的储藏温度是﹣8±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣11℃B.﹣9℃C.﹣8℃D.﹣7℃4.某商店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A.0.4kg B.0.5kg C.0.6kg D.0.8kg5.巴黎与北京的时间差为﹣7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是()A.7月2日21时B.7月2日7时C.7月1日7时D.7月2日5时6.体育课上全班女生进行百米测验达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组女生的达标率是()﹣2+0.300﹣1.2﹣1+0.5﹣0.4A.25% B.37.5% C.50% D.75%7.下列各数中:﹣1,﹣3.14156,﹣,﹣5%,﹣6.3,2017,﹣0.1,30000,200%,0,﹣0.01001,属于负分数的有()个.A.4个B.5个C.6个D.7个8.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.9.在﹣2,+3.5,0,3,﹣0.7,11中,整数有()A.l个B.2个C.3个D.4个10.下列说法中正确的是()A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数D.有最小的自然数,也有最小的整数11.如果一对有理数a,b使等式a﹣b=a•b+1成立,那么这对有理数a,b叫做“共生有理数对”,记为(a,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是()A.(3,)B.(2,)C.(5,)D.(﹣2,﹣)二.填空题(共7小题)12.如果上升记作“+”,下降记作“﹣”,那么上升﹣20米所表示的含义是.13.将高于平均水位2m记作“+2m”,那么低于平均水位0.5m记作.14.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差kg.15.如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.16.我们把分子为1的分数叫做单位分数,如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…,请你根据对上述式子的观察,把表示为两个单位分数之和应为.17.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是.(写出所有符合题意的数)18.观察下面一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是;数﹣201是第行从左边数第个数.三.解答题(共5小题)19.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)20.把下列各数分类﹣3,0.45,,0,9,﹣1,﹣1,10,﹣3.14(1)正整数:{ …}(2)负整数:{ …}(3)整数:{ …}(4)分数:{ …}.21.把下列各数分别填在相应的集合内﹣11、5%、﹣2.3、、0、﹣、2014、﹣9整数集合:{ …}分数集合:{ …}负数集合:{ …}.22.把下列各数填在相应的集合中:﹣58,0.27,0,﹣7,12%,0.,+65,+,100.整数:{ …}正分数:{ …}非负整数:{ …}.23.某茶叶加工厂一周生产任务为182kg,计划平均每天生产26kg,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5(1)这一周的实际产量是多少kg?(2)若该厂工人工资实际计件工资制,按计划每生产1kg茶叶50元,每超产1kg奖10元,每天少生产1kg扣10元,那么该厂工人这一周的工资总额是多少?参考答案一.选择题1.B.2.A.3.A.4.C.5.B.6.D.7.C.8.D.9.C.11.D.二.填空题12.下降20米.13.﹣0.5m.14.0.6kg.15.﹣3m.16.=+17.1,+,0.18.90;15;5.三.解答题19.解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(5,1.5)等.20.解:(1)正整数:{9,10 …}(2)负整数:{﹣3,﹣1 …}(3)整数:{﹣3,﹣1,0,9,10 …}(4)分数:{0.45,,﹣1,﹣3.14 …},21.解:整数集合:{﹣11,0,2014,﹣9,…};分数集合:{5%,﹣2.3,,﹣,…};负数集合:{﹣11,﹣2.3,﹣,﹣9,…},22.解:整数:{﹣58、0、100 …}正分数:{0.27、12%、0.、+…}非负整数:{0、+65、100…}.23.解:(1)∵七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5,∴七天的生产情况实际值为:29kg、24kg、22kg、27kg、25kg、32kg、21kg.∴一周总产量:29+24+22+27+25+32+21=180(kg).答:这一周的实际产量是180kg.(2)∵+3+(﹣2)+(﹣4)+1+(﹣1)+6+(﹣5)=﹣2180×50+(﹣2)×10=9000﹣20=8980(元)答:该厂工人这一周的工资总额是8980元.。
华东师大版七年级上册《第1章有理数》测试(含答案)

华东师大版七年级上册《第1章有理数》测试卷一、选择题1.相反数是它本身的数是()A.1 B.﹣1 C.0 D.不存在2.下列结论正确的是()A.﹣a一定是负数B.﹣|a|一定是非正数C.|a|一定是正数D.|a|一定是负数3.若a、b互为倒数,x、y互为相反数,则2(x+y)﹣ab的值为()A.0 B.1 C.﹣1 D.不能确定4.两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数5.如图,把一条绳子折成3折,用剪刀从中剪断,得到绳子条数是()A.3 B.4 C.5 D.66.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.﹣1 B.0 C.1 D.27.如果有理数a,b满足a+b>0,ab<0,则下列式子正确的是()A.当a>0,b<0时,|a|>|b|B.当a<0,b>0时,|a|>|b|C.a>0,b>0 D.a<0,b<08.2008年我国的国民生产总值约为130 800亿元,那么130 800用科学记数法表示正确的是()A.1308×102B.13.08×104C.1.308×104D.1.308×1059.计算(﹣3)×÷(﹣)×3的结果是()A.9 B.﹣9 C.1 D.﹣110.如图,数轴上A,B两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数二、填空题(每小题3分,共30分).11.数轴上表示数﹣5和表示﹣14的两点之间的距离是.12.﹣的相反数是,倒数是,绝对值是.13.绝对值大于1而小于4的整数有,其和为.14.太阳半径大约是696 000千米,用科学记数法表示为米.15.平方等于的数是.16.﹣|﹣| ﹣(+)(填“>”或“<”).17.已知abcd=9,且a、b、c、d互为不相等的整数,则a+b+c+d=.18.在数轴上的点A表示的数是﹣3,则与点A相距4个单位长度的点表示的数是.19.已知|m|=3,n=2,且|m﹣n|=n﹣m,则n﹣m=.20.若a、b互为相反数,c、d互为倒数,m的绝对值是2,则+m﹣cd的值为.三、解答题.21.计算(1)2+(﹣3)﹣(+5)+(﹣3)(2)99×9(3)(﹣+﹣)÷(4)10+(﹣2)×(﹣5)2.22.计算:1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+…+2012+2013﹣2014﹣2015.23.若“*”是一种新的运算符号,并且规定a*b=,求[2*(﹣2)]*(﹣2)24.已知x的相反数是﹣2,且2x+3a=5,求a的值.25.某储蓄所办理的5件业务是:取出865元,取出500元,存入1230元,取出300元,取出265元,这时总计该储蓄所增加或减少多少元?26.已知|a|=3,|b|=2,且a、b异号,求a+b的值.27.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣5、+9、﹣3、﹣6、﹣4、+12、﹣7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?28.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是﹣6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100m气温大约降低0.6℃,这座山峰的高度大约是多少米?29.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)30.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?31.计算:+++++…++.华东师大版七年级上册《第1章有理数》测试参考答案一、选择题1.C;2.B;3.C;4.D;5.B;6.C;7.A;8.D;9.A;10.D;二、填空题11.9;12.;﹣;;13.±2,±3;0;14.6.96×108;15.±;16.>;17.0;18.1或﹣7;19.5;20.1或﹣3;三、解答题.21.计算(1)2+(﹣3)﹣(+5)+(﹣3)(2)99×9(3)(﹣+﹣)÷(4)10+(﹣2)×(﹣5)2.解:(1)原式=2﹣3﹣5﹣3=﹣1﹣9=﹣10;(2)原式=100×9﹣×9=900﹣=899;(3)原式=(﹣+﹣)×16=﹣×16+×16﹣×16=﹣8+4﹣2=﹣6;(4)原式=10+(﹣2)×25=10﹣50=﹣40.22.计算:1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+…+2012+2013﹣2014﹣2015.解:原式=(1﹣2﹣3+4)+(5﹣6﹣7+8)+…+(2009﹣2010﹣2011+2012)+2013﹣2014﹣2015=﹣2016.23.若“*”是一种新的运算符号,并且规定a*b=,求[2*(﹣2)]*(﹣2)解:[2*(﹣2)]*(﹣2)=*(﹣2)=0*(﹣2)==1.24.已知x的相反数是﹣2,且2x+3a=5,求a的值.解:x的相反数是﹣2,得x=2,当x=2时,2×2+3a=5,解得a=.25.某储蓄所办理的5件业务是:取出865元,取出500元,存入1230元,取出300元,取出265元,这时总计该储蓄所增加或减少多少元?解:取出865元,取出500元,存入1230元,取出300元,取出265元,分别记为﹣865元,﹣500元,1230元,﹣300元,﹣265元,﹣865+(﹣500)+1230+(﹣300)+(﹣265)=﹣700(元).答:该储蓄所减少700元.26.已知|a|=3,|b|=2,且a、b异号,求a+b的值.解:∵|a|=3,|b|=2,且a、b异号,∴a=3,b=﹣2;a=﹣3,b=2,则a+b=±1.27.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣5、+9、﹣3、﹣6、﹣4、+12、﹣7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?解:(1)(+9)+(﹣3)+(﹣5)+(+4)+(﹣5)+(+9)+(﹣3)+(﹣6)+(﹣4)+(+12)+(﹣7)=1(km),答:出租车离鼓楼出发点1km远,在鼓楼的东面;(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣5|+|+9|+|﹣3|+|﹣6|+|﹣4|+|+12|+|﹣7|=67(km),∵每千米的价格为2.4元,∴司机一个下午的营业额是2.4×67=160.8(元),答:若每千米的价格为2.4元,司机一个下午的营业额是160.8元.28.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是﹣6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100m气温大约降低0.6℃,这座山峰的高度大约是多少米?解:由题意得:[3﹣(﹣6)]÷0.6×100=9÷0.6×100=1500米.答:这座山峰的高度大约是1500米.29.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐多重5.5千克;(2)列式1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克),故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1321(元),故这20筐白菜可卖1321(元).30.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?解:(1)星期二收盘价为25+2﹣0.5=26.5(元/股).(2)收盘最高价为25+2﹣0.5+1.5=28(元/股),收盘最低价为25+2﹣0.5+1.5﹣1.8=26.2(元/股).(3)小王的收益为:27×1000(1﹣5‰)﹣25×1000(1+5‰)=27000﹣135﹣25000﹣125=1740(元).∴小王的本次收益为1740元.31.计算:+++++…++.解:原式=+++…+=+(1﹣+﹣+﹣+…+﹣)=+1﹣=.。
华师版七年级数学上册 第1章 有理数 单元测试卷(2024年秋)

华师版七年级数学上册第1章有理数单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.下列各数中,负数是()A.-1 B.0 C.2 D.32.[母题教材P14例1]3的相反数是()A.13B.-13C.3 D.-33.[2024·天津和平区期中]有理数3,1,-2,4中,小于0的数是() A.3 B.1 C.-2 D.44.如图,小丽从原点O出发,第一次向东(右)走30米,第二次向西(左)走50米到达数轴上表示数a的点上,则a的值为()(第4题)A.50 B.30 C.20 D.-205.下列计算中,正确的是()A.-2-1=-1 B.3÷(-13)×3=-3C.(-3)2÷(-2)2=32D.0-7-2×5=-176.[情境题航空航天]2024年4月25日20时59分,神舟十八号载人飞船在酒泉卫星发射中心发射升空,约23 400秒后,神舟十八号载人飞船与空间站组合体完成自主快速交会对接.将23 400用科学记数法表示为() A.0.234×105 B.2.34×104 C.23.4×103 D.2.34×105 7.[2023·山东实验中学模拟]有理数a,b,c在数轴上对应点的位置如图所示.如果a+b=0,那么下列结论正确的是()(第7题)A.|a|>|c|B.a+c<0 C.abc<0 D.ab=18.下列说法中,正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.如果两个数的和是正数,那么这两个数中至少有一个正数D.两个数的差一定小于被减数9.已知|a+3|=5,b=-3,则a+b的值为()A.1或11 B.-1或-11 C.-1或11 D.1或-11 10.[新考向数学文化]小时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.-6或-3B.-8或1C.-1或-4D.1或-1二、填空题(每题3分,共24分)11.[新趋势跨学科]等高线指的是地形图上高度相等的相邻各点所连成的闭合曲线,在等高线上标注的数字为该等高线的海拔.吐鲁番盆地的等高线标注为-155 m,表示此处的高度海平面155 m(填“高于”或“低于”).12.[2024·杭州公益中学月考]如果|x-3|+(2+y)2=0,那么2x+y的值等于.13.[母题教材P65例1]近似数2.30精确到位.14.绝对值不大于3.14的所有有理数之和等于;不小于-4而不大于3的所有整数之和等于.15.在数轴上与表示-1的点相距2个单位长度的点表示的数是.16.[母题教材P28例3]有5袋苹果,每袋以50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是.17.[2024·清华附中月考]一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹遮盖住的整数个数是.18.[2023·随州]某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次……第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几名同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律;乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的讨论过程,可以得出最终状态为“亮”的灯共有盏.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.[2024·河南周口阶段练习]给出下面六个数:2.5,1,-2,-2.5,0,-32.(1)先画出数轴,再把表示上面各数的点在数轴上表示出来;(2)用“<”号将上面的各数连接起来.20.[母题教材P78复习题T16]计算:(1)-(-1)+32÷(1-4)×2;(2)(-1)1 000-2.45×8+2.55×(-8).21.已知m,n互为相反数,且m≠n,p,q互为倒数.(1)求m+nm +2pq-mn的值.(2)爱思考的璐璐发现其中的条件m≠n是多余的,你认为璐璐的想法对吗?为什么?22.[新视角新定义题]若“ⓧ”表示一种新运算,规定aⓧb=a×b+a+b,请计算下列各式的值..(1)-6ⓧ2;(2)[(-4)ⓧ(-2)]ⓧ1223.在数轴上表示a,0,1,b四个数的点如图所示,已知OA=OB,求|a+|+|a+1|的值.b|+|ab24.[情境题生活应用]体育课上全班女生进行了一分钟仰卧起坐测验,达标成绩为35个.下面是第一组8名女生的成绩记录,其中“+”号表示超过达标成绩的个数,“-”号表示不足达标成绩的个数.-5,0,+7,+12,-9,-1,+6,+14.(1)第一组8名女生中最好成绩与最差成绩相差个.(2)求第一组8名女生的平均成绩为多少?(3)规定:一分钟仰卧起坐次数为达标成绩,不得分;超过达标成绩,每多做1个得2分;未达到达标成绩,每少做1个扣1分.若一分钟仰卧起坐总积分超过60分,便可得到优秀体育小组称号,请通过计算说明第一组8名女生能否获得该称号.25.如图,将一根木棒放在数轴(单位长度为1 cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm.(2)图中点A所表示的数是,点B所表示的数是.(3)一天,妙妙问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?参考答案一、1. A2. D3. C4. D)×3=3×(-3)×3=-27,5. D 【点拨】-2-1=-3,A错误;3÷(-13,C错误;0-7-2×5=0-7-10=B错误;(-3)2÷(-2)2=9÷4=94-17,D正确.故选D.6. B7. C8. C 【点拨】0是有理数,但0既不是正数也不是负数,故A错误;|a|不一定是正数,也可能为0,故B错误;若a+b>0,a≤b,则a≤0,b>0或a>0,b>0,故C正确;2-(-1)=3>2,故D错误.故选C.9. B 【点拨】|a+3|=5,则a+3=±5,解得a=-8或a=2,则a+b=-8+(-3)=-11或a+b=2+(-3)=-1,故选B.10. A 【点拨】如图,设内圈上的数为c,外圈上的数为d.因为(-1)+2+(-3)+4+(-5)+6+(-7)+8=4,横、竖以及内外两圈上的4个数字之和都相等,所以内外两圈的和都是2,横、竖的和也都是2.由-7+6+b+8=2,得b=-5;由6+4+b+c=2,得c=-3;由a+c+4+d=2,得a+d=1.由题意可知,a和d代表的数字为-1和2.当a=-1时,d=2,则a+b=-1+(-5)=-6;当a=2时,d=-1,则a+b=2+(-5)=-3.故选A.二、11.低于12.4 【点拨】根据绝对值以及偶次幂非负得出x-3=0,2+y=0,进而求出x=3,y=-2,问题随之得解.13.百分14.0;-4 【点拨】设|a|≤3.14,其中正有理数有a1,a2,a3…则负有理数有-a1,-a2,-a3...还有0,则a1+a2+a3+...+0+(-a1)+(-a2)+(-a3)+ 0不小于-4而不大于3的整数有-4,-3,-2,-1,0,1,2,3,则所有整数加起来为-4.15.-3或1 【点拨】设这个数为a,当a<-1时,-1-a=2,解得a=-3;当a>-1时,a-(-1)=2,解得a=1.16.244千克【点拨】+4+(-5)+(+3)+(-2)+(-6)=-6(千克),所以这5袋苹果的总质量为50×5-6=244(千克).17.120 【点拨】因为墨迹最左端的数是-109.2,最右端的数是10.5.根据数在数轴上的排列特点,可得墨迹遮盖部分最左侧的整数是-109,最右侧的整数是10.所以遮盖住的整数共有120个.18.10 【点拨】因为1号开关被按了1次,2号开关被按了2次,3号开关被按了2次,4号开关被按了3次,5号开关被按了2次,6号开关被按了4次,7号开关被按了2次,8号开关被按了4次,9号开关被按了3次…所以n号开关被按的次数等于n的约数的个数.因为约数个数是奇数,所以n 一定是平方数.因为100=102,所以100以内共有10个平方数,所以最终状态为“亮”的灯共有10盏.三、19.【解】(1)数轴表示如图所示.(2)由(1)得-2.5<-2<-32<0<1<2.5.20.【解】(1)原式=1+9÷(-3)×2=1+(-3)×2=1-6=-5.(2)原式=1+(-2.45-2.55)×8=-39.21.【解】(1)由m,n互为相反数且m≠n,得m+n=0,mn=-1,由p,q互为倒数得pq=1,所以原式=0m+2×1-(-1)=3.(2)璐璐的想法不对,因为当m=n时,定有m=n=0,则式子m+nm 与mn都没有意义,所以m≠n这个条件不是多余的.22.【解】(1)-6ⓧ2=-6×2+(-6)+2=-16.(2)[(-4)ⓧ(-2)]ⓧ12=[-4×(-2)+(-4)+(-2)]ⓧ12=2ⓧ12=2×12+2+12=312.23.【解】因为OA =OB ,a <0<b ,所以a +b =0,a =-b .由数轴知b >1,所以a <-1,所以a +1<0.所以原式=0+1-a -1=-a .24.【解】(1)23(2)(-5)+0+7+12+(-9)+(-1)+6+14=-15+39=24(个),24÷8=3(个),35+3=38(个).答:第一组8名女生的平均成绩为38个.(3)(-5)×1+7×2+12×2+(-9)×1+(-1)×1+6×2+14×2=-5+14+24-9-1+12+28=63(分),因为63>60,所以第一组能得到优秀体育小组称号.25.【解】(1)8(2)14;22(3)由题意知奶奶与妙妙的年龄差为[119-(-37)]÷3=52(岁),所以奶奶现在的年龄为119-52=67(岁).。
七年级数学上册专题1有理数练习(新版)华东师大版

专题1 有理数1.⎪⎪⎪⎪⎪⎪-13的相反数是( ) A.13 B.-13 C.3 D.-3 2.[2017·内江]下面四个数中比-5小的数是( ) A.1 B.0 C.-4 D.-63. 数轴上的点A 到原点的距离是5,则点A 表示的数为( ) A.-5 B.5C.5或-5D.2.5或-2.54.[2017·山西]2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A.186×108吨 B.18.6×109吨 C.1.86×1010吨 D.0.186×1011吨 5.在有理数|-1|,(-1)2 016,-(-1),(-1 )2 017,-|-1|中,负数有( )A.0个B.1个C.2个D.3个 6. 下列说法中正确的是( ) A.任何有理数的绝对值都是正数 B.最大的负有理数是-1 C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等7. 下列计算:①0-(-5)=0+(-5)=-5; ②5-3×4=5-12=-7;③4÷3×⎝ ⎛⎭⎪⎫-13=4÷(-1)=-4; ④-12-2×(-1)2=1+2=3. 其中错误的有( )A.1个B.2个C.3个D.4个 8.若ab <0,a +b >0,则下列判断正确的是( ) A.a 、b 都是正数 B.a 、b 都是负数C.a 、b 异号且负数的绝对值大D.a 、b 异号且正数的绝对值大9. 如图,数轴上点P 对应的数为p ,则数轴上与数-p2对应的点是( )A.点AB.点BC.点CD.点D 10.用科学记数法表示-0.000 000 059=________.11. 有一张厚度是0.2毫米的纸,如果将它连续对折6次,则折叠6次后的厚度为__________毫米.12.计算:(1)25÷⎝ ⎛⎭⎪⎫-225-⎝ ⎛⎭⎪⎫-821×⎝ ⎛⎭⎪⎫-34+27; (2)⎩⎨⎧⎭⎬⎫1+⎣⎢⎡⎦⎥⎤112-⎝ ⎛⎭⎪⎫-342×(-2)3÷⎝ ⎛⎭⎪⎫-113+0.5;(3)⎝ ⎛⎭⎪⎫-34-58+912×(-24);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.13. 某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?14. 对于有理数a 、b ,定义一种新运算“⊙”,规定a ⊙b =|a +b |+|a -b |. (1)计算1⊙(-2)的值;(2)当a 、b 在数轴上的位置如图所示时,化简a ⊙b ;(3)已知(a ⊙a )⊙a =8+a ,求a 的值.15. 已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位: c m)依次为:+7,-5,-10,-8,+9,-6,+12,+4.(1)若A 点在数轴上表示的数为-3,则蜗牛停在数轴上何处?请通过计算加以说明; (2)若蜗牛的爬行速度为每秒12 c m ,请问蜗牛一共爬行了多少秒?16 如图,四个有理数在数轴上的对应点M 、P 、N 、Q ,若点M 、N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点PD.点Q17. 已知数轴上的三点A 、B 、C ,分别表示有理数a 、1、-1,那么|a +1|表示为( ) A.A 、B 两点间的距离 B.A 、C 两点间的距离 C.A 、B 两点到原点的距离之和 D.A 、C 两点到原点的距离之和18.下面是按照一定规律排列的一列数: 第1个数:12-⎝⎛⎭⎪⎫1+-12;第2个数:13-⎝ ⎛⎭⎪⎫1+-12×⎣⎢⎡⎦⎥⎤1+(-1)23×⎣⎢⎡⎦⎥⎤1+(-1)34;第3个数:14-⎝ ⎛⎭⎪⎫1+-12×⎣⎢⎡⎦⎥⎤1+(-1)23×⎣⎢⎡⎦⎥⎤1+(-1)34×⎣⎢⎡⎦⎥⎤1+(-1)45×⎣⎢⎡⎦⎥⎤1+(-1)56;…那么,在第11个数、第12个数、第13个数、第14个数中,最大的数是( ) A.第11个数 B.第12个数 C.第13个数 D.第14个数 19.[2017·天水]定义一种新的运算:x *y =x +2y x ,如:3*1=3+2×13=53,则(2*3)*2=____.20. 现规定一种新的运算“⊙”:a ⊙b =a 2+b 2-1.如2⊙3=22+32-1=12,则(-3)⊙4=____.21.为了求1+3+32+33+…+3100的值,可令M =1+3+32+33+…+3100,则3M =3+32+33+34+…+3101,因此,3M -M =3101-1,所以M =3101-12,即1+3+32+33+…+3100=3101-12.仿照以上推理计算:1+5+52+53+…+52 015的值是_______.22. 如图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2.已知点A 、B 是数轴上的点,完成下列各题:(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是____________,A 、B 两点间的距离是__________;(2)如果点A 表示数是3,将点A 向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是__________,A 、B 两点的距离是__________;(3)一般地,如果点A 表示数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的数是_________,A 、B 两点间的距离是____________.参考答案【过关训练】1.B2.D3.C4.C5.C6.D7.C8.D9.C 10. -5.9×10-811.12.812.(1) 解:原式=-25×512-27+27=-16;(2) 解:原式=⎝ ⎛⎭⎪⎫1-23+92×⎝ ⎛⎭⎪⎫-65 =-65+45-275=-545.(3) 解:原式=34×24+58×24-912×24=18+15-18 =15;(4) 解:原式=-1+|-8-10|-(-3)÷(-1)=-1+18-3 =14.13. 解:(1)10-2+3-1+9-3-2+11+3-4+6=+30,则距出发地东侧30米. (2)(10+2+3+1+9+3+2+11+3+4+6)×2.8=151.2(升),则共耗油151.2升. 14. 解:(1)1⊙(-2)=|1+(-2)|+|1-(-2)|=1+3=4. (2)从a 、b 数轴位置可知:a +b <0,a -b >0, ∴a ⊙b =|a +b |+|a -b |=-a -b +a -b =-2b . (3)当a ≥0时,(a ⊙a )⊙a =2a ⊙a =4a =8+a , 解得a =83;当a <0时,(a ⊙a )⊙a =-2a ⊙a =-4a =8+a , 解得a =-85.综上所述,a 的值为83或-85.15. 解:(1)依题意得-3+(+7)+(-5)+(-10)+(-8)+(+9)+(-6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点处.(2)(|+7|+|-5|+|-10|+|-8|+|+9|+|-6|+|+12|+|+4|)÷12=122(秒),∴蜗牛一共爬行了122秒. 16.C【解析】∵点M 、N 表示的有理数互为相反数,∴原点的位置大约在O 点,如答图,∴绝对值最小的数的点是P 点.第16题答图17.B 【解析】 首先把|a +1|化为|a -(-1)|,然后根据数轴上的三点A 、B 、C ,分别表示有理数a 、1、-1,判断出|a +1|表示为A 、C 两点间的距离.18.A 【解析】 第1个数=12-12=0;第2个数=13-12×43×34=13-12=-16;第3个数=14-12×43×34×65×56=14-12=-14;…∴由此得出第n 个数的计算结果为1n +1-12; 随着n 的数值增大,则计算结果越来越小.因此在第11个数、第12个数、第13个数、第14个数中,最大的数是第11个数. 19. 2 【解析】 根据题中的新定义得(2*3)*2=⎝ ⎛⎭⎪⎫2+2×32*2=4*2=4+44=2.20.24 21.52 016-14【解析】 根据题目信息,设M =1+5+52+53+…+52 015,求出5M ,然后相减计算即可得解.设M =1+5+52+53+…+52 015,则5M =5+52+53+54…+52 016,两式相减得:4M =52 016-1,则M =52 016-14. 22.(1)4 7 (2)1 2 (3) a +b -c |b -c | 【解析】 (3)点A 表示数为a ,将点A 向右移动b 个单位长度,则点A 表示a +b ,再向左移动c 个单位长度,那么终点B 表示的数是a +b -c ,A 、B 两点间的距离是|a +b -c -a |=|b -c |.。
华东师大版七年级上册数学有理数单元练习试卷及答案

华东师大版七年级数学练习卷(五)(有理数的单元试题)一、填空题:(每题2 分,共24 分)1、-2的倒数是_____。
2、绝对值为3的数是。
_____。
3、比较大小:-22___-4、温度3°C比-5°C高___°C5、4÷(-0.2)=4×(___)6、近似数2.40万精确到___位,有___个有效的数字。
7、用四舍五入法把740200保留三个有效数字的近似数为_______。
8、用计算器求2.43=____。
9、在数轴上,点A表示的数为-3,则点A到原点的距离为____。
10、计算:(-1)2004+(-1)2005=_______。
11、比-大而不大于3的所有整数的和为_____。
12、若≤2,且x为整数,那么x为_______。
二、选择题:(每题3分,共18分)1、下列说法中,正确的是()A、零是最小的整数B、零是最小的正数C、零没有倒数D、零没有绝对值2、有一种记分方法:以80分为基准,85分记为+5分,某同学得77分,则应记为()A、+3分B、-3分C、+7分D、-7分3、下列各式中,正确的是()A、->-B、-4>0C、-3<-6D、-<-4、-(-3)2的运算结果是()A、6 B-6 C、9 D、-95、一个数的平方等于它本身,这个数是()A、1B、1,0C、0D、0,±16、如果a>b,b<0那么+等于()A、a-bB、a+bC、b-aD、-a-b三、解答题:(6分)1、在数轴上画出表示下列各数的点,并用“<”号把它们连接起来。
-(-4),-2,0,-3.75,-22四、计算:(每题5分,共30分)1、7+(-)-5-(-0.75)1、(-1)÷(-4)×23、(-2)×3+(-24)÷3 4、(--)×(-30)5、-23÷×(-)26、-14-×[2-(-3)2]五、用适当的方法进行简便的计算:(每题5分,共10分)1、(-32)-[5-(+3)+(-5)+(-2)]2、54×-(-54)×+54×(-)六、(6分)兴业银行中山街储蓄所上午在一段时间内办理了5件储蓄业务:存入1020元;取出902元;存入990元;存入1000元;取出1100元,这时银行现款增加了多少元?七、(6分)某冷冻厂的一个冷库现在的室温是-2°C,现在一批食品需要在-28°C下冷藏,如果每小时能降温4°C,需要几小时才能降到所需温度?(五)一、1、-2、±3 3、<4、8 5、-5 6、百,三7、7.40×105 8、13.824 9、310、0 11、6 12、±2,±1,0二、1、C 2、B 3、A 4、D 5、B 6、A三、-22<-3.75<-2<0<-(-4)四、1、解:原式=7--5+0.75 =7-5 =2 2、解:原式=1××=3、解:原式=-6-8=-144、解:原式=-15+25+18 =285、解:原式=-8××=-8 6、解:原式=-1-×(-7) =-1+=五、1、解:原式=-32-[5-3-5-2]=-32-[-6]=-262、解:原式=54×(+-)=54×1 =54六、1020-902+990+1000-1100 =1008 答:增加了1008元。
七年级数学华东师大版上册课件:第2章《有理数》测试卷 (共36张PPT)

20. (8 分)计算(能用简便运算的尽量用简便算法): (1)(-125)×32×(-1)3×(-0.25); 解:原式=(-125×8)×(4×0.25)=-1000; (2)25-(-21+41-81)÷116; 解:原式=25-(-21×16+14×16-18×16)=32+8 -4+2=38;
20
三、解答题(共 66 分) 19. (8 分)已知一组数:|-2|,-2,+(-0.5), -1.5,1.5,0. (1)画一条数轴,并把这些数用数轴上的点表示出 来;
21
(2)把这些数分别填在下面对应的集合中: 负数集合:{ -2,+(-0.5),-1.5, …}; 分数集合:{ +(-0.5),-1.5,1.5, …}; 非负数集合:{ |-2|,1.5,0, …}; (3)请将这些数按从小到大的顺序排列(用“<” 号连接). 解:(1)略. (3)-2<-1.5<+(-0.5)<0<1.5<|-2|.
第2章《有理数》测试卷
1
(时间:100 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分)
1. 下列各数互为倒数的是( C )
A.5 和-51
B.2 和-2
C.-1 和-1
D.0.01 和 10
2
2. 下列说法不正确的是( B ) A.a 的相反数是-a B.任何有理数的平方都是正数 C.在有理数中绝对值最小的数是零 D.在有理数中没有最大的数
15
12. 研究表明:一只苍蝇的腹内细菌多达 2845 万 个,用科学记数法表示为 2.8×107 个,此时精确到 _百__万___位.
13. 若|a|=-a,那么 2a 一定是_非__正__数___ (填“非 正数”或“非负数”).
华师大版七年级上册数学有理数练习题有理数分题型专项练习

七年级2班练习题(有理数)1、珠穆朗玛峰海拔高度8848米,吐鲁蕃盆地海拔高度-155米,珠穆朗玛峰比吐鲁蕃盆地高( )A 9003米B 8693米C -8693米D -9003米2、某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃3、海中一潜艇所在高度为-30米,此时观察到海底一动物位于潜艇的正下方30米处,则海底动物的高度为___________.4、黄山主峰一天早晨气温为-1℃,中午上升了8℃,夜间又下降了10℃,那么这天夜间黄山主峰的气温是_________.5、某地今年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的是( )A 、1月1日B 、1月2日C 、1月3日D 、 1月4日6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C1、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个 2、在数+8.3、 4-、8.0-、 51-、 0、 90、 334-、|24|--中,________________是正数,____________________________不是整数。
3、在0.6,-0.4,13,-0.25,0,2,-93中,整数有________,分数有_________. 1、若0|2|)1(2=++-b a ,则b a +=_________。
2、若()()22110a b -++=,则20042005a b +=__________.3、若│a —4│+│b +5│=0,则a —b =4、若│x+2│+│y-3│=0,则xy=________.5、已知:|a-2|+(b+1)2=0,求b a ,a 3+b 15的值 6、已知|x —4|+|y +2|=0,求2x —y 的值。
1、 已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm c b mn --++-2的值 2、 如果a 、b 互为倒数,c 、d 互为相反数,且m=-1,则代数式2ab-(c+d )+m 2=_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级2班练习题(有理数)
1、珠穆朗玛峰海拔高度8848米,吐鲁蕃盆地海拔高度-155米,珠穆朗玛峰比吐鲁蕃盆地高( )
A 9003米
B 8693米
C -8693米
D -9003米
2、某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃
3、海中一潜艇所在高度为-30米,此时观察到海底一动物位于潜艇的正下方30米处,则海底动物的高度为___________.
4、黄山主峰一天早晨气温为-1℃,中午上升了8℃,夜间又下降了10℃,那么这天夜间黄山主峰的气温是_________.
5、某地今年1月1日至4日每天的最高气温与最低气温如下表:
其中温差最大的是( )
A 、1月1日
B 、1月2日
C 、1月3日
D 、 1月4日
6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C
1、在–2,+3.5,0,3
2-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个 2、在数+8.3、 4-、8.0-、 51-
、 0、 90、 334-、|24|--中,________________是正数,____________________________不是整数。
3、在0.6,-0.4,
13,-0.25,0,2,-93中,整数有________,分数有_________. 1、若0|2|)1(2=++-b a ,则b a +=_________。
2、若()()22110a b -++=,则20042005a b +=__________.
3、若│a —4│+│b +5│=0,则a —b =
4、若│x+2│+│y-3│=0,则xy=________.
5、已知:|a-2|+(b+1)2=0,求b a ,a 3+b 15
的值 6、已知|x —4|+|y +2|=0,求2x —y 的值。
1、 已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x n
m c b mn --++
-2的值
2、 如果a 、b 互为倒数,c 、d 互为相反数,且m=-1,则代数式2ab-(c+d )+m 2=_______。
3、 已知b a 、互为倒数,d c 、互为相反数,m 为最大的负整数,试求
m d c ab m 43+++的值。
1、在数轴上表示下列各数,然后在数轴上标出下列各数:
–3,+l ,212
,-l.5,6.
2、在数轴上表示数:-2,2112,,0,1, 1.522
--.按从小到大的顺序用"<"连接起来.
1、如果规定符号“﹡”的意义是a ﹡b =ab
a b +,求2﹡(3)-﹡4的值。
2、现规定一种新运算“*”:a *b =b a ,如3*2=23=9,则(
21)*3=( ) A 、61 B 、8 C 、81 D 、2
3 1、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:
+9、 -3、 -5、 +4、 -8、 +6、 -3、-6、 -4、 +10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
2、小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):
+5, -3, +10 ,-8, -6, +12, -10
问:(1)小虫是否回到原点O ?
(2)小虫离开出发点O 最远是多少厘米?
(3)、在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?
3、某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:
+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.
(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?
(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?
4、某检修小组1乘一辆汽车沿公路检修线路,约定向东为正。
某天从A 地出发到收工时,行走记录为(单位:千米):
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6。
另一小组2也从A 地出发,在南北向修,约定向北为正,行走记录为:
-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8。
(1)分别计算收工时,1,2两组在A 地的哪一边,距 A 地多远?
(2)若每千米汽车耗油a 升,求出发到收工各耗油多少升?
1、51)2(423⨯
-÷- 2、75.04.34353.075.053.1⨯-⨯+⨯-
3、[]2)4(231)5.01(-+⨯÷
-- 4、)411()2(32)53()5(23-⨯-÷+-⨯-
5、)1279543(+--÷361;
6、|9
7|-÷2)4(31)5132(-⨯--
7、25×43+(―25)×21+25×(-41)
8、(-1)3-(1-21)÷3×[3―(―3)2] 9、)411()413()212()411()211(+----+++-
10、(1)-42×
58
-(-5)×0.25×(-4)3
11、(
6712743-+)×(-60) 12、 18-6÷(-2)×∣-4
1∣
13、-22 -(1-5
1×0.2)÷(-2)3 14、)3()85.1()432()75.0(85.0++-++-++
1、已知|a|=7,|b|=3,求a+b 的值。
2、已知xy x ,16y ,32==<0, 则x -y=________.
3、如图,在数轴上有a 、b 两个有理数,则下列结论中,不正确的是( )
(A )a+b <0 (B )a-b<0
(C )a·b<0 (D )(-b
a )3>0 4、用科学计数法表示1200000=_________________.
5、在数轴上,到表示—3的点的距离等于5个单位长度的点所表示的数是__________
6、用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )
A .0.1(精确到0.1)
B .0.05(精确到百分位)
C .0.05(保留两个有效数字)
D .0.0502(精确到0.0001)
7、1--的相反数是______,138⎛⎫-- ⎪⎝⎭
的倒数是_________. 8、已知:3,2,5a b c =-=-=,求2222a ab b c -+-的值.。