七年级数学有理数练习题(附答案)

合集下载

七年级数学有理数试卷【含答案】

七年级数学有理数试卷【含答案】

七年级数学有理数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √52. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. -3/4 πD. √5 √53. 下列哪个数是整数?A. -3/4B. 2.5C. 3D. √94. 两个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定5. 下列哪个数是正有理数?A. -3/4B. 2.5C. -3D. √9二、判断题(每题1分,共5分)1. 所有的整数都是有理数。

()2. 两个有理数相加,结果仍为有理数。

()3. 0是有理数。

()4. 两个正数相乘的结果是负数。

()5. 所有的分数都是有理数。

()三、填空题(每题1分,共5分)1. 3/4 + 1/4 = ______2. -2/3 3/2 = ______3. 4/5 1/5 = ______4. | -3/4 | = ______5. -3/4的倒数是______四、简答题(每题2分,共10分)1. 请简述有理数的定义。

2. 请解释有理数的分类。

3. 请简述有理数的乘法法则。

4. 请解释有理数的加法法则。

5. 请简述有理数的除法法则。

五、应用题(每题2分,共10分)1. 计算下列各式的值:a. 3/4 + 1/4b. -2/3 3/2c. 4/5 1/5d. | -3/4 |e. -3/4的倒数2. 判断下列各数是否为有理数,并解释原因:a. √2b. -3/4c. πd. √5e. 2.53. 计算下列各式的值:a. 2/3 + 1/6b. -3/4 2/3c. 5/8 3/8d. | -5/6 |e. -5/6的倒数4. 判断下列各数是否为整数,并解释原因:a. -3/4b. 2.5c. 3d. √9e. -2/35. 计算下列各式的值:a. 3/5 + 2/5b. -4/5 5/4c. 7/10 3/10d. | -7/8 |e. -7/8的倒数六、分析题(每题5分,共10分)1. 分析有理数的乘法法则,并举例说明。

初中数学七年级上册练习题(有理数)-附答案

初中数学七年级上册练习题(有理数)-附答案

初中数学七年级上册练习题(有理数)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式值必为正数的是( )A .||||a b +B .22a b +C .21a +D .2(1)a + 2.下列运算正确的是( )A .(6)(13)7++-=+B .(6)(13)19++-=-C .()()9.059.0518.1++-=D .735( 3.75)2936⎛⎫-+=- ⎪⎝⎭3.下列数对相加和最小的是( ) A .5和15- B .2与2- C .1-与1- D .0.01与104.一个数是8,另一个数比8的相反数小2,则这两个数的和为( ) A .2- B .2 C .6- D .65.下列运算不正确的个数是( )①(2)(2)0-+-=;①(6)(4)10-++=-;①0(3)3+-=+;①512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;①337744⎛⎫⎛⎫--+-=- ⎪ ⎪⎝⎭⎝⎭;①111236⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭;①(5)(6)(1)0++-++=. A .0 B .1 C .2 D .36.据全球新冠疫情统计,截至2021年12月7日,全球累计确诊新冠肺炎病例逾2.6亿例.2.6亿用科学记数法表示为( )A .26×710B .2.6×810C .0.26×910?D .2.6×9107.在-3,36,+25,-0.01,0,34-中,负数的个数为( ) A .2个 B .3个 C .3个 D .4个 8.当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元 9.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.数“720亿”用科学记数法可表示为( )A .27.210⨯B .37.210⨯C .107.210⨯D .117.210⨯ 10.在有理数-4,0,-1,3中,最小的数是( )A .-4B .0C .-1D .3 二、填空题11.数2-的符号是_______,绝对值是_______;数0.5的符号是_______,绝对值是_______,这两个数属_______号(填:“同”或“异”),绝对值较大的数的符号是_______.这两个数的绝对值之和是_______;较大的绝对值减较小的绝对值的差是_______. ()()20.5-++=____(|__|____|__|)=_______.零加上a 得_______.12.符号相同的几个数相加,取_______的符号,并把它们的_______相_______;符号不同两个数相加,取______________的符号,并用较大的绝对值_______较小的绝对值.互为相反数的和是_______.13.按法则要求步骤填空(1)(3)(9)++-=_______( )=_______.(2)( 5.7)(4,3)-+-=_______( )=_______.(3)106⎛⎫+-= ⎪⎝⎭_______. (4)2134⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭_______( )=_______. (5)10.254⎛⎫-+= ⎪⎝⎭_______. 14.若a 是绝对值最小的数,b 是最大的负整数,则()a b +-=_______.15.若3,7m n =-=-,则||m n +=_______;||m n +=_______;m n +=_______;||||m n +=_______.16.若||5,||3x y ==,则x y +=______________.17.x 是有理数,它在数轴上的对应点的位置如图所示.则77x x -++=________.18.央视天下财经2021年11月25日晚报道电影《长津湖》票房突破57亿,截至11月25日,电影《长津湖》已打破此前由影片《战狼2》保持的国产票房最高纪录,以破56.95亿元的成绩成为中国影史票房冠军.将56.95亿用科学记数法表示为___________.19.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作_________.20.截止北京时间2021年12月20日全球累计确诊新冠肺炎病例约为274950000例,将这个数精确到十万位为__例.21.在横线上填上适当的符号使式子成立:( )6+(﹣18)=﹣12.22.钓鱼岛是中国领土的一部分,岛屿周围的海域面积约174000平方千米,数据174000用科学记数法可以表示为________.23.计算:22139⎛⎫-+=⎪⎝⎭______.24.把数字3120000用科学记数法表示为______.三、解答题25.计算:(1)(51.76)(32.8)++-(2)( 3.75)( 3.75)-++(3)116332⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭(4)25( 2.7)3⎛⎫-+-⎪⎝⎭26.计算:1(2)3(4)99(100)+-++-+⋅⋅⋅++-27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18.5,﹣9.3,+7,﹣14.7,+15.5,﹣6.8,﹣8.2,请通过计算回答:(1)B地在A地何方,相距多少千米?(2)若汽车行驶每100千米耗油8升,出发时汽车油箱有油20升,晚上到达B地时油箱还剩油多少升?28.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻? 29.某大米包装袋上印有(50±2)kg ,请问:(1)±2kg 是什么意思?(2)若随机抽查了其中5袋大米,质量分别为47.5kg ,51.3kg ,49.8kg ,50.3kg ,51.8kg ,请判断一下,这5袋大米的质量哪些是合格的?30.将下列数按照整数与分数进行分类:3,2.6,-26,3.1415926,0,45-. 31.讨论:观察下面两个式子有什么不同?(1)(-4)2与-42; (2)23()5与23532.411(2)()|2|3⎡⎤-+-÷---⎣⎦. 33.计算:10+(﹣5)×2﹣(﹣9)参考答案:1.C【解析】【分析】根据题意可知选项中的值必须为正数,所以无论a、b取何值时都得满足其值为正数这一条件,据此依次判断即可.【详解】解:A、当a=0,b=0时,此式不符合条件,故本选项错误;B、当a=0,b=0时,此式不符合条件,故本选项错误;C、无论a取何值,a2+1的值都为正数,故本选项正确;D、当a=-1时,此式不符合条件,故本选项错误;故选:C.【点睛】本题考查有理数的乘方和绝对值以及非负数与正数的关系,注意掌握非负数包括0,而正数不包括0.2.D【解析】【分析】根据有理数的加法计算法则进行求解即可.【详解】解:A、(6)(13)613=7++-=--,此选项不符合题意;B、(6)(13)613=7++-=--,此选项不符合题意;C、(9.05)(9.05)9.059.05=0++-=-,此选项不符合题意;D、73735( 3.75)3=294936⎛⎫-+=-+-⎪⎝⎭,此选项符合题意;故选D.【点睛】本题主要考查了有理数的加法,解题的关键在于能够熟练掌握有理数的加法计算法则.3.C【解析】【分析】根据有理数的加法分别算出四个选项的和,然后比较大小即可【详解】解:145=455⎛⎫+- ⎪⎝⎭,()22=0+-,()11=-2-+-,0.0110=10.01+,①410.014025>>>-,故选C.【点睛】本题主要考查了有理数的加法运算和有理数的比较大小,解题的关键在于能够熟练掌握相关知识进行求解4.A【解析】【分析】根据相反数的定义和有理数的减法确定另一个数,再利用有理数的加法法则计算即可.【详解】依题意另一个数为:-8-2=-10,①8+(-10)=-2.故选:A.【点睛】本题考查了相反数,有理数的加减法,熟练掌握有理数加减法法则是解题的关键.5.D【解析】【分析】根据有理数的加法法则,逐项计算分析可得.【详解】①(2)(2)4-+-=-,故①不正确;①(6)(4)2-++=-,故①不正确;①0(3)3+-=-,故①不正确;①512663⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,故①正确;①337744⎛⎫⎛⎫--+-=-⎪ ⎪⎝⎭⎝⎭,故①正确;①111236⎛⎫⎛⎫-++=- ⎪ ⎪⎝⎭⎝⎭,故①不正确; ①(5)(6)(1)0++-++=,故①正确;综上,正确的有①①①,共计3个.故选D .【点睛】本题考查了有理数的加法,掌握有理数的加法法则是解题的关键.6.B【解析】【分析】科学记数法的定义即可得.【详解】解:2.6亿=82.610⨯,故选B .【点睛】本题考查了精确度和科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 7.B【解析】【分析】负数是小于零的数,由此可得出答案.【详解】解:由负数的概念可以得到-3,-0.01,34-,这三个数是负数, 故选:B【点睛】本题考查了正数和负数,掌握正数和负数的定义是解题的关键.8.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:720亿=72000000000=7.2×1010.故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A【解析】【分析】根据有理数大小比较的法则:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小可得答案.【详解】解:①44,11,而41,①41,在有理数-4,0,-1,3中,4103,①最小的数是-4,故选:A.【点睛】本题主要考查了有理数的比较大小,关键是掌握有理数的比较大小的方法.11.-2+0.5异- 2.5 1.5-2--0.5 1.5-a 【解析】【分析】根据有理数的性质及加法运算法则即可依次填空.【详解】数2-的符号是-,绝对值是2;数0.5的符号是+,绝对值是0.5,这两个数属异号(填:“同”或“异”),绝对值较大的数的符号是-.这两个数的绝对值之和是2.5;较大的绝对值减较小的绝对值的差是1.5.()()20.5-++=-(|2|-|0.5|)= 1.5-.零加上a得a.故答案为:-;;2;+;0.5;异;-;2.5;1.5;-;2-;-;0.5; 1.5-;a.【点睛】此题主要考查有理数的性质与运算,解题的关键是熟知绝对值的运用.12.相同绝对值加绝对值较大加数减去零【解析】【分析】根据有理数加法的计算法则进行求解即可.【详解】解:符号相同的几个数相加,取相同的符号,并把它们的绝对值相加;符号不同两个数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的和是零.故答案为:相同,绝对值,加,绝对值较大加数,减去,零.【点睛】本题主要考查了有理数加法的计算法则,解题的关键在于能够熟练掌握有理数的加法计算法则.13.-93-6-- 5.7 4.3+10-16--2134-512-0【解析】【分析】根据有理数加法运算法则计算即可.【详解】解:(1)原式=(93)--=6-;(2)原式=(5.7 4.3)-+=10-;(3)原式=16-; (4)原式=215()3412--=-; (5)原式=0; 故答案为:-;93-;6-;-;5.7 4.3+;10-;16-;-;2134-;512-;0. 【点睛】本题考查了有理数加法运算法则,同号两数相加,取相同符号,在把绝对值相加;异号两数相加;取绝对值大的符号,再把绝对值相减;任何数加上零还等于原数.14.1【解析】【分析】根据绝对值最小的数为0,最大的负整数为1-,求解即可.【详解】解:①a 是绝对值最小的数,b 是最大的负整数,①0,1a b ==-,①()[]0(1)1a b +-=+--=,故答案为:1.【点睛】本题考查了有理数的加法,熟知运算法则以及得出a 、b 的值是解本题的关键. 15. 4- 4 10- 10【解析】【分析】根据有理数的加法运算法则以及绝对值的意义求解即可.【详解】解:①3,7m n =-=-,①||3(7)4m n +=+-=-,||374m n +=-+=,m n +=3(7)10-+-=-;||||3710m n +=+=;故答案为:4-;4;10-;10.【点睛】本题考查了有理数的加法运算法则以及绝对值的意义,熟知运算法则是解本题的关键. 16.8±或2±【解析】【分析】根据绝对值的代数意义分别求出x 与y 的值,再代入所求的式子中计算即可.【详解】解:①|x |=5,|y |=3,①x =±5,y =±3,①x +y =5+3=8或x +y =5−3=2或x +y =−5+3=−2或x +y =−3−5=−8.故答案为:±2或±8.【点睛】本题考查了绝对值的意义以及有理数的加法,根据题意求出x 与y 的值是解题的关键. 17.14【解析】【分析】由数轴可知-6< x < 0,则x - 7< 0,x +7 > 0,再去掉绝对值,可解.【详解】由数轴可知-6<x <0,则x -7<0,x +7> 0,①|x - 7|+|x +7|=7-x +x +7=14故答案为14.【点睛】此题综合考查了数轴、绝对值的有关内容,在去掉绝对值的时候,要特别细心.18.9⨯5.69510【解析】【分析】根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定a、n的值即可.【详解】解:由题意知:56.95亿=5695000000=5.695×109,故答案为:5.695×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.19.256-【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:李白出生于公元701 年,我们记作+701,那么秦始皇出生于公元前256年,可记作﹣256.故答案为:﹣256.【点睛】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.82.75010⨯【解析】【分析】根据精确度和科学记数法的定义即可得.【详解】解:274950000精确到十万位为275000000,8=⨯,275000000 2.75010故答案为:8⨯.2.75010【点睛】本题考查了精确度和科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 21.+【解析】【分析】根据有理数的加法法则即可得出答案.【详解】解:6+(﹣18)=﹣12,故答案为:+.【点睛】本题考查了有理数的加法,掌握绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值是解题的关键.22.51.7410⨯【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数. 【详解】解:51.7174000401=⨯.故答案为:51.7410⨯.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.23.13- 【解析】【分析】根据有理数的乘方、有理数的加法可以求解即可.【详解】 解:221()39-+ 4199=-+ 13=- 故答案为:13-. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题关键.24.63.1210⨯【解析】【分析】根据科学记数法的定义即可得.【详解】解:63.31212000001=⨯,故答案为:63.1210⨯.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.25.(1)18.96;(2)0;(3)526;(4)11830- 【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的加减运算法则即可求解;(3)根据有理数的加减运算法则即可求解;(4)根据有理数的加减运算法则即可求解.【详解】(1)(51.76)(32.8)++-=51.7632.8-=18.96;(2)( 3.75)( 3.75)-++=0;(3)116332⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=()116332⎛⎫-+- ⎪⎝⎭=136⎛⎫+- ⎪⎝⎭=526 (4)25( 2.7)3⎛⎫-+- ⎪⎝⎭=()2752310⎛⎫--+-- ⎪⎝⎭=117130--=11830-. 【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.26.50-【解析】【分析】根据1(2)=12=1+---,3(4)=34=1+---,()56=56=1+---从而可得()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加),由此求解即可.【详解】解:①1(2)=12=1+---,3(4)=34=1+---,()56=56=1+---,①()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加) ①1(2)3(4)99(100)=-50+-++-+⋅⋅⋅++-.【点睛】本题主要考查了有理数的加法运算,解题的关键在于能够发现()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加). 27.(1)北方,2千米(2)13.6升【解析】【分析】(1)根据有理数的加法,有理数的大小比较,可得答案;(2)根据单位耗油量乘以行驶路程,可得总耗油量,根据原有油量减去耗油量,可得答案.(1)解: +18.5﹣9.3+7﹣14.7+15.5﹣6.8﹣8.2=2(千米),2>0,在北方,答:B地在A地北方,相距2千米;(2)路程=18.5+|﹣9.3|+7+|﹣14.7|+15.5+|﹣6.8|+|﹣8.2|=80(千米),每千米的耗油量8÷100=0.08升,耗油量80×0.08=6.4(升),20﹣6.4=13.6(升),答:晚上到达B地时油箱还剩油13.6升.【点睛】本题考查了正数和负数,有理数的加减法运算是解题关键.28.(1)能回到原点O(2)12厘米(3)54粒【解析】【分析】(1)将爬过的路程相加即可求出答案.(2)计算出每次爬行否离开原点的距离即可判断.(3)求出每次路程的绝对值之和即可求出答案.(1)由题意可知:+5-3+10-8-6+12-10=0,故小虫回到原点O;(2)第一次爬行,此时离开原点5厘米,第二次爬行,此时离开原点5-3=2厘米,第三次爬行,此时离开原点5-3+10=12厘米,第四次爬行,此时离开原点5-3+10-8=4厘米,第五次爬行,此时离开原点5-3+10-8-6=-2厘米,第六次爬行,此时离开原点5-3+10-8-6+12=10厘米,第7次爬行,此时离开原点5-3+10-8-6+12-10=0厘米,故小虫离开出发点最远是12厘米;(3)小虫共爬行的路程为:5+|-3|+10+|-8|+|-6|+12+|10|=5+3+10+8+6+12+10=54厘米,①每爬行1厘米奖励一粒芝麻,①小虫共可得到54粒芝麻.【点睛】本题考查正数与负数的意义,解题的关键是熟练运用正数与负数的意义.29.(1)表示质量比50kg最多多2kg或最多少2kg(2)51.3kg,49.8kg,50.3kg,51.8kg这四袋大米质量是合格的【解析】【分析】(1)(50±2)kg,50kg是标准质量,+2k g是上偏差,表示比标准质量最多多2kg,-2kg是下偏差,表示比标准质量最多少2kg;(2)在(50-2)kg和(50+2)kg之间的为合格,在这个范围之外的为不合格.(1)解:+2kg是表示比50kg最多多2kg,-2kg是表示50kg最多少2kg;①±2kg是表示比50kg最多多2kg或最多少2kg;(2)解:50+2=52(kg),50-2=48(kg),在48~52kg之间为合格,则51.3kg,49.8kg,50.3kg,51.8kg为合格,47.5kg为不合格,①51.3kg,49.8kg,50.3kg,51.8kg这四袋大米质量是合格的.【点睛】本题考查正负数的意义,理解正负数的相对性,能用正负数表示同意一对具有相反意义的量是解题的关键.30.整数:3,-26,0;分数:2.6,3.1415926,4 5【解析】【分析】直接根据整数和分数的概念进行判断即可得到答案.解:整数:3,-26,0;分数:2.6,3.1415926,45-. 【点睛】此题主要考查了有理数的分类,解题的关键是掌握有理数的分类.31.(1)见解析(2)见解析【解析】【分析】(1)根据乘方的定义,即可求解;(2)根据乘方的定义,即可求解;(1)解:①(-4)2表示-4的平方,-42表示4的平方的相反数,①(-4)2与-42互为相反数;(2) 解:235⎛⎫ ⎪⎝⎭表示35的平方,235表示23除以5. 【点睛】本题主要考查了乘方的定义,熟练掌握n 个相同因数的积的运算,叫做乘方,记作n a ,其中a 叫做底数,n 叫做指数;注意()n a -的意义是-a 的n 次方”, n a -的意义是“a 的n 次方的相反数”是解题的关键.32.7【解析】【分析】根据有理数的混合运算顺序进行计算即可求解.【详解】解:原式=()()1232--⨯-- 92=-7=本题考查了有理数的混合运算,正确的计算是解题的关键.33.9【解析】【详解】解:10+(﹣5)×2﹣(﹣9)=-+101099=【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.。

七年级有理数练习题集及答案(10套)

七年级有理数练习题集及答案(10套)

有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。

人教版七年级上册数学 第一章《有理数》练习题(附答案)

人教版七年级上册数学 第一章《有理数》练习题(附答案)

1 2
,

3
48.食品店一周中的盈亏情况如下 ( 盈余为正 ) : 132 元, −12.5 元, −10.5 元,127 元, −87 元, 136.5 元,98 元. 请通过计算说明这一周食品店的盈亏情况.
49.试比较 a 与﹣a 的大小.
50.把下列各数填在相应的表示集合的大括号内:
-3,-
(2)解:原式=
1 2
×(﹣24)+
5 6
×(﹣24)﹣
7 12
×(﹣24)=﹣12﹣20+14=﹣18.
40.【答案】 解:原式=2+2-1=3
四、解答题
41.【答案】
解:正数集合:{
1 10
,2014,20%,…}
负数集合:{-7,﹣
1 3

-0.75…}
整数集合:{0,2014…}
正分数集合:{
+
1
+
2

3+2×
3 2

2
2
=
13 4

2
2
37.【答案】 解:(+7)+(﹣4)﹣(﹣3)﹣(+14)=7﹣4+3﹣14=3+3-14=6-14=﹣8
38.【答案】 解:原式 = 3 × 2 − ( − 1)
39.【答案】 (1)解:原式=6.8﹣(﹣4.2)+ ( − 1)3 =6.8+4.2﹣1=10
A. -6
B.
−5
1 3
C.
−4
1 2
D.
−3
3 4
6.计算 18 − ( − 5) 的结果等于( )

人教版七年级数学《有理数》计算题专项练习(含答案)

人教版七年级数学《有理数》计算题专项练习(含答案)

人教版七年级数学《有理数》计算题专项练习学校:班级:姓名:得分:1、计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).2、计算:12﹣(﹣18)+(﹣7)﹣15;3、计算:(﹣)×(﹣8)+(﹣6)÷(﹣)2.4、计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)5、计算:(﹣﹣)×366、计算:(﹣1)4﹣36÷(﹣6)+3×(﹣)7、计算:(﹣+)×(﹣24)8、计算:﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).9、计算:﹣14÷(﹣5)2×(﹣)10、计算:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).11、计算:23×(1﹣)×0.5.12、计算:﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.13、计算:4+(﹣2)2×2﹣(﹣36)÷4.14、计算:﹣33+(﹣1)2016÷+(﹣5)2.15、计算:﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)16、计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2].17、计算:(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.18、计算:2×(﹣3)2﹣5÷(﹣)×(﹣2)19、计算:(﹣2)3÷+3×|1﹣(﹣2)2|.20、计算:(﹣)2÷()3﹣12×(﹣)21、计算:.22、计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].23、计算:(﹣28)÷(﹣6+4)+(﹣1)×5.人教版七年级数学《有理数》计算题专项练习参考答案与试题解析1.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣172.计算:12﹣(﹣18)+(﹣7)﹣15;【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;3.计算:(﹣)×(﹣8)+(﹣6)÷(﹣)2.【解答】解:原式=4﹣54=﹣50.4.计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【解答】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.5、计算:(﹣﹣)×36【解答】解:(﹣﹣)×36=8﹣9﹣2=﹣3;6.计算:(﹣1)4﹣36÷(﹣6)+3×(﹣)【解答】解:(﹣1)4﹣36÷(﹣6)+3×(﹣)=1+6+(﹣1)=6.7.计算:(﹣+)×(﹣24)【解答】解:原式=﹣8+18﹣20=﹣10;8.计算:﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).【解答】解:原式=﹣9+2×9﹣(﹣6)×(﹣)=﹣9+18﹣9=0.9.计算:﹣14÷(﹣5)2×(﹣)【解答】解:(1)﹣14÷(﹣5)2×(﹣)=﹣1÷25×(﹣)=﹣1××(﹣)=;10.计算:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).【解答】解:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1)=﹣125×(﹣)+32×(﹣)×(﹣)=75+10=85.11.计算:23×(1﹣)×0.5.【解答】解:原式=8××=3.12.计算:﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.【解答】解:原式=﹣49+2×9+(﹣6)÷=﹣49+18﹣6×9=﹣49+18﹣5413.计算:4+(﹣2)2×2﹣(﹣36)÷4.【解答】解:原式=4+4×2﹣(﹣9)=4+8+9=21.14.计算:﹣33+(﹣1)2016÷+(﹣5)2.【解答】解:﹣33+(﹣1)2016÷+(﹣5)2=﹣27+1×6+25=﹣27+6+25=4.15.计算:﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)【解答】解:原式=﹣10+2﹣24=﹣34+2=﹣32.16.计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2].【解答】解:原式=﹣4÷1﹣×(﹣21)=﹣4+7=3.17.计算:(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.【解答】解:原式=16÷+×(﹣)﹣=﹣﹣=.18.计算:2×(﹣3)2﹣5÷(﹣)×(﹣2)【解答】解:原式=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2.19.计算:(﹣2)3÷+3×|1﹣(﹣2)2|.【解答】解:原式=﹣8×+3×|1﹣4|,=﹣10+3×3,=﹣10+9,20.计算:(﹣)2÷()3﹣12×(﹣)【解答】解:原式=×27﹣9+2=3﹣9+2=﹣4.21.计算:.【解答】解:原式=﹣×﹣×=×(﹣﹣)=﹣.22.计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].【解答】解:原式=﹣1﹣×(2﹣9)=﹣1+=.23.计算:(﹣28)÷(﹣6+4)+(﹣1)×5.【解答】解:原式=﹣28÷(﹣2)﹣5=14﹣5=9.。

七年级数学上册有理数练习题(含答案)

七年级数学上册有理数练习题(含答案)

七年级数学上册有理数练习题(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列不是有理数的是( )A .227B .3.14C .πD . 3.1415926-2.下列说法正确的是( )A .所有的整数都是正数B .非负数就是正数C .0既不是正数,也不是负数D .正数和负数统称为有理数3.在+8.3,﹣4,﹣0.8,15-,0,90中,分数共有( ) A .1个 B .2个 C .3个 D .4个4.在数 8-,0,5,π,0.01-,1322 中,属于非负整数的有( ) A .2 个 B .3 个 C .4 个 D .5 个5.如果温度上升1℃记作1+℃,那么温度下降5℃,应记作( )A .5+℃B .5-℃C .6+℃D .6-℃6.在数 15,7.35-,0,45-,0.303,117,0.101001000(每两个 1 中依次多一个 0)中,有理数有( )A .4 个B .5 个C .6 个D .7 个二、填空题7.若○中填入最小的正整数,℃中填入最小的非负数,□中填入大于﹣3且小于3的整数的个数,则(○+℃)×□=___.8.某居民的身份证如图所示,则该居民的出生年份是__.9.下列各数:()21-,12,0.2,其中有理数有______个. 10.______和______统称为有理数:有理数可分为:______数,______数和______. 11.把下列各数填入相应的集合中:+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%,π,﹣0.2020020002…(每相邻两个2之间0的个数逐次加1).正分数集合:{ …};正整数集合:{ …};整数集合:{ …};有理数集合:{ …}. 12.在 18%,112,4.5,17-,0,227,π2,56- 中,整数是____;正分数是____;有理数有____个. 13.2018年10月26日,全世界最长的跨海大桥--港珠澳大桥正式通车,其全长为55__(填单位).三、解答题14.将下列各数填入相应的圈内: 12-,7+, 2.8+,90-, 3.5-,193,0,4.15.把下列各数分类,并填在表示相应集合的大括号里:-2,37+,0.8,12,0,-2.1,375-,17%,0.4. (1)正数集合:{ }(2)整数集合:{ }(3)分数集合:{ }(4)负数集合:{ }(5)正整数集合:{ }(6)负分数集合:{ }16.已知正数x 的两个不等的平方根分别是214a -和2a +,1b +的立方根为-3;c(1)求x和b的值;(2)式子a b c-+的值=;(3是数(填“有理”或“无理”).17.下列六个数中:﹣2.5,132,0,+5,﹣4,12-.(1)整数有个;负分数有个;既不是正数也不是负数的是.(2)把所有数据分别在数轴上表示出来.参考答案:1.C【分析】根据有理数的定义,有理数包括分数和整数,据此分析即可.【详解】227,3.14, 3.1415926-都是分数,是有理数;π是无限不循环的小数,不是有理数;故选C.【点睛】本题考查了有理数的定义,掌握有理数的定义是解题的关键.2.C【分析】根据正数和负数的定义解答即可.【详解】解:A.整数包含正整数、0、负整数,错误;B.非负数就是0和正数,错误;C.0既不是正数,也不是负数,正确;D.零、正有理数和负有理数统称为有理数,错误.故选:C.【点睛】本题考查的是正数和负数的定义,熟知相关性质是解题的关键.3.C【分析】根据分数定义,把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数,分数分为正分数与负分数,对各数进行一一区分即可.【详解】解:分数有+8.3,﹣0.8,15 -,分数共有3个.故选:C.【点睛】本题考查分数,掌握分数定义是解题关键.4.A【分析】非负整数即为正整数与0,找出即可.【详解】解:在数8-,0,5,π,0.01-,1322中,属于非负整数的有0,5,共2个故选A.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.5.B【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可;【详解】如果温度上升1℃记作+1℃,即初始温度为0℃,那么温度下降5℃记作-5℃,故选:B .【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负;6.C【分析】根据有理数的定义,即可求解.有理数是整数(正整数、0、负整数)和分数的统称.【详解】解:在数 15,7.35-,0,45-,0.303,117,0.101001000(每两个 1 中依次多一个 0)中,有理数有15,7.35-,0,45-,0.303,117,共6个 故选C .【点睛】本题考查了有理数的定义,掌握有理数的定义是解题的关键.7.5【分析】最小的正整数为1,最小的非负数为0,大于﹣3且小于3的整数的个数为5个,然后根据算式计算即可.【详解】由题意可知:最小的正整数为1,最小的非负数为0,大于﹣3且小于3的整数的个数为5个; ○代表1,℃代表0,□代表5;则原式=(1+0)×5=5,故答案为:5【点睛】本题考查正整数、非负数等的概念,解决本题的关键是对有理数的分类要清晰明了. 8.1978【分析】由身份证号码第7—10位数字表示的是年份,即可得出结论.【详解】解:由身份证号码第710-位数字表示的是出生年份,得该居民出生年份是1978.故答案为:1978.【点睛】本题考查了数学常识,了牢记身份证号码18位数字的意义是解题的关键.9.3【分析】根据有理数的定义即可求解.【详解】解:根据有理数的定义知:2(1)-,12,0.2,是有理数,故答案为:3.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解题的关键.10.整数分数正有理负有理零【分析】根据有理数的分类及定义即可判定.【详解】解:整数和分数统称为有理数,有理数可分为正有理数和负有理数和0;故答案为:整数、分数、正有理、负有理、零【点睛】本题主要考查了有理数的定义及分类,解题时熟练掌握有理数的定义及不同的分类标准即可解决问题11.见解析【分析】直接根据有理数的分类进行解答即可.【详解】解:正分数集合:{0.75,245,9%…};正整数集合:{+6,+8…};整数集合:{+6,﹣3,0,+8…};有理数集合:{+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%…}.故答案为:0.75,245,9%;+6,+8;+6,﹣3,0,+8;+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%.【点睛】本题考查的是有理数和绝对值,掌握正分数、正整数、整数、有理数的概念是解决此题关键.12.17-,018%,112,4.5,2277【分析】根据有理数的定义与分类求解即可.【详解】解:在18%,112,4.5,17-,0,227,π2,56-中,整数是17-,0,正分数是18%,112,4.5,227;有理数有7个.故答案为:17-,0;18%,112,4.5,227;7.【点睛】本题考查了有理数的分类,掌握有理数的分类与定义是解题的关键.有理数是整数(正整数、0、负整数)和分数的统称.13.千米【分析】根据长度单位的认识即可求解.【详解】解:2018年10月26日,全世界最长的跨海大桥-港珠澳大桥正式通车,其全长为55千米.故答案为:千米.【点睛】考查了数学常识,关键是熟悉长度单位.14.见解析【分析】根据有理数的分类填写即可.有理数是整数(正整数、0、负整数)和分数的统称.【详解】解:如图【点睛】本题考查了有理数的分类,掌握有理数的定义与分类是解题的关键.15.(1)37+,0.8,12,17%,0.4(2)-2,12,0(3)37+,0.8,-2.1,375-,17%,0.4(4)-2,-2.1,3 75 -(5)12(6)-2.1,3 75 -【分析】根据有理数的定义及分类解答.(1)解:正数集合:{ 37+,0.8,12,17%,0.4 } (2)整数集合:{ -2,12,0 }(3)分数集合:{ 37+,0.8, -2.1,375-,17%,0.4 } (4)负数集合:{ -2, -2.1,375- } (5)正整数集合:{ 12 }(6)负分数集合:{ -2.1,375- } 【点睛】本题考查有理数及其分类,是基础考点,掌握相关知识是解题关键.16.(1)36x =,28b =-;(2)34;(3)有理【分析】(1)根据平方根性质,得()2421a a -=+-,通过求解一元一次方程,得a 的值,根据乘方的性质,计算得x ;根据立方根的性质,得()31327b +=-=-,通过求解方程即可得到答案;(2)结合题意,根据算术平方根、实数大小比较的性质,得2c =;再根据代数式的性质计算,即可得到答案;(3)结合题意,根据算术平方根和实数分类的性质分析,即可得到答案.【详解】(1)根据题意,得()2421a a -=+-℃4a =℃()2236x a =+=℃1b +的立方根为-3℃()31327b +=-=-℃28b =-;(2)℃c ,即23<<℃2c =℃()428234a b c -+=--+=故答案为:34;(34==故答案为:有理.【点睛】本题考查了平方根、立方根、一元一次方程、乘方、算术平方根、代数式、实数的知识;解题的关键是熟练掌握平方根、立方根、一元一次方程、代数式、实数分类的性质,从而完成求解.17.(1)3,2,0(2)见解析【分析】(1)根据有理数的分类进行分类即可;(2)根据数轴的定义,将数据表示在数轴即可.(1)解:整数有0,+5,﹣4共3个,负分数有﹣2.5,﹣12共2个,既不是正数也不是负数的是0.故答案为:3,2,0;(2)解:如图,【点睛】本题考查了有理数的分类和数轴表示数,解题的关键是掌握有理数的分类和用数轴表示数的方法.。

2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)

2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)

2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)1.下列选项中具有相反意义的量是()A.胜1局和亏损2万元B.向东行驶5km与向北行驶10kmC.运进6kg苹果与卖完5kg苹果D.水位上升0.6米与水位下降1米2.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向西走80米记作“−80米”,那么向东走40米记作()A.+40米B.+80米C.−80米D.−40米3.人体的正常体温大约为36.5℃,如果低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作()A.−0.8℃B.+0.8℃C.−37.3℃D.+37.3℃4.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果收入100元记作+100,那么−40表示为()A.收入40元B.支出40元C.收入60元D.支出60元5.下列说法中不正确的是()A.任何一个有理数都可以用数轴上的一个点表示B.一个负数的绝对值等于它的相反数C.在数轴上,到原点距离越远的点所表示的数一定越大D.任何有理数都有相反数6.古人都讲“四十不惑”,如果以40岁为基,张明60岁,记为+20岁,那么王横25岁,记为()A.25岁B.−25岁C.−15岁D.+15岁7.一袋面粉的标准质量是15kg,如果把一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为()A.−14.7kg B.+14.7kg C.-0.3kg D.+0.3kg8.下列各数中,最小的数是().A.1B.2C.−12D.−39.下列各数中是负数的是()A.−3B.−(−1)C.0D.−210.在下列数−56,+1,6.7,0,722,−5,25%中整数有()A.2个B.3个C.4个D.5个11.下列四个数在数轴上表示的点,距离原点最近的是()A.−1B.−1.5C.+0.5D.+112.下列比较大小正确的是()A.−3=−−73B.−56<−45C.−−21<+−21D.−|−10|>813.下列各组数中,互为相反数的一组是()A.+−2和−+2B.−−2和+2C.−−2和−2D.−+2和−+214.下列化简正确的是()A.−+2=2B.−−2=−2C.+−2=−2D.−+2=2 15.在−1,0,53,−6.8和2024这五个有理数中,正数有()A.1个B.2个C.3个D.4个16.在−2,0,3.14,102,3,−−2021,100%中,非负整数的个数有()A.2个B.3个C.4个D.5个17.如果在数轴上A点表示−3,那么在数轴上与点A距离2个长度单位的点所表示的数是()A.−1B.−1和−5C.+1或−5D.−518.液体沸腾时的温度叫做沸点,下表是几种物质在标准大气压下的沸点,则沸点最低的物质是()物质酒精液态甲醛液态一氧化碳花生油沸点/℃78−19.5−191.5335A.液态一氧化碳B.液态甲醛C.酒精D.花生油19.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.+0.9B.−3.5C.−0.5D.+2.520.实数a、b在数轴上的位置如图所示,则下列结论正确的是()A.>B.−>−C.>D.−>−参考答案1.解:A、胜1局和亏损2万元不具有相反意义的量,故选项不合题意;B、向东行驶5km与向北行驶10km不具有相反意义的量,故选项不合题意;C、运进6kg苹果与卖完5kg苹果不具有相反意义的量,故选项不合题意;D、水位上升0.6米与水位下降1米是一对意义相反的量,故选项符合题意.故选:D.2.解:∵向东走与向西走是一对意义相反的量,∴如果向西走80米记作“−80米”,∴向东走40米记作+40米,故选:A.3.解:体温低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作+0.8℃,故选:B.4.解:如果收入100元记作+100,那么−40表示为支出40元.故选:B.5.解:∵实数与数轴上的点一一对应,故选项A正确;∵负数的绝对值等于它的相反数,∴一个负数的绝对值等于它的相反数,故选项B正确;∵在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,故选项C不正确;∵任何有理数都有相反数,故选项D正确.故选:C.6.解:由题意得:王横25岁,记为−15岁,故选:C.7.解:一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为-0.3kg.故选:C.8.解:∵−3<−12<1<2,∴所给的各数中,最小的数是−3.故选:D9.解:A.−3=3是正数,不符合题意;B.−(−1)=1是正数,不符合题意;C.0既不是正数,也不是负数,不符合题意;D.−2是负数,符合题意;故选:D.10.解:−56,+1,6.7,0,722,−5,25%中整数有:+1,0,−5,共3个,故选:B.11.解:∵−1=1,−1.5=1.5,+0.5=0.5,+1=1,∴−1.5>−1=+1>+0.5,∴+0.5的位置距离原点最近,故选:C.12.解:A、∵−=−723,−−7=723,∴−<−−7符合题意;B、∵−=56=2530,−=45=2430,∴−56<−45,故本选项正确,符合题意;C、∵−−21=21,+−21=−21,∴−−21>+−21,故本选项错误,不符合题意;D、∵−|−10|=−10,∴−|−10|<8,故本选项错误,不符合题意.故选:B.13.解:A、+−2=−2,−+2=−2,故两数不是相反数,不符合题意;B、−−2=−2,+2=2,两数互为相反数,符合题意;C、−−2=2,−2=2,故两数不是相反数,不符合题意;D、−+2=−2,−+2=−2,故两数不是相反数,不符合题意.故选:B.14.解:A、−+2=−2,此选项化简错误,不符合题意;B、−−2=2,此选项化简错误,不符合题意;C、+−2=−2,此选项化简正确,符合题意;D、−+2=−2,此选项化简错误,不符合题意;故选:C.15.解:正数有:53和2024,有2个正数.故选B.16.解:−2为负数,不符合题意;0为非负整数,符合题意;3.14为小数,不符合题意;102=5为非负整数,符合题意;3为小数,不符合题意;−−2021=2021为非负整数,符合题意;100%=1为非负整数,符合题意;综上所述,非负整数的个数有4个,故选:C.17.解:如图所示,∴在数轴上与点A距离2个长度单位的点所表示的数是−1和−5.故选B.18.解:∵−191.5>−19.5,∴−191.5<−19.5<78<335,∴沸点最低的液体是液态一氧化碳.故选A.19.解:+0.9=0.9,−3.5=3.5,−0.5=0.5,+2.5=2.5,∵0.5<0.9<2.5<3.5,∴从轻重的角度看,最接近标准的是−0.5,故选:C.20.解:由图可得:0<<,且|U<|U,∴A、<,故此选项不符合题意;B、−>−,故此选项符合题意;C、|U<|U,故此选项不符合题意;D、|−U<|−U,故此选项不符合题意;故选:B.。

人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)

人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)

1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学有理数练习题(附答案)
以下是查字典数学网为您推荐的七年级数学有理数练习题(附答案),希望本篇文章对您学习有所帮助。

七年级数学有理数练习题(附答案)
一、判断
1、自然数是整数。

﹝﹞
2、有理数包括正数和负数。

﹝﹞
3、有理数只有正数和负数。

﹝﹞
4、零是自然数。

﹝﹞
5、正整数包括零和自然数。

﹝﹞
6、正整数是自然数,﹝﹞
7、任何分数都是有理数。

﹝﹞
8、没有最大的有理数。

﹝﹞
9、有最小的有理数。

﹝﹞
二、填空
1、某日,泰山的气温中午12点为5℃,到晚上8点下降了6℃.那么这天晚上8 点的气温为。

2 、如果零上28度记作280C,那么零下5度记作
3、若上升10m记作10m,那么-3m表示
4、比海平面低20m的地方,它的高度记作海拔
三、选择题
5、在-3,-1 ,0,- ,2019各数中,是正数的有( )
A、0个
B、1个
C、2个
D、3个
6、下列既不是正数又不是负数的是( )
A、-1
B、+3
C、0.12
D、0
7、飞机上升-30米,实际上就是( )
A、上升30米
B、下降30米
C、下降- 30米
D、先上升30米,再下降30米。

8、下列说法正确的是( )
A、整数就是正整数和负整数
B、分数包括正分数、负分数
C、正有理数和负有理数组成全体有理数
D、一个数不是正数就是负数。

9、下列一定是有理数的是( )
A、B、a C、a+2 D、
四、把下列各数填在表示集合的相应大括号中:
+6,-8,-0.4,25,0,- ,9. 15,1
整数集合﹛﹜
分数集合﹛﹜
非负数集合﹛﹜
正数集合﹛﹜
负数集合﹛﹜
五、解答题
1 、博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了
一台空调,又该怎样记录这笔支出呢?
2 、周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌
情况如下表:单位:元
日期周二周三周四周五
开盘+0.16 +0. 25 +0.78 +2.12
收盘-0.23 -1.32 -0.67 -0. 65
当日收盘价
试在表中填写周二到周五该股票的收盘价.
3、春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.
六、探究创新
1、一种零件的直径尺寸在图纸上是30 (单位:mm ),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( )
A、0.03
B、0.02
C、30.03
D、29.98
2、甲潜水员在海平面-50米作业,乙潜水员在海平面-28米作业,哪个离海平面比较近?近多少?
3、某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?
参考答案:
一、1、2、3、4、5、6、7、8、9、
二、1、-1℃ 2、- 5度3、下降3m 4、20m
三、5、B 6、D 7、B 8、B 9、D
四、略
五、1、收入4800元记作+4800元
2、3略
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

六、1、C 2、乙潜水员离海平面比较近,近22 米。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学
的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

3、一月份超额完成计划-50t ,二月份超额完成计划0t ,三月份超额完成计划100t 。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很
快。

相关文档
最新文档