实际问题与一元二次方程经典例题
一元二次方程与实际问题

应用题常见的几种类型:1. 增长率问题 [增长率公式:b x a =2)1( ]例:某工厂在两年内将机床年产量由400台提高到900台。
求增长率。
1、某种产品的成本在两年内从16元降至9元,求平均每年降低的百分率。
2、某工厂一月份产值为50万元,采用先进技术后,第一季度共获产值182万元,二、三月份 平均每月增长的百分率是多少?3、某林场第一年造林100亩,以后造林面积逐年增长,第二年、第三年共造林375亩,后两年平均每年的增长率是多少?4、十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率5、某商品连续两次降价10%后的价格为a 元,该商品的原价应为6、第一季度生产a 台,第二季度生产b 台,第二季度比第一季度增长的百分率?7、某工厂今年利润为a 万元,比去年增长10%,去年的利润为 万元。
2.面积问题 [提示:面积问题一定要画图分析]例:一张长方形铁皮,四个角各剪去一个边长为4cm的小正方形,再折起来做成一个无盖的小 盒子。
已知铁皮的长是宽的2倍,做成的小盒子的容积是1536cm 3,求长方形铁皮的长与宽 。
1、要建成一面积为130㎡的仓库,仓库的一边靠墙(墙宽16m ),并在与墙平行的一边开一个宽1m 的门,现有能围成32m 的木板。
求仓库的长与宽各是多少?2、两个正方形,小正方形的边长比大正方形的边长的一半多1cm ,大正方形的面积比小正方 形的面积的2倍还多4cm 2,求大、小两个正方形的边长。
3、要给一幅长30cm ,宽25cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的四分之一,设镜框边的宽度为xcm ,•则依据题 意列出的方程是_________. X2X3.定价问题[提示:单位利润×销量=总利润]例:某电视机专卖店出售一种新面市的电视机,平均每天售出50台,每台盈利400元。
为了扩大销售,增加利润,专卖店决定采取适当降价的措施。
一元二次方程与实际问题题型

一元二次方程与实际问题题型一元二次方程与实际问题题型是数学中常见的题目类型之一。
以下是一些实例,并给出了相应的答案:利率问题题目:小华将100元存入银行,年利率为2.25%,存期为2年。
请问小华到期后可以取出多少钱?设本金为P,年利率为r,存期为t年,到期后的总金额为A。
根据公式:A = P(1 + r)^t,代入数值解得:A = 104.5元。
投资问题题目:小李和小张分别投资了10万元和15万元,年回报率为5%,3年后的总资产为多少?设投资金额为P,年回报率为r,t年后总资产为A。
根据公式:A = P(1 + r)^t,代入数值解得:A = 16.4万元。
销售问题题目:某商品原价为100元,经过两次降价后售价为81元,每次降价的百分比相同。
请问每次降价的百分比是多少?设每次降价的百分比为x。
根据公式:原价*(1-百分比)^次数=现价,代入数值解得:x = 10%。
相遇问题题目:甲、乙两车分别从A、B两地同时出发相向而行,相遇时甲车比乙车多走了10公里。
已知甲车的速度为60公里/小时,乙车的速度为40公里/小时。
请问A、B两地之间的距离是多少?设相遇时的时间为t小时,A、B两地之间的距离为d公里。
根据公式:(60t + 40t) = d + 10,代入数值解得:d = 210公里。
追及问题题目:甲、乙两车同时从A、B两地出发相向而行,相遇后甲车继续前行到达B地比乙车迟到了1小时。
已知甲车的速度为60公里/小时,乙车的速度为40公里/小时。
请问A、B两地之间的距离是多少?设相遇时的时间为t小时,A、B两地之间的距离为d公里。
根据公式:(60t - 40t) = d,代入数值解得:d = 20公里。
实际问题与一元二次方程(传播问题)

x
1
2.要组织一场篮球联赛,赛制为单循环形式,即每两 队之间都赛一场,计划安排15场比赛,应邀请多少个 球队参加比赛? 3.要组织一场篮球联赛, 每两队之间都赛2场,计划 安排90场比赛,应邀请多少个球队参加比赛? 4.参加一次聚会的每两人都握了一次手,所有人共 握手10次,有多少人参加聚会?
…… ……
被 传 染 人
被 传 染 人
被 传 染 人
被 传 染 人
x
被传染人
x
被传染人
……
……
……
x
开始传染源
x
开始传染源
1
设每轮传染中平均一个人传染了x个人,
则第一轮的传染源有 1 人,有 x 人被传染, 第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
x+1+x(x+1) 人患 用代数式表示,第二轮后共____________ 了流感
x+1+x(x+1)=121
解方程,得 10 -12 (. 不合题意,舍去) _____, ______ x1 x2
10 答:平均一个人传染类问题是传播问题. 2,计算结果要符合问题的实际意义.
思考:如果按照这样的传播速度,n轮后 有多少人患流感?
(1 x)
实际问题与一元二次方程
(传播问题)
传播问题
例 1: 有一人患了流感 经过两轮传染后共 有121人患了流感, 每轮传染中平均一 个人传染了几个人?
设每轮传染中平均一个人传染了x个人,
则第一轮的传染源有 1 人,有 x 人被传染, 第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
被 传 染 人 被 传 染 人
中考中的实际问题与一元二次方程及答案

实际问题与一元二次方程(1)1.经过多年努力,广东省已经建立了比较完善的家庭经济困难学生资助政策体系,某校去年上半年发放给每个家庭经济困难学生390元,今年上半年发放了450元,设每半年发放的资助金额的平均增长率为x,则方程为?2.在某次聚会上,每两个人握一次手,所有人共握手10次,设有x人参加这次聚会,则可列出方程是?3.某房地产公司经过几年努力,开发建设住房面积由前年的4万平方米增加到今年的7万平方米,设这两年该房地产开发公司开发建设住房面积的年平均增长率为X,则可列出方程为?4.市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128,求这种药品平均每次降价的百分率是多少?5.某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250㎡因为准备工作不足,第一天少拆迁20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440㎡.(1)求该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数. 6.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后共有81台电脑被感染。
请问每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?7春游旅行社为吸引市民组团去广州旅行,推出了如下收费标准①如果人数不超过25人,人均旅游费用为1000元;②如果人数超过25人,每增加1人,人均旅游费降低20元,但人均旅游费用不得低于700元。
某单位组织员工去广州旅游,共支付给春秋旅行社旅游费用27000。
请问该单位这次共有多少名员工去广州旅游?8.某水果批发商场经销一种号称‘天然VC之王’和‘生命之果’的水果——樱桃,如果每千克盈利10元,每天可销售500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
九年级一元二次方程实际问题

九年级一元二次方程实际问题一、传播问题例:有一人患了流感,经过两轮传染后共有 121 人患了流感,每轮传染中平均一个人传染了几个人?解析:设每轮传染中平均一个人传染了x个人。
第一轮传染后,有x + 1个人患流感;第二轮传染后,有x(x + 1) + x + 1个人患流感。
则可列方程:1 + x + x(1 + x) = 1211 + x + x + x^2 = 121x^2 + 2x - 120 = 0(x + 12)(x - 10) = 0解得x_1 = 10,x_2 = -12(舍去)答:每轮传染中平均一个人传染了 10 个人。
二、增长率问题例:某工厂第一年的利润为 20 万元,第三年的利润为 y 万元。
假设每年的平均增长率为x,则 y 与 x 之间的函数关系式为?解析:第二年的利润为20(1 + x)万元,第三年的利润为20(1 + x)^2万元。
所以y = 20(1 + x)^2三、销售问题例:某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元。
为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。
经调查发现,如果每件衬衫每降价 1 元,商场平均每天可多售出 2 件。
若商场平均每天要盈利1200 元,每件衬衫应降价多少元?解析:设每件衬衫应降价x元。
每件利润为(40 - x)元,每天销售量为(20 + 2x)件。
则可列方程:(40 - x)(20 + 2x) = 1200800 + 80x - 20x - 2x^2 = 1200-2x^2 + 60x - 400 = 0x^2 - 30x + 200 = 0(x - 10)(x - 20) = 0解得x_1 = 10,x_2 = 20因为要尽快减少库存,所以x越大越好,故x = 20答:每件衬衫应降价 20 元。
四、面积问题例:用一块长 80cm,宽 60cm 的矩形薄钢片,在四个角上截去四个相同的边长为x cm 的小正方形,然后做成底面积为 1500cm²的没有盖的长方体盒子,求x的值。
一元二次方程与实际应用题

因为要尽量减少库存,且又要赚钱,所以x应取20,舍去x=10.
答:每件应降价20元.
1.某商场销售一批名牌衬衣,平均每天可售出20件,每件衬 衣盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商 场决定采取适当的降价措施.经调查发现,如果每件衬衣 降价10元,商场平均每天可多售出20件.若商场平均每天 盈利1232元,每件衬衣应降价多少元?
2t)
2 22
22
= 2 t(cm).所以S2=PD·DF= t(8 - t )(cm2).又因为S1=2S2,所以8t=2 t(8 t),解得t=0(不合题意,舍去)或t=6.]
然后利用面积公式列出方程.
3.(2015·武汉六中模拟)如图所示,某旅游景点要在长、宽分别为
20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正
方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度 相面等积的之道和路是矩,已形知水道池路面的积宽的为正16 方,求形道边路长的的宽14. .若道路与观赏亭的
要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
〔解析〕此题属于利润问题,可设每件童装降价x元,则每件所得利润为(40-x)
元,每天可多售出2x件,因此每天盈利为(40-x)·(20+2x)元,然后根据题意列出 方程求解即可.
解:设每件童装降价x元.
根据题意,得(40-x)(20+2x)=1200.
同时,点Q从点C出发,以2 cm/s的速度沿CB边向点B移动,如果P,Q同时出发,
经过几秒,△PBQ的面积等于8 cm2?
〔解析〕 P,Q同时出发,设x s后,△PBQ的面积为8 cm2 ,则AP=x cm, PB=(6-x)cm,BQ=(8-2x)cm,此时△PBQ的面积为0.5×(8-2x)(6-x)cm2 ,由
最新部编人教版九上数学实际问题与一元二次方程(1)平均变化率问题习题

分层训练
A组
3. 某药品经过两次降价,每瓶零售价由168元降为108
元.已知两次降价的百分率相同,设每次降价的百分率
为x,根据题意列方程得 A. 168(1-x)2=108
( A)
B. 168(1-x2)=108
C. 168(1-2x)=108
D. 168(1+x)2=108
4. 某市加大对绿化的投资,2016年绿化投资a万元,
解:(1)设11月,12月两月平均每月降价的百分率 是x,则11月份的成交价是14 000(1-x), 12月份的成交价是14 000(1-x)2. ∴14 000(1-x)2=11 340.∴(1-x)2=0.81. ∴x1=0.1=10%,x2=1.9(不合题意,舍去). 答:11月,12月两月平均每月降价的百分率是10%.
(2)如果房价继续回落,按此降价的百分率,你预测 到今年2月份该市的商品房成交均价是否会跌破10 000 元/m2?请说明理由.
(2)会跌破10 000元/m2.理由如下: 如果按此降价的百分率继续回落,估计今年2月份 该市的商品房成交均价为 11 340(1-x)2=11 340×0.81=9 185.4<10 000. 答:今年2月份该市的商品房成交均价会跌破10 000元/m2.
第9课时
实际问题与一元二次方程(1) ——平均变化率问题
典型例题 知识点1:病毒传染问题 【例1】已知有一人患了流感,经过两轮传染后共有64 人患了流感. (1)求每轮传染中平均一个人传染了几个人;
解:(1)设每轮传染中平均一个人传染了x个人. 依题意,得1+x+(x+1)x=64. 解得x1=7,x2=-9(不符题意,舍去). 答:每轮传染中平均一个人传染了7个人.
实际问题与一元二次方程大全

22.3 实际问题与一元二次方程(1)增长率问题问题1.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为12万元,求该校这两年在实验器材投资上的平均增长率是多少?[命题意图]本题主要考查平均增长率问题.[解析]本例属于平均增长率问题,若设平均增长率为x,则今年的投资额为2(x+1)万元,明年的投资额为2(x+1)2万元,由今明两年的投资总额为12万元可列方程.解:设这两年在实验器材投资上的平均增长率为x,根据题意可列方程:2(1+x)+2(1+x)2=12化简整理得:x2+3x-4=0 解这个方程得:x1=1,x2=-4(负值不合题意,应舍去)答:该校这两年在实验器材投资上的平均增长率为100%.[思路探究]在本例中,12万元是两年的投资总额,不是最后一年的投资额,不能错误地列出方程2(1+x)2=12;另外在解这个方程时,还可把(1+x)当作一个整体,用换元法解.问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.•因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2•=3.31 去括号:1+1+x+1+2x+x2=3.31整理,得:x2+3x-0.31=0解得:x=10%答:(略)以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.问题3:电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、•二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.解:设平均增长率为x则200+200(1+x)+200(1+x)2=950整理,得:x2+3x-1.75=0解得:x=50%答:所求的增长率为50%.三、巩固练习(1)某林场现有木材a立方米,预计在今后两年年平均增长p%,那么两年后该林场有木材多少立方米?(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.四、应用拓展例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x ,第一次存2000元取1000元,剩下的本金和利息是1000+2000x ·80%;第二次存,本金就变为1000+2000x ·80%,其它依此类推. 解:设这种存款方式的年利率为x则:1000+2000x ·80%+(1000+2000x ·8%)x ·80%=1320整理,得:1280x 2+800x+1600x=320,即8x 2+15x-2=0解得:x 1=-2(不符,舍去),x 2=18=0.125=12.5% 答:所求的年利率是12.5%.例4.(2012,,10分,限时10分钟)某农户1988年承包荒山若干亩,投资7800元改造后种果树2000棵,其成活率为90%,在2001年夏季全部结果时,随意摘下10棵果树的水果,称得重量如下(单位:千克):8,9,12,13,8,9,10,11,12,8(1)根据样本平均数估计该农户2001年水果的总产量是多少?(2)此水果在市场出售每千克售1.3元,在果园每千克售1.1元,该农户用农用车将水果拉到市场出售,平均每天出售1000千克,需8人帮助,每人每天付工资25元,若两种出售方式都在相同的时间售完全部水果,选择哪 种出售方式合理?为什么?(3)该农户加强果园管理,力争到2003年三年合计纯收入达57000元,求2002年,2003年平均每年增长率是多少?[命题意图]本例考查平均数意义及应用,方案的选择,平均增长率等知识.[解析](1)中由样本平均数估计出总体平均数,进而估计出2001年水果的总产量,(2)通过计算,比较哪种销售方式所获收入多,(3)根据2001,2002,2003年纯收入的和为57000元,列方程求解.解(1)10100101)812111098131298(101_=⨯=+++++++++=x (千克) ∴2001年水果总产量为2000×90%×10=18000(千克)(2)在果园出售时收入为1.1×18000=19800元送到市场销售收入为23400元,用人工费为3600元,实际收入19800元,因市场销售还有运输费等费用,故在果园出售合理.(3)设平均每年的增长率为x,根据题意可列方程:(19800-7800)[1+(1+x)+(1+x)2]=57000解得:x 1=-3.5(不合题意,应舍去)x 2=0.5=50%答(1)2001年的水果总产量为18000千克.(2)在果园销售合算.(3)年平均增长率为50%.作业设计一、选择题1.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )22.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ 5.市政府为迎接2008年奥运会,决定改善城市面貌,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均每年绿地面积的增长率是A.19%B.20%C.21%D.25%1.某超市一月份的营业额为200万元,一,二,三月份的营业额为1000万元,设平均每月的营业额为增长率为x,则由题意列方程为A.200+200×2x=1000B.200(1+x)2=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题1.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,•第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______.2.某糖厂2002年食糖产量为at ,如果在以后两年平均增长的百分率为x ,•那么预计2004年的产量将是________.3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.三、综合提高题1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,2000年我省某地退耕还林1600亩,计划到2002年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,•从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,•求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.3.某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.9.某网络公司2000年各项经营收入中,经营电脑配件收入600万元,占全部经营总收入的40%,该公司预计2002年经营总收入达到2160万元,且计划从2000到2002年每年经营总收入的年增长率相同,问2001年的预计经营总收入为多少万元?问题1:某工程队在我市承包了一项拆迁工程,原计划每天拆迁1250m 2,因为准备工作不足,第一天少拆了20%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元二次方程专题训练
1.甲、乙两船同时从A处出航,甲船以30千米/小时的速度向正北航行,乙船以每小时比甲船快10千米的速度向正东航行,则几小时后两船相距100千米?
2.一个两位数,十位上的数字与个位上的数字之和为5,把这个数的个位数字与十位数字对调后,所得的新数与原数的积为736,求原数。
3.张华将1000元人民币按一年期定期存入银行,到期后自动转存,两年后,本金和税后利息共获得1036.324元,问这种存款的年利率是多少?
4.新青年商店从厂家以每件21元的价格购得一批商品,出售时,每件a元,则可卖出(350-10a)件,但物价局限定每件商品加价不能超过进价的20%,该商店计划要赚400元,需要卖出多少件该商品?每件商品的售价应为多少?
5.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定为多少?这时应进货多少个?
6.某电脑公司2000年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2002年经营总收入要达到2160万元,且计划从2000年到2002年,每年经营总收入的年增长率相同,问2001年预计经营总收入为多少万元?
7.如图3-9-1所示,某小区规划在一个长为40米,宽为26
米的矩形场地ABCD上修建三条同样宽的甬路,使其中两
条与AB平行,另一条与AB垂直,其余部分种草,若使每一
块草坪的面积都为144米2,求甬路的宽度?
8.如图3-9-2所示要建一个面积为150m2的长方形养鸡场,
为了节约材料,鸡场的一边靠着原有的一条墙(无限长),
另三边用竹篱笆围成,已知篱笆总长为35m.求鸡场的长与
宽各为多少米?
参考答案:
1.2小时 [提示:设x 小时后相距100km ,得:(30x)2+(40x)2=1002]
2.23或32 [提示:设个位数字为x ,则十位上的数字为(5-x),则:
[10(5-x)+x](10x+5-x)=736
3.1.8% [提示:设年利率是x ,则
1000(0.8x+1)2=1036.324(年息税是20%)
4.100件,25元 [提示:(a-21)(350-10a)=400,
解得a 1=25,a 2=31(超过20%,舍去)
所以350-10a=100
5.解:设商品的单价是)50(x +元,则每个商品的利润是[]40)50(-+x 元,销售量是)10500(x -个.由题意列方程为
[].8000)10500(40)50(=--+x x
整理,得 0300402=+-x x .
解方程,得 30,1021==x x .
故商品的的单价可定为50+10=60元或50+30=80元.
当商品每个单价为60元时,其进货量只能是500-10×10=400个,当商品每个单价为80元时,其进货量只能是 500-10×30=200个.
答:售价定为60元时,进货是400个,售价定为80元时,进货是200个
6.解:设2001年预计经营总收入为x 万元,每年经营总收入的年增长率为a .
根据题意,得.2160)1(%406002=+⨯÷a
解方程,得2,11(2.11-=+±=+a a 不合题意,舍去),
∴.2.11=+a
.
1800 1.240%600 )
1%(40600=⨯÷=+÷=a x
答:2001年预计经营总收入为1800万元.
7.解:可设甬路宽为x 米,依题意,得
6144)26)(240(⨯=--x x ,
解得44,221==x x (不合题意,舍去).
答:甬路的宽度为2米.
8.解:(1)设鸡场的宽为 x m ,则长为)235(x -m.依题意列方程为 150)235(=-x x .
整理,得 01503522=+-x x .
解方程,得5.7,1021==x x .
所以当10=x 时,20235=-x .
答:当鸡场的宽为10m 时,长为15m ;当鸡场宽为7.5m 时,长为20m.。