小专题(一)-一元二次方程的解法

合集下载

一元二次方程专题复习

一元二次方程专题复习

一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理一元二次方程的解法及韦达定理编号:撰写人:审核:一、一元二次方程的解法:例题1:用配方法、因式分解、公式法解方程:x2-5x+6=0【一元二次方程的解法总结】1、直接法:对于形如—x2=a的方程,我们可以用直接法。

方程的解为x=推论:对于形如(x+a)2=b的方程也是用直接开方的方法。

注意点:①二次项的系数为1,且a≥0②如果a为根式,注意化简。

例1:解方程:5x2=1例2:解方程:x2=4例3:解方程:4x 2+12x+9=122、配方法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们可以采用配方法的方法来解。

步骤:①把二次项的系数化为1.两边同时除以a ,可以得到:X 2+ b a x+ c a=0 ②配方:(x+ 2ba )2+c- 2()2b a =0③移项:(x+ 2ba )2=2()2b a -c ④用直接法求出方程的解。

X=-2b a注意点:解除方程的解后,要检查根号内是否要进一步化简。

例:解方程:x 2+x=13、公式法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们也可以采用公式法的方法来解。

根据配方法,我们可以得到方程的解为:X=-2b a进一步变形,就可以知道:形如:ax 2+bx+c=0(其中a ≠0)的方程的解为:x1x2注意点:①解除方程的解后,要检查根号内是否要进一步化简。

②解题步骤要规范。

例:解方程:x2+5x+2=0除了以上几种教材里的方法,一元二次方程还有其他的解法。

4、换元法对于一个方程,如果在结构上有某种特殊的相似性,可以考虑用换元法;或者,当这个题目有比较复杂的根式,换元法也是可以考虑的解法。

例1:解方程:(x2+5x+2)2+(x2+5x+2)-2=0例2:=15、有理化方法:对于一个方程,如果含有两个根式,并且这两个根式内的整式的和或者差是特定的数值,那就可以考虑用有理化的方法。

例:=46、主元法:对于一个方程,如果有两个未知数,那么,我们可以确定其中的一个为“主元“,将另一个未知数设定为常数,用公式法可以解出结果。

培优专题01 一元二次方程的解法-解析版

培优专题01 一元二次方程的解法-解析版

培优专题01 一元二次方程的解法◎方法一直接开平方法(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,.对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a(2)直接开平方法适用于解形如x2 = p或(mx+a)2 = p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

1.(2022·浙江绍兴·八年级期末)一元二次方程x2 -1=0的根是()A.x1=x2=1B.x1=1,x2=-1C.x1=x2=-1D.x1=1,x2=0【答案】B【分析】先移项,再两边开平方即可.【详解】解:∵x2-1=0,∴x2=1,∴x=±1,即x1=-1,x2=1.故选:B.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.(2022·安徽滁州·八年级期末)如果关于x 的方程2(9)4x m -=+可以用直接开平方法求解,那么m 的取值范围是( )A .3m >B .3m ³C .4m >-D .4m ³-【答案】D【分析】根据直接开平方法求解可得.【详解】解:∵2(9)4x m -=+,且方程2(9)4x m -=+可以用直接开平方法求解,∴40m +³,∴4m ³-.故选:D .【点睛】此题主要考查了直接开平方法解一元二次方程,正确化简方程是解题关键.3.(2022·全国·九年级课时练习)关于x 的方程2x p =.(1)当0p >时,方程有__________的实数根;(2)当0p =时,方程有__________的实数根;(3)当0p <时,方程__________.4.(2022·安徽合肥·八年级期末)方程290x -=的解为______.5.(2022·全国·九年级单元测试)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成a cb d ,定义a cad bcb d=-,上述记号就叫做2阶行列式.(1)若21493xx=,求x的值.(2)若11611x xx x+-=-+,求x的值.◎方法二 配方法1、配方法的一般步骤可以总结为:一移、二除、三配、四开;2、把常数项移到等号的右边;3、方程两边都除以二次项系数;4、方程两边都加上一次项系数一半的平方,把左边配成完全平方式;5、若等号右边为非负数,直接开平方求出方程的解。

一元二次方程的解法公式法

一元二次方程的解法公式法

一元二次方程的解法公式法
一元二次方程解法公式法:
(一)定义:
一元二次方程是由一个方程组成的形式,其中包含一个独立的变量以
及平方项和恒等于零的常数。

(二)解法:
1. 首先,我们要用一元二次方程解法公式法来求解一元二次方程问题。

公式为:
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
2. 其次,我们把方程中的变量代入到公式中。

一般来说,方程的形式为:$$ax^2+bx+c=0$$
3. 最后,根据公式,可以得出$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
(三)特殊情况:
1. 一元二次方程的实数根有可能为两个相等的数,此时,解的形式会
变成$$x=\frac{-b}{2a}$$
2. 当$b^2-4ac=0$时,表示方程只有一个实数根,这时,解的形式可以
写作$$x=\frac{-b}{2a}$$
(四)应用:
1. 一元二次方程解法公式法可以用来求解各类一元或多元函数的极值。

例如,可以应用这一方法求解二次曲线的极值点、凸函数的极值点等。

2. 同时,一元二次方程解法公式法也可用于求解数学建模问题,包括
求解市场博弈问题、求解应用各类运筹学问题等等。

(五)益处:
1. 一元二次方程解法公式法比较简单明晰,容易理解,易于使用。

2. 可以让人们轻松地解决一元或多元函数求极值问题,以及市场博弈
问题和应用各类运筹学技术来解决复杂的数学问题。

3. 这种方法可以将复杂的数学问题转换为简单的方程,从而节省时间,提高工作效率。

一元二次方程的解

一元二次方程的解

一元二次方程的解一元二次方程是指只含有一个未知数的二次方程,通常的形式为:ax² + bx + c = 0,其中 a、b、c 分别为已知常数且a ≠ 0。

解一元二次方程的过程从古至今一直是数学领域中的重要问题,本文将介绍一元二次方程的解法和相关概念。

1. 一元二次方程的解法解一元二次方程可以使用多种方法,包括公式法、配方法和因式分解法等。

下面将介绍其中两种常用的解法。

1.1 公式法公式法是解一元二次方程的基本方法,根据求根公式可以得到一元二次方程的解。

求根公式如下所示:x = (-b ±√(b² - 4ac)) / (2a)其中,√为平方根,±表示两个不同的解,分别是加号和减号形式。

对于一元二次方程 ax² + bx + c = 0,只需将 a、b、c 的值代入公式中即可求得解。

1.2 配方法当一元二次方程无法直接使用公式法解时,可采用配方法进行处理。

配方法的基本思想是通过变换将方程转化为完全平方形式,进而求得解。

首先,对一元二次方程的二次项和一次项进行配方,使其变成一个完全平方形式。

例如,对于方程 x² + 6x + 9 = 0,可以通过将一次项的系数除以 2,然后再平方,得到新的完全平方形式 (x + 3)² = 0。

接下来,利用开平方的性质求解方程。

对于上述方程,解为x = -3。

2. 一元二次方程的解的特点一元二次方程的解的特点包括判别式、重根和虚根。

2.1 判别式判别式是一个与一元二次方程的系数相关的数值,可用于判断方程的解的情况。

判别式的计算公式为Δ = b² - 4ac,其中Δ 表示判别式的值。

根据判别式的值与零的关系,可以分为以下三种情况:- 当Δ > 0 时,方程有两个不相等的实根;- 当Δ = 0 时,方程有两个相等的实根,也称为重根;- 当Δ < 0 时,方程没有实根,但有两个虚根。

专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤:(1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式;(2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式;(3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.1.用直接开平方法解下列方程:(1)x2-25=0; (2)4x2=1;(3)81x2-25=0; (4)(2y-3)2-64=0;(5)3(x+1)2=13; (6)(3x+2)2=25;(7)(x+1)2-4=0; (8)(2-x)2-9=0.方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法”(1)移项:使方程的左边为二次项和一次项,右边为常数项.(2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1.(3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式.(4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解.(5)求解:解所得到的一元一次方程,求出原方程的解.2.用配方法解下列方程:(1)x2-2x-2=0; (2)x2-10x+29=0;(3)x2+2x=2; (4)x2-6x+1=2x-15;3.用配方法解下列方程:(1)3x 2+6x -5=0; (2)12x 2-6x -7=0.(3)x 2+16x -13=0; (4)2x 2-3x -6=0;方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解用因式分解法解一元二次方程的“四步法”(“右化零,左分解,两因式,各求解”)4.用因式分解法解下列方程:(1)x 2-8x =0; (2)5x 2+20x +20=0;。

九年级数学人教版(上册)小专题1 一元二次方程的解法

九年级数学人教版(上册)小专题1 一元二次方程的解法

17 .
综上所述,原方程的解为
x1

-1+ 2
5
,x2=
-1- 2
5,x3=
-1+ 2
17,x4=-1-2
17 .
(2)已知实数 a,b 满足(a2+b2)2-3(a2+b2)-10=0,试求 a2+b2 的值.
解:设 x=a2+b2,则 x2-3x-10=0,且 x>0. ∴(x-5)(x+2)=0. 解得 x1=5,x2=-2(舍去). 故 a2+b2=5.
(1)解方程:(x2+x)2-5(x2+x)+4=0. 解:设 y=x2+x,则原方程整理为 y2-5y+4=0, ∴(y-1)(y-4)=0.
解得 y1=1,y2=4.
当 y=x2+x=1,即 x2+x-1=0 时,
解得 xБайду номын сангаас-12±
5 .
当 y=x2+x=4,即 x2+x-4=0 时,
解得 x=-1±2
(3)(3x-1)2=(x-1)2. 解:3x-1=x-1 或 3x-1=1-x. ∴x1=0,x2=12.
(4)(2x+1)(2x-1)=2 2x. 解:原方程可化为 4x2-2 2x-1=0,
a=4,b=-2 2,c=-1,
Δ=b2-4ac=8-4×4×(-1)=24>0,
∴x=-b± 2ba2-4ac=2
第二十一章 一元二次方程
小专题1 一元二次方程的解法
1.用合适的方法解一元二次方程: (1)x2-6x-9 991=0. 解:x2-6x=9 991. x2-6x+9=10 000. (x-3)2=10 000. x-3=±100. x1=103,x2=-97.
(2)x(x+1)-3x-3=0. 解:x(x+1)-3(x+1)=0, (x+1)(x-3)=0, ∴x+1=0 或 x-3=0. ∴x1=-1,x2=3.

-一元二次方程的解法(全)

-一元二次方程的解法(全)
2 2 2 配方,得x 4 x 3 1 1. 2 3 5 32 5 2 xx 1. x .所以 2) 即x 即 4x 4 1. 所以( 2 4 2 2 所以x 2 1或x 2 1. 3 5 所以 x 所以x1 3或 x2 2 1. 2 . 3 5 3 5 即x1 ,x1 . 2 2
2
此方程无解。
方程
ax c 0 a 0 一定有解吗?
2
2
c a0 x a ;
1当
c a
0时,方程的根是 x ;
c a
2当
c a
0时,原方程无实数根。
2 2
提问:下列方程有解吗?
(1) x 4 3; (2) 3x 1 3;
2
可见,上面的 2 x 4 实际 上就是求4的平 方根。
x 4 x 2 x1 2 ; x2 2
以上解某些一元二次方程的方法叫 做直接开平方法。
初试锋芒
用直接开平方法解下列方程:
(1) y 121 0 ;
2
将方程化成
(2) x 2 0 (3)
2
x b
2
(b≥0)的形 式,再求解
归纳 小结
用直接开平方法可解下列类型 的一元二次方程:
x b b 0 或
2
x a
2
b b 0 .
根据平方根的定义,要特别注意: 由于负数没有平方根, 所以,当b<0时,原方程无解。
(第2课时)
知识回顾
用直接开平方法可解下列类型的一元二次方程:
x b b 0 或
共同回顾:一元二次方程
只含有一个未知数,并且未知数的最 高次数是2的整式方程叫做一元二次方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题(一)一元二次方程的解法
1.用直接开平方法解下列方程:
(1)x2-16=0;(2)3x2-27=0;
(3)(x-2)2=9;(4)(2y-3)2=16.
2.用配方法解下列方程:
(1)x2-4x-1=0;
(2)2x2-4x-8=0;
(3)3x2-6x+4=0;
(4)2x2+7x+3=0.
3.用公式法解下列方程:
(1)x2-23x+3=0;
(2)-3x2+5x+2=0;
(3)4x2+3x-2=0;
(4)3x=2(x+1)(x-1).
4.用因式分解法解下列方程:
(1)x2-3x=0;
(2)(x-3)2-9=0;
(3)(3x-2)2+(2-3x)=0;
(4)2(t-1)2+8t=0;
(5)3x+15=-2x2-10x;
(6)x2-3x=(2-x)(x-3).
5.用合适的方法解下列方程:
(1)4(x-3)2-25(x-2)2=0;
(2)5(x-3)2=x2-9;
(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3.
(3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1.
(4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12.
2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5.
(2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5.
(3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵
实数的平方不可能是负数,∴原方程无实数根.
(4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516.
直接开平方,得x +74=±54.∴x 1=-12,x 2=-3.
3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1
= 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13.
(3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418
. (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(-
2)=11>0,∴x =3±1122
=6±224.∴x 1=6+224,x 2=6-224.
(2)∵(x -3)2-32=0,∴(x -3+3)(x -3-3)=0.∴x(x -6)=0.∴x =0或x -6=0.∴x 1=0,x 2=6.
(3)原方程可化为(3x -2)2-(3x -2)=0,∴(3x -2)(3x -2-1)=0.∴3x -2=0或3x -3=0,∴x 1=23,x 2=1. (4)原方程可化为2t 2+4t +2=0.∴t 2-2t +1=0.∴(t -1)2=0,∴t 1=t 2=1. (5)移项,得3x +15+(2x 2+10x)=0,∴3(x +5)+2x(x +5)=0,即(x +5)(3+2x)=0.∴x +5=0或3+2x =0.∴x 1=
-5,x 2=-32.
(6)原方程可化为x(x -3)=(2-x)(x -3).移项,得x(x -3)-(2-x)(x -3)=0.∴(x -3)(2x -2)=0.∴x -3=0或2x -2=0.∴x 1=3,x 2=1.
5.(1)变形为[2(x -3)]2-[5(x -2)]2=0,即(2x -6)2-(5x -10)2=0.∴(2x -6+5x -10)(2x -6-5x +10)=0,即(7x -16)(-
3x +4)=0.∴x 1=167,x 2=43.
(2)5(x -3)2=(x +3)(x -3),整理得5(x -3)2-(x +3)(x -3)=0.∴(x -3)[5(x -3)-(x +3)]=0,即(x -3)(4x -18)=0.∴x
-3=0或4x -18=0.∴x 1=3,x 2=92.
(3)方程两边都乘以8,得8t 2-42t +1=0,∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0.∴t =-(-42)±02×8=24.∴t 1=t 2=24.。

相关文档
最新文档