一元二次方程及解法经典习题及解析

合集下载

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

一元二次方程解法判别式练习题(附答案)

一元二次方程解法判别式练习题(附答案)

一元二次方程解法判别式练习题A.2m =±B.2m =C.2m =-D.2m ≠±B.2112y ⎛⎫-= ⎪⎝⎭D.21324y ⎛⎫-= ⎪⎝⎭ 3.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >-B.18a ≥-C. 18a >-且1a ≠D. 18a ≥-且1a ≠4.方程5(3)3(3)x x x +=+的解为( )A.123,35x x ==B.35x = C.123,35x x =-=- D.123,35x x ==- 5.抛物线23(2)5y x =-+的顶点坐标是( ) A.(2,5)- B.(2,5)-- C.(2,5) D.(2,5)-6.将抛物线22(4)1y x =--先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A.221y x =+B.223y x =-C.22(8)1y x =-+D.22(8)3y x =-- 7.二次函数22(2)1y x =+-的图象是( )A. B. C. D. 8.一元二次方程231=25x x -+两实数根的和与积分别是( )9.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是( ) A. B. C.D. 10.抛物线22212,2,2y x y x y x ==-=的共同性质是( ) A.开口向上B.对称轴是y 轴C.都有最高点D. y 随x 的增大而增大11.若三角形的两边长分别是4和6,第三边的长是方程2560x x -+=的一个根,则这个三角形的周长是( )A.13B.16C.12或13D.11或1612.已知一元二次方程2(3)1x -=的两个解恰好分别是等腰三角形ABC 的底边长和腰长,则ABC △的周长为( )A.10B.10或8C.9D.813.下列一元二次方程中,有两个不相等实数根的是( )A.2690x x ++=B.2x x =C.232x x +=D. 2(1)10x -+=14.已知x 为实数,且满足222(3)2(3)30x x x x +++-=,那么23x x +的值为( )A.1B.3-或1C.3D.1-或315.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A.16(12)25x +=B.25(12)16x -=C.216(1)25x +=D.225(1)16x -=16.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每名同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意可列出的方程是( )A.(1)210x x +=B.(1)210x x -=C.2(1)210x x -=参考答案1.答案:B方程,故2m =2.答案:B3.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 4.答案:D解析:移项得5(3)3(3)0x x x +-+=,将方程等号左边因式分解得(53)(3)0x x -+=,所以530x -=或30x +=,解得123,35x x ==-. 5.答案:C解析:因为23(2)5y x =-+为抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,5).故选C.6.答案:A解析:根据抛物线的平移规律“左加右减,上加下减”可得,平移后的抛物线的解析式为22(44)12y x =-+-+,即221y x =+.7.答案:C解析:20a =>,∴抛物线开口方向向上.二次函数的解析式为22(2)1y x =+-,∴顶点坐标为(2,1)--,对称轴为2x =-.故选C.8.答案:B解析:设这个一元二次方程的两个根分别为12,x x ,方程23125x x -=+化为一元二次方程的一般形式为23260x x --=,326a b c ==-=-,,,12122262333b c x x x x a a --∴+=-===-=,=.故选B9.答案:C解析:二次函数的图象开口向上,一次函数的图象与y 轴的交点为(0,2).当0a <时,二次函数的图象顶点在y 轴负半轴上,一次函数的图象经过第一、二、四象限;当0a >时,二次函数的图象顶点在y 轴正半轴上,一次函数的图象经过第一、二、三象限.10.答案:B解析:三条抛物线的开口方向分别为向上、向下、向上,故选项A 错误;三条抛物线的对称轴均为y 轴,故选项B 正确;三条抛物线分别有最低点、最高点、最低点,故选项C 错误;易知选项D 错误.11.答案:A解析:2560x x -+=,(3)(2)0x x ∴--=解得123,2x x ==.三角形的两边长分别是4和6,当3x =时,346+>,能组成三角形,当2x =时,246+=,不能组成三角形,∴这个三角形的第三边长是3,∴这个三角形的周长为46313++=,故选A.12.答案:A解析:解方程2(3)1x -=得124,2x x ==.所以当腰长为4,底边长为2时,其周长为44210++=;当腰长为2,底边长为4时,因为224+=,所以此时不能构成三角形.故选A. 13.答案:B解析:A 、2690x x ++=.264936360∆=-⨯=-=,方程有两个相等实数根;B 、2x x =20x x -=.2(1)41010.∆=--⨯⨯=>方程有两个不相等实数根;C 、232x x +=.2230x x -+=.2(2)41380.∆=--⨯⨯=-<方程无实根;D 、2(1)10x -+=.2(1)1x -=-,则方程无实根;故选:B .14.答案:A解析:设23y x x =+,则原方程可化为2230y y +-=,(3)(1)0y y +-=,解得123,1y y =-=231x x +=时,符合题意;233x x +=-时,2491230b ac ∆=-=-=-<,方程无实数根,不符题意,故选A.15.答案:D解析:一种药品原价每盒25元,两次降价的百分率都为x ,所以第一次降价后的价格用代数式表示为25(1)x -元,第二次降价后的价格用代数式表示为225(1)(1)25(1)x x x --=-元,根据题意可列方程为225(1)16x -=,故选D16.答案:B解析:该组共有x 名同学,则每名同学都要赠送()1x -本,因此可列方程为(1)210x x -=,故选B.。

一元二次方程求解方法及常见练习题

一元二次方程求解方法及常见练习题

一元二次方程求解方法及常见练习题一元二次方程求解方法
一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b、c
是已知常数,且a ≠ 0。

求解一元二次方程需要使用以下两种方法:方法一:公式法
一元二次方程的解可以通过使用求根公式得到。

求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)
其中 ±表示两个解,√ 表示开平方根。

方法二:配方法
配方法通过对一元二次方程进行配方来求解。

具体步骤如下:
1. 将方程形式转换为 a(x + p)^2 + q = 0 的形式,其中 p 和 q 是需要求解的常数;
2. 根据配方法公式,其中 A = a,B = 2ap,C = ap^2 + q,求解方程 Ax^2 + Bx + C = 0;
3. 求解完方程后,根据 (x + p)^2 = 0 的性质,得到一元二次方程的解。

常见练题
以下是一些常见的一元二次方程练题:
1. 求解方程 x^2 - 5x + 6 = 0;
2. 求解方程 2x^2 + 3x - 2 = 0;
3. 求解方程 4x^2 - 12x + 9 = 0;
4. 求解方程 x^2 + 4 = 0;
5. 求解方程 5x^2 - 2x + 1 = 0。

以上练题可以使用公式法或配方法来求解,根据个人喜好和题目特点选择合适的方法进行求解。

希望以上内容对你解决一元二次方程求解的问题有所帮助!。

解一元二次方程的-换元法例题讲解

解一元二次方程的-换元法例题讲解

△b2△b2△b2解一元二次方程的换元法一、知识回顾1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。

一元二次方程的标准式:a是二次项系数,b是一次项系数,c是常数项2、一元二次方程根的判别式(二次项系数不为0):“”读作“德尔塔”,在一元二次方程中=△b2-4ac=-4ac>0<====>方程有两个不相等的实数根,即:x1,x2=-4ac=0<====>方程有两个相等的实数根,即:x1=x2=-4ac<0<====>方程没有实数根。

二、典型例题例1:(2004·金华)方程(x23)25(3x2)+2=0,如果设x23=y,那么原方程可变形为()A.y2-5y+2=0B.y2+5y-2=0C.y2-5y-2=0 D.y2+5y+2=0分析:此题主要利用换元法变形,注意变形时3-x2与x2-3互为相反数,符号要变化.解答:∵x2-3=y∴3-x2=-y用y表示x后代入(x2-3)2-5(3-x2)+2=0得:y2+5y+2=0.故选D.________________________________________________________________________ _________________例2:已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.-5或1B.1C.5 D.5或-1分析:解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单解答:设x2+y2=t,t≥0,则原方程变形得(t+1)(t+3)=8,化简得:(t+5)(t-1)=0,解得:t1=-5,t2=1又t≥0∴t=1∴x2+y2的值为只能是1.故选B.________________________________________________________________________ _________________三、解题经验换元法在解特殊一元二次方程的时候用的特别多,也可以称为整体思想法,在数学中,整体思想是重要思想之一,因此我们要掌握。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习四◆基础知识作业1.利用求根公式解一元二次方程时,首先要把方程化为____________,确定__________的值,当__________时,把a ,b ,c 的值代入公式,x 1,2=_________________求得方程的解. 2、把方程4 —x 2 = 3x 化为ax 2 + bx + c = 0(a ≠0)形式为 ,则该方程的二次项系数、一次项系数和常数项分别为 。

3.方程3x 2-8=7x 化为一般形式是________,a =__________,b =__________,c =_________,方程的根x 1=_____,x 2=______.4、已知y=x 2-2x-3,当x= 时,y 的值是-3。

5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=06.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A.x 1、2=24312122⨯-±B.x 1、2=24312122⨯-±-C.x 1、2=24312122⨯+± D.x 1、2=32434)12()12(2⨯⨯⨯---±--7.方程21x x =+的根是( )A .x =B . 12x =C .x =D .12x -±= 8.方程x 2+(23+)x +6=0的解是( )A.x 1=1,x 2=6B.x 1=-1,x 2=-6C.x 1=2,x 2=3D.x 1=-2,x 2=-3 9.下列各数中,是方程x 2-(1+5)x +5=0的解的有( )①1+5 ②1-5 ③1 ④-5 A.0个 B.1个 C.2个D.3个10. 运用公式法解下列方程:(1)5x 2+2x -1=0 (2)x 2+6x +9=7◆能力方法作业11.方程2430x x ++=的根是 12.方程20(0)ax bx a +=≠的根是13.2x 2-2x -5=0的二根为x 1=_________,x 2=_________. 14.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________.15.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______. 16.下列说法正确的是( )A .一元二次方程的一般形式是20ax bx c ++=B .一元二次方程20ax bx c ++=的根是2b x a-±=C .方程2x x =的解是x =1D .方程(3)(2)0x x x +-=的根有三个 17.方程42560x x -+=的根是( )A .6,1B .2,3C .D .1± 18.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1B.4x 2+4x+54=0; C. 20x -= D.(x+2)(x-3)==-519、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于 ( ) A 、1B 、-1C 、0D 、220.若代数式x 2+5x +6与-x +1的值相等,则x 的值为( ) A.x 1=-1,x 2=-5 B.x 1=-6,x 2=1 C.x 1=-2,x 2=-3D.x =-121.解下列关于x 的方程:(1)x 2+2x -2=0 (2).3x 2+4x -7=0(3)(x +3)(x -1)=5 (4)(x -2)2+42x =022.解关于x 的方程2222x ax b a -=-23.若方程(m -2)x m2-5m+8+(m+3)x+5=0是一元二次方程,求m 的值24.已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. 求证:不论k 为何值,方程总有两不相等实数根.◆能力拓展与探究25.下列方程中有实数根的是( )(A)x 2+2x +3=0. (B)x 2+1=0. (C)x 2+3x +1=0. (D)111x x x =--. 26.已知m ,n 是关于x 的方程(k +1)x 2-x +1=0的两个实数根,且满足k +1=(m +1)(n +1),则实数k 的值是 .27. 已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>mB. 43≥mC. 43>m 且2≠mD. 43≥m 且2≠m答案1.一般形式 二次项系数、一次项系数、常数项 b 2-4ac ≥0 aacb b 242-±-2、x 2 + 3x —4=0, 1、3、—4; 3.3x 2-7x -8=0 3 -7 -84、0、2 5.A 6.D 7.B 8.D 9.B 10. (1)解:a =5,b =2,c =-1∴Δ=b 2-4ac =4+4×5×1=24>0 ∴x 1·2=56110242±-=±- ∴x 1=561,5612--=+-x (2).解:整理,得:x 2+6x +2=0 ∴a =1,b =6,c =2∴Δ=b 2-4ac =36-4×1×2=28>0 ∴x 1·2=2286±-=-3±7 ∴x 1=-3+7,x 2=-3-7 11.x 1=-1,x 2=-3 12.x 1=0,x 2=-b 13.4422+ 4422- 14. 240b c -≥ 15.1816.D 17.C . 18.B 19、A 20.A21. (1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 22.X=a+1b1 23.m=324.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根. 25. C 26. -2 27. C练习五第1题. (2005 南京课改)写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1: .答案:答案不惟一,例如:20x =,20x x -=等第2题. (2005 江西课改)方程220x x -=的解是 . 答案:1220x x ==,第3题. (2005 成都课改)方程290x -=的解是 .答案:3x =±第4题. (2005 广东课改)方程2x =的解是 .答案:120x x ==,第5题. (2005 深圳课改)方程22x x =的解是( )A.2x =B.1x =,20x =C.12x =,20x =D.0x =答案:C第6题. (2005 安徽课改)方程(3)3x x x +=+的解是( )A.1x = B.1203x x ==-, C.1213x x ==, D.1213x x ==-, 答案:D第7题. (2005 漳州大纲)方程22x x =的解是1x = 、2x = . 答案:1202x x ==,第8题. (2005江西大纲)若方程20x m -=有整数根,则m 的值可以是 (只填一个).答案:如0149m =,,,,第9题. (2005济南大纲)若关于x 的方程210x kx ++=的一根为2,则另一根为 ,k 的值为 .答案:1522-,第10题. (2005 上海大纲)已知一元二次方程有一个根为1,那么这个方程可以是______________(只需写出一个方程).答案:20x x -=第11题. (2005 海南课改)方程042=-x 的根是( )A. 1222x x ==-,B. 4=xC. 2=xD. 2-=x 答案:A第12题. (2005 江西淮安大纲)方程24x x =的解是 .答案:0或4第13题. (2005 兰州大纲)已知m 是方程210x x --=的一个根,则代数2m m -的值等于( )A.-1 B.0 C.1 D.2答案:C练习六第1题. (2007甘肃兰州课改,4分)下列方程中是一元二次方程的是( ) A.210x +=B.21y x +=C.210x +=D.211x x+= 答案:C第2题. (2007甘肃白银3市非课改,4分)已知x =-1是方程012=++mx x 的一个根,则m = .答案:2第3题. (2007海南课改,3分)已知关于x 的方程0322=++m mx x 的一个根是1=x ,那么=m .答案:253±-第4题. (2007黑龙江哈尔滨课改,3分)下列说法中,正确的说法有( ) ①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③依次连接任意一个四边形各边中点所得的四边形是平行四边形; ④一元一次不等式2511x +<的正整数解有3个; ⑤在数据1,3,3,0,2中,众数是3,中位数是3. A .1个 B .2个 C .3个 D .4个答案:B第5题. (2007湖北武汉课改,3分)如果2是一元二次方程2x c =的一个根,那么常数c 是( )A.2 B.2-C.4D.4-答案:C第6题. (2007湖北襄樊非课改,3分)已知关于x 的方程322x a +=的解是1a -,则a 的值为( ) A .1 B .35C .15D .1-答案:A第7题. (2007湖南株洲课改,6分)已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.答案:由1x =是一元二次方程2400ax bx +-=的一个解,得:40a b +=3分又a b ≠,得:22()()20222()2a b a b a b a ba b a b -+-+===-- 6分第8题. (2007山西课改,2分)若关于x 的方程220x x k ++=的一个根是0,则另一个根是.答案:2-。

解一元二次方程练习题(超经典含答案)

解一元二次方程练习题(超经典含答案)

第二十一章 一元二次方程21.2 解一元二次方程1.一元二次方程2360x -=的解是A .6x =B .6x =-C .16x =,26x =-D .1x =,2x =2.一元二次方程2x 2-5x -2=0的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.方程2x +x =0的解是A .x =±1B .x =0C .1x =0,2x =–1D .x =14.方程2x –8x +17=0的根的情况是A .两实数根的和为–8B .两实数根的积为17C .有两个相等的实数根D .没有实数根5.用配方法解下列方程时,配方正确的是A .方程x 2–6x –5=0,可化为(x –3)2=4B .方程y 2–2y –2017=0,可化为(y –1)2=2017C .方程a 2+8a +9=0,可化为(a +4)2=25D .方程2x 2–6x –7=0,可化为2323()24x -=6.一元二次方程x (x –3)=0根是A .x =3B .x =–3C .x 1=–3,x 2=0D .x 1=3,x 2=07.一元二次方程x 2+3x +2=0的两个根为A .1,–2B .–1,–2C .–1,2D .1,28.一元二次方程x 2–9=0的根是A .x =3B .x =–3C .x 1=3,x 2=–3D .x 1=9,x 2=–99.方程x 2–2=0的根是__________. 10.方程2(1)4x -=的根是__________.11.一元二次方程2360x x -=的解是__________.12.关于x 的一元二次方程(a –1)x 2+x +a 2–1=0的一个根为0,则a 的值为__________. 13.解方程:x 2+3x –2=0.14.解方程:2520x x -+=.15.解方程:x 2–10x +18=0.16.解方程:2510x x --=.17.关于x 的一元二次方程(a –1)x 2+x +a 2–1=0的一个根是0,则a 的值为A .1B .–1C .1或–1D .1218.三角形的两边长分别为3米和6米,第三边的长是方程x 2–6x +8=0的一个根,则这个三角形的周长为A .11B .12C .11或13D .1319.一元二次方程x 2+2x –3=0的两个根中,较小一个根为A .3B .–3C .–2D .–120.关于x 的方程kx 2+3x –1=0有实数根,则k 的取值范围是A .k ≤94B .k ≥–94且k ≠0 C .k ≥–94D .k >–94且k ≠0 21.关于x 的方程kx 2–2x –1=0有两个不相等的实数根,则k 的最小整数值为__________. 22.已知x 1,x 2是方程x 2+6x +3=0的两实数根,则2112x x x x +的值为__________. 23.关于x 的一元二次方程x 2+(m –2)x +m +1=0有两个相等的实数根,则m 的值是__________. 24.若关于x 的一元二次方程(a –1)x 2–x +1=0有实数根,则a 的取值范围为__________. 25.关于x 的一元二次方程220x x c ++=有两个不相等的实数根,写出一个满足条件的实数c 的值:c =__________.26.已知一元二次方程x 2+7x –1=0的两个实数根为α,β,则(α–1)(β–1)的值为__________. 27.若方程x 2–kx +6=0的两根分别比方程x 2+kx +6=0的两根大5,则k 的值是__________. 28.若关于x 的方程x 2–5x +k =0的一个根是0,则另一个根是__________,k =__________. 29.已知数轴上A 、B 两点对应的数分别是一元二次方程(x +1)(x –2)=0的两个根,则A 、B 两点间的距离是__________. 30.解关于x 的方程:bx 2–1=1–x 2(b ≠–1). 31.用适当方法解下列方程:2430x x --=.32.解方程:3x 2+2x +1=0.33.已知a、b分别是一元二次方程220170+-=的不相等的两根,求a2+2a+b的值.x x34.(2018·泰安市)一元二次方程根的情况是A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 35.(2018·桂林市)已知关于x的一元二次方程有两个相等的实根,则k的值为A.B.C.2或3 D.或36.(2018·湘潭市)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是A.m≥1 B.m≤1C.m>1 D.m<137.(2018·泰州市)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<038.(2018·眉山市)若α,β是一元二次方程3x2+2x-9=0的两根,则的值是A.B.-C.-D.39.(2018·宜宾市)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A .﹣2B .1C .2D .040.(2018·淮安市)一元二次方程x 2﹣x =0的根是__________.41.(2018·邵阳市)已知关于x 的方程x 2+3x ﹣m =0的一个解为﹣3,则它的另一个解是__________.42.(2018·聊城市)已知关于x 的方程(k ﹣1)x 2﹣2kx +k ﹣3=0有两个相等的实根,则k 的值是__________.43.(2018·内江市)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.44.(威海市2018)关于x 的一元二次方程(m ﹣5)x 2+2x +2=0有实根,则m 的最大整数解是__________.45.(2018·江西省)一元二次方程的两根为,则的值为__________. 46.(2018·德州市)若是一元二次方程的两个实数根,则=__________.47.(2018·南京市)设、是一元二次方程的两个根,且,则__________,__________.48.(2018·随州市)己知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围; (2)若1211=1x x +-,求k 的值.49.(2018·黄石市)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.50.(2018·成都市)若关于的一元二次方程有两个不相等的实数根,求的取值范围.3.【答案】C【解析】通过提取公因式法对等式的左边进行因式分解.由原方程得到:x (x +1)=0,解得1x =0,2x =–1.故选C . 4.【答案】D【解析】Δ=()28-–4×1×17=–4<0,由此可得出方程没有实数根.故选D . 5.【答案】D【解析】A ,由原方程得到:方程x 2–6x +32=5+32,可化为(x –3)2=14,故本选项错误;B ,由原方程得到:方程y 2–2y +12=2017+12,可化为(y –1)2=2018,故本选项错误;C ,由原方程得到:方程a 2+8a +42=–9+42,可化为(a +4)2=7,故本选项错误;D ,由原方程得到:方程x 2–3x +(32)2=72+(32)2,可化为2323()24x -=,故本选项正确.故选D . 6.【答案】D【解析】x (x –3)=0,可得x =0或x –3=0,解得:x 1=0,x 2=3.故选D . 7.【答案】B【解析】利用因式分解法解方程,即(x +1)(x +2)=0,可得x +1=0或x +2=0,所以x 1=–1,x 2=–2.故选B . 8.【答案】C【解析】∵x 2–9=0,∴x 2=9,∴x =±3,故选C .9.【答案】【解析】移项得x 2=2,∴x =.故答案为: 10.【答案】x 1=–1,x 2=3【解析】∵2(1)4x -=,∴x –1=–2或x –1=2,x 1=–1,x 2=3.故答案是:x 1=–1,x 2=3. 11.【答案】0x =或2x =【解析】由236=0x x -,得3(2)0x x -=,∴0x =或2x =.14.【答案】1x 2x =【解析】∵a =1,b =–5,c =2,∴224(5)412170b ac -=--⨯⨯=>,∴代入求根公式得,x ===,∴x 1,2x =.15.【答案】x 1,x 2=5【解析】∵x 2–10x +18=0,∴x 2–10x =–18,∴x 2–10x +25=7,∴(x –5)2=7,∴x –,∴x 1,x 2=5.16.【答案】1x =,2x = 【解析】∵2510x x --=,∴222555()()1022x x -+--=,∴2525()124x -=+,∴25254()244x -=+,∴52x -=,∴52x =±,即x =1x =2x = 17.【答案】B【解析】根据方程的解的定义,把x =0代入方程,即可得到关于a 的方程a 2–1=0且a –1≠0,解得:a =–1.故选B . 18.【答案】D【解析】∵x 2–6x +8=0,即(x –2)(x –4)=0,∴x –2=0或x –4=0,解得:x =2或x =4,若x =2,则三角形的三边2+3<6,构不成三角形,舍去;当x =4时,这个三角形的周长为3+4+6=13,故选D .21.【答案】1【解析】∵关于x 的一元二次方程kx 2–2x –1=0有两个不相等的实数根,∴k ≠0且Δ>0,即(–2)2–4×k ×(–1)>0,解得k >–1且k ≠0.∴k 的取值范围为k >–1且k ≠0.故k 的最小整数值为1. 22.【答案】10【解析】首先由判别式大于0可知方程存在两个不相等的实数根,根据根与系数的关系得到x 1+x 2=–6,x 1x 2=3,再运用通分和完全平方公式变形得到2112x x x x +=2121212()2x x x x x x +-然后利用整体代入的方法计算得,2112x x x x +366301033-===.故答案为:10. 23.【答案】0或8【解析】根据关于x 的一元二次方程x 2+(m –2)x +m +1=0有两个相等的实数根,可得,Δ=(m –2)2–4(m +1)=0,即m 2–8m =0,解得m =0或m =8. 24.【答案】a ≤54且a ≠1. 【解析】由题意得:Δ=(–1)2–4(a –1)×1≥0,解得a ≤54,又a –1≠0,∴a ≤54且a ≠1. 25.【答案】0(答案不唯一);【解析】∵方程有两个不相等的实数根,∴Δ=b 2–4ac =22–4c >0,解得:c <1,故答案为任意一个小于1的数均可以,比如:0.(答案不唯一)28.【答案】5,0【解析】根据一元二次方程的解,设方程的另一个根为t,根据题意得0+t=5,0⋅t=k,所以t=5,k=0.故答案为5,0.29.【答案】3【解析】∵一元二次方程(x+1)(x–2)=0的两个根是–1和2,∴对应数轴上的两点A、B的距离为3.故答案是:3.30.【答案】b>–1时,x b<–1时,方程无解.【解析】方程整理得:(b+1)x2=2,即x2=21b+(b≠–1,即b+1≠0),若b+1>0,即b>–1时,两边开平方得:x,即x若b+1<0,即b<–1时,方程无解.31.【答案】x12+,x2=2【解析】∵1a=,4b=-,3c=-,∴Δ=b2–4ac=16+12=28,∴2x==±x12+,x2=2.32.【答案】原方程没有实数根.【解析】∵a=3,b=2,c=1,∴b2–4ac=4–4×3×1=–8<0.∴原方程没有实数根.33.【答案】2016【解析】∵a、b是原方程的两个实数根,∴220170a a+-=,a+b=–1,∴22017a a+=,∴222a ab a a a b++=+++=2017+(–1)=2016.34.【答案】D【解析】(x +1)(x ﹣3)=2x ﹣5,整理得:x 2﹣2x ﹣3=2x ﹣5,则x 2﹣4x +2=0,(x ﹣2)2=2,解得:x 1=2+>3,x 2=2﹣,故有两个正根,且有一根大于3. 故选D .【名师点睛】本题主要考查了一元二次方程的解法,正确解方程是解题的关键.35.【答案】A 【解析】∵方程有两个相等的实根, ∴∆=k 2-4×2×3=k 2-24=0,解得:k =. 故选A .【名师点睛】本题考查了根的判别式,熟练掌握“当∆=0时,方程有两个相等的实数根”是解题的关键.36.【答案】D 【解析】∵方程有两个不相同的实数根,∴()2240m ∆=-->,解得m <1.故选D .【名师点睛】本题考查了根的判别式,牢记“当∆>0时,方程有两个不相等的实数根”是解题的关键.37.【答案】A【解析】∵∆=(﹣a )2﹣4×1×(﹣2)=a 2+8>0,∴x 1≠x 2,选项A 中的结论正确;∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1+x 2=a ,∵a 的值不确定,∴选项B 中的结论不一定正确;∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1•x 2=﹣2,选项C 中的结论错误;∵x 1•x 2=﹣2,∴x1<0,x2>0,选项D中的结论错误.故选A.【名师点睛】本题考查了根的判别式以及根与系数的关系,牢记“当 >0时,方程有两个不相等的实数根”是解题的关键.38.【答案】C【解析】∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选C.【名师点睛】本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.39.【答案】D【解析】∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴根据根与系数的关系,得x1x2=0.故选D.40.【答案】x1=0,x2=1【解析】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.41.【答案】0【解析】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为0.42.【答案】【解析】∵关于x的方程(k-1)x2-2kx+k-3=0有两个相等的实根,∴()()()21024130k k k k ∆-≠⎧⎪⎨=----=⎪⎩, 解得k =. 故答案为.44.【答案】m =4【解析】∵关于x 的一元二次方程(m ﹣5)x 2+2x +2=0有实根, ∴∆=4﹣8(m ﹣5)≥0,且m ﹣5≠0,解得m ≤5.5,且m ≠5,则m 的最大整数解是m =4.故答案为m =4.45.【答案】2 【解析】由题意得:+2=0,=2, ∴=-2,=4, ∴=-2+4=2, 故答案为2.46.【答案】−3【解析】由根与系数的关系可知:x 1+x 2=﹣1,x 1x 2=﹣2, ∴x 1+x 2+x 1x 2=﹣3故答案为﹣3.47.【答案】 ,【解析】∵、是一元二次方程的两个根, ∴, ∵, ∴m =1, ∴ 解得=−2,=3.故答案为:−2,3.48.【答案】(1)k >﹣;(2)k =3.【解析】(1)∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根, ∴∆=(2k +3)2﹣4k 2>0,解得:k >﹣;(2)∵x 1、x 2是方程x 2+(2k +3)x +k 2=0的实数根, ∴x 1+x 2=﹣2k ﹣3,x 1x 2=k 2, ∴12212121123=1x x k x x x x k +--+==-, 解得:k 1=3,k 2=﹣1,经检验,k 1=3,k 2=﹣1都是原分式方程的根,又∵k >﹣,∴k =3.49.【答案】(1)m <1;(2)0.【解析】(1)由题意得:∆=(﹣2)2﹣4×1×m =4﹣4m >0, 解得:m <1,即实数m 的取值范围是m <1;50.【答案】【解析】∵关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,∴∆=[−(2a+1)]2-4a2=4a+1>0,解得a>14 -.。

人教版初中九年级数学上册第二十一章《一元二次方程》经典习题(含答案解析)(3)

人教版初中九年级数学上册第二十一章《一元二次方程》经典习题(含答案解析)(3)

一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x米,则x 的值为()A.3 B.4 C.3或5 D.3或4.5D解析:D【分析】设AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(30−4x)=54,解此方程即可求得x的值.【详解】解:设与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=30−AD−MN−PQ−BC=30−4x(米),根据题意得:x(30−4x)=54,解得:x=3或x=4.5,AD的长为3或4.5米.故选:D.【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.用配方法解方程x2﹣6x﹣3=0,此方程可变形为()A.(x﹣3)2=3 B.(x﹣3)2=6C.(x+3)2=12 D.(x﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B 解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.6.下列一元二次方程中,没有实数根的是( )A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++=D 解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.7.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.8.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定C 解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案.【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8.∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C .【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0A 解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2D解析:D【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决.【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0,提公因式,得(x ﹣2)(x ﹣1)=0,∴x ﹣2=0或x ﹣1=0,解得x =2或x =1.故选:D .【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程. 二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.13.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.14.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x ,依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 15.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.16.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.17.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.18.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】 解:∵a ,b 是方程22430x x +-=的两根, ∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.19.若()22214x y +-=,则22x y +=________.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.20.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.三、解答题21.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?解析:(1)2或4;(2)2;(3)1082-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.22.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=解析:(1)1211==x x 2)1222t t =-=-3)1221x x ==,(4)12123x x ==-,. 【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.【详解】解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.23.解方程:y(y-1)+2y-2=0.解析:121,2y y ==-【分析】利用分解因式法解答即可.【详解】解:原方程可变形为:()()1210y y y -+-=,即()()120y y -+=,∴y -1=0或y +2=0,解得:121,2y y ==-.【点睛】本题考查了一元二次方程的解法,属于基础题目,熟练掌握求解的方法是关键. 24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:(2)小丽一次性购买这中服装付了1200元,请问她购买了多少件这种服装? 解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.解方程:(1)2237x x +=;(2)x(2x+5)=2x+5.解析:(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 27.解下列方程:(1)2320x x +-=(2)()220x x x -+-=解析:(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =. 【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键. 28.解下列方程:(1)x (x -1)=1-x(2)(x-3) 2 = (2x-1) (x +3)解析:(1)12x 1x -1==,;(2)12x 12x 1=-=,.【分析】(1)根据因式分解法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)x (x -1)=1-x方程整理,得,x (x ﹣1)+(x ﹣1)=0,因式分解,得,(x ﹣1)(x +1)=0于是,得,x ﹣1=0或x +1=0,解得x 1=1,x 2=﹣1;(2)(x-3) 2 = (2x-1) (x +3)方程整理,得,x 2+11x ﹣12=0因式分解,得,(x +12)(x ﹣1)=0于是,得,x +12=0或x ﹣1=0,解得x 1=﹣12,x 2=1.【点睛】本题考查了解一元二次方程,因式分解是解题关键.。

中考数学一元二次方程-经典压轴题及答案

中考数学一元二次方程-经典压轴题及答案

中考数学一元二次方程-经典压轴题及答案一、一元二次方程真题与模拟题分类汇编(难题易错题)21.解方程:(1-2x)(x2-6x+9)。

答案】x1=1/4,x2=-2/3.解析】题目分析:先对方程的右边因式分解,然后直接开平方或移项之后再因式分解法求解即可。

解题分析】因式分解,得到22(1-2x)=(x-3)。

开平方,得到1-2x=x-3,或1-2x=-(x-3)。

解得x1=1/4,x2=-2/3.2.已知关于x的一元二次方程mx-(m+2)x+2m-3=0.1)当m取什么值时,方程有两个不相等的实数根?2)当m=4时,求方程的解。

答案】(1)当m>-1且m≠0时,方程有两个不相等的实数根;(2)x1= (3+5)/4,x2= (3-5)/4.解析】分析】(1)方程有两个不相等的实数根,Δ>0,代入求m取值范围即可,注意二次项系数≠0;(2)将m=4代入原方程,求解即可。

详解】1) 当mx-(m+2)x+2m-3=0,即(m-2)x+2m-3=0.根据求根公式,得到Δ=(m+2)2-4m(m-2)=4m+4>0.因为m≠0,所以m>-1,解得m>-1.因为二次项系数≠0,所以m≠2,解得m≠2.所以当m>-1且m≠0时,方程有两个不相等的实数根。

2) 当m=4时,将m=4代入原方程,得到4x2-6x+1=0.根据求根公式,得到x1=(3+5)/4,x2=(3-5)/4.所以当m=4时,方程的解为x1=(3+5)/4,x2=(3-5)/4.点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是解决本题的关键。

3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到1344m2?答案】当x=13m时,活动区的面积达到1344m2.解析】分析】根据“活动区的面积=矩形空地面积-阴影区域面积”列出方程,可解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程及解法经典习题及解析
知识技能:
一、填空题:
1.下列方程中是一元二次方程的序号是 .
42x①
522yx② ③01332xx 052x④
5232xx⑤
412xx⑥
xxxxxx2)5(0143223。。。。⑧⑦
2.已知,关于2的方程12)5(2axxa是一元二次方程,则a
3.当k 时,方程05)3()4(22xkxk不是关于X的一元二次方程.
4.解一元二次方程的一般方法有 , , , ·
5.一元二次方程)0(02acbxax的求根公式为: .

6.(2004·沈阳市)方程0322xx的根是 .
7.不解方程,判断一元二次方程022632xxx的根的情况是 .
8.(2004·锦州市)若关于X的方程052kxx有实数根,则k的取值范围是 .

9.已知:当m 时,方程0)2()12(22mxmx有实数根.
10.关于x的方程0)4(2)1(222kkxxk的根的情况是 .
二、选择题:
11.(2004·北京市海淀区)若a的值使得1)2(422xaxx成立,则a的值为( )
A.5 8.4 C.3 D.2
12.把方程xx332化为02cbxax后,a、b、c的值分别为( )
3.3.0.A 3.3.1.B 3.3.1.C 3.3.1.D

13.方程02xx的解是( )
xA.=土1 0.xB 1,0.21xxC 1.xD
14.(2006·广安市)关于X的一元二次方程 有两个不相等的实数根,
则k的取值
范围是( )
1.kA 1.kB 0.kC 1.kD
且0k

15.(2006·广州市)一元二次方程0322xx的两个根分别为( )
3,1.21xxA 3,1.21xxB 3,1.21xxC 3,1.21xxD
16.解方程
.251212;0)23(3)32(;0179;072222xxxxxxx④③②①
较简便的方法是( )
A.依次为:开平方法、配方法、公式法、因式分解法
B.依次为:因式分解法、公式法、配方法、直接开平方法

①.C用直接开平方法,②④
用公式法,③用因式分解法

①.D用直接开平方法,②用公式法,③④
用因式分解法

17.(2004·云南省)用配方法解一元二次方程.0782xx则方程可变形为( )
9)4.(2xA 9)4.(2xB 16)8.(2xC 57)8.(2xD
18.一元二次方程012)1(2xxk有两个不相等的实数根,则k的取值范围是( )
2.kA 2.kB且1k 2.kC 2.kD
且1k

19.下列方程中有两个相等的实数根的方程是( )

09124.2xxA 032.2xxB

02.2xxC 072.2xxD
20.(2004·大连市)一元二次方程0422xx的根的情况是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
21.下列命题正确的是( )

xxA22.。
只有一个实根 111.2xxB有两个不等的实根

C.方程032x有两个相等的实根 D.方程04322xx无实根
三、解答题:
22.(2006·浙江省)解方程.222xx
23.用因式分解法解方程:.15)12(8)3(;05112)2(;015123)1(22xxxxxx
24.解关于2的方程:
);0(0)()()1(mxccxmx

).0(0)()2(2mnxnmmx

25.不解方程,判别下列方程根的情况.

5)3(2)1(xx
;0352)2(2xx

;04129)3(2xx .0)2()12)(4(2yyy
26.已知关于z的方程,03)12(22kxkx当k为何值时,
(1)方程有两个不相等的实数根?
(2)方程有两个相等的实数根?
(3)方程无实根?

27.已知:023242aaxx无实根,且a是实数,化简

.3612912422aaaa
28.k取何值时,方程0)4()1(2kxkx有两个相等的实数根?并求出这时方程的
根.
29.求证:关于2的方程013)32(2mxmx有两个不相等的实数根.

30.求证:无论k为何值,方程03)1(4)12(22kkxkx都没有实数根.
31.当cba是实数时,求证:方程0)()(22cabxbax必有两个实数根,并求两
根相等的条件.
32.如果关于z的一元二次方程06)4(22xmxx没有实数根,求m的最小整数值.

综合运用:

一、填空题:
33.方程01)1()3(24xmxmn是关于x的一元二次方程,则nm,
34.关于z的方程;1)32()2(2xxxmmx
(1)当m 时,这个方程是一元二次方程;
(2)当m 时,这个方程是一元一次方程.

35.已知方程1)12(2kxkx的根是,2x则k
二、选择题:
36.(2004·郴州市)方程0562xx的左边配成完全平方后所得方程为( )
14)3.(2xA 14)3.(2xB

2
1
)6.(2xC
D.以上答案都不对

37.已知:关于2的方程019)13(22mxmmx有两个实数根,则m的范围为( )

51.mA 5
1
.mB
且51.0mCm51.mD

38.已知a、b、c是ABC的三条边,且方程0)(2)(2baxabxbc有两个相
等实数根,那
么,这个三角形是( )
A.等边三角形 B.等腰三角形
C.直角三角形 D.等腰直角三角形

39.(2004·海南省)已知关于2的方程0)12(22mxmx有两个不相等的实数根,
那么m的
最大整数值是( )
2.A 1.B 0.C 1.D

三、解答题:
40.用因式分解法解下列方程:

0)3()3(4)1(2xxx
93)3(7)2(xxx

;25)1(16)3(2x .)32()23(25)4(22xx
41.解方程.04||52xx

42.(1)已知方程,091022yxyx求证:yx9或;yx
(2)已知方程,065422zxzx求证:zx2或.43zx
43.m为何值时,方程0)12(4)1(22mmxxm有两个不相等的实数根?
44.已知方程022)1(2mmxxm有实根,求m的取值范围.
45.若关于2的方程041)1(22axax有两个不相等的实数根,试化简代数式
.441912422aaaa
46、当m是什么整数时,0442xmx与0544422mmmxx的根都是整数?

47.求方程014934881141422yxyxyx的实数解.

48.设a、6、c为三角形的三条边长.求证:方程0)(222222cxacbxb无实根.
49.若方程0)(2)(2222222bcxcbxCa有两个相等的实数根,且a、b、c是
ABC
的三条边,求证:ABC是等腰三角形.

50.设m、k为有理数,当k为何值时,关于z的方程04234422kmmxmxx
的根为有理数?
51、已知关于x的一元二次方程.012kxx
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根分别为z,,X。,且满足,2121xxxx求k的值

相关文档
最新文档