一元二次方程解法完整
一元二次方程的几种解法

x2 4x 4 5.
写成()2 的形式,得
x 22 5.
x2 4x 1 0.
x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
6x2 x 5 0.
答:a=6, b=1, c= -5.
例2、 已知:关于x的方程
(2m-1)x2-(m-1)x=5m
是一元二次方程, 求:m的取值范围. 解:∵ 原方程是一元二次方程, ∴ 2m-1≠0,
1 ∴ m≠ 2.
二、一元二次方程的解法
形如 ax2=0 (a≠0) 的一元二次方程的解法:
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
除以二次项系数,得
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一次项 x2 4x 4 1 4.
系数一半的平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
开平方,得
x 2 5.
x1 2 5, x2 2 5.
2xx 3 2x2 1 (不是二次方程)
一元二次方 程的一般形式
完全的一元二次方程
解一元二次方程五种方法

解一元二次方程五种方法解一元二次方程五种方法解一元二次方程是初中数学中的基础知识,也是高中数学中的重要内容,掌握多种解法对于提高数学能力和解题能力有着重要作用。
下面介绍五种解一元二次方程的方法。
方法一:配方法(也称为配方根公式)配方法是一种常见的解一元二次方程的方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项分离出完全平方项;2. 将方程化为完全平方形式,即形如(x + a) = b;3. 对方程两边取平方根,得到x的两个解:x = -a ± b。
方法二:公式法公式法是解一元二次方程的常用方法之一,它的公式为:x = (-b ±√(b-4ac)) / 2a其中a、b、c分别为一次项系数、二次项系数和常数项。
方法三:图像法图像法是一种直观的解题方法,它的步骤如下:1. 将方程化为标准形式:ax+bx+c=0;2. 将方程左侧变形为y=ax+bx+c的二次函数的图像;3. 通过观察二次函数的图像,得到x的解。
方法四:因式分解法如果一元二次方程的左侧可以因式分解,那么可以使用因式分解法解题。
例如:x+5x+6=0,可以因式分解为(x+2)(x+3)=0。
因此,x的解为x=-2或x=-3。
方法五:完全平方公式完全平方公式是解一元二次方程的一种简便方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项计算出Δ=b-4ac;2. 如果Δ是完全平方数,那么方程的解为x=(-b±√Δ)/2a。
以上是解一元二次方程的五种方法,希望对大家有所帮助。
掌握多种解题方法可以提高数学思维和解题能力,也可以在考试中提高解题速度和准确性。
(完整版)一元二次方程归纳总结

一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程的解法归纳总结

一元二次方程的解法归纳总结一元二次方程是高中数学中的重要内容之一,它可以通过求解来确定方程的根或解。
解一元二次方程的方法有多种,包括公式法、配方法、图像法等。
本文将对这些方法进行归纳总结,以便读者更清晰地理解和应用一元二次方程的解法。
一、公式法公式法是解一元二次方程最常用的方法之一,它基于一元二次方程的标准形式ax^2 + bx + c = 0。
一元二次方程的解可通过求根公式得到。
求根公式:对于一元二次方程ax^2 + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。
1. 判别式D = b^2 - 4ac。
- 当D > 0时,方程有两个不相等的实根。
- 当D = 0时,方程有两个相等的实根。
- 当D < 0时,方程没有实根。
2. 根据判别式的情况,求解一元二次方程的根。
- 当D > 0时,方程的两个根为 x1 = (-b + √D)/(2a) 和 x2 = (-b -√D)/(2a)。
- 当D = 0时,方程的两个根为 x1 = x2 = -b/(2a)。
- 当D < 0时,方程没有实根。
公式法适用于所有一元二次方程,但需注意的是,当D < 0时,方程没有实数解,因此解为复数,需要用复数域来表示。
二、配方法对于一些特殊形式的一元二次方程,如完全平方差、平方差、求负等,可以通过配方法将其转化成更容易求解的方程,进而求得解。
1. 完全平方差形式对于形如(x ± a)^2 = b的方程,可利用完全平方差公式,将其转化为(x ± a) = √b的形式,然后解得解x。
2. 平方差形式对于形如x^2 - a^2 = b的方程,可通过配方法将其转化为(x + a)(x -a) = b的形式,然后选取合适的值求解。
3. 求负对于形如x^2 + px = q的方程,可通过将方程两边同乘以负一进行转化,变为x^2 - px = -q的形式,然后应用配方法解方程。
配方法是解特殊形式一元二次方程的有效方法,通过将方程转化为更简单的形式,能够简化解的过程。
一元二次方程的几种解法

系数一半的平方,得
2 4 4 2
写成()2 的形式,得
x
7 2
49
24 .
4 16 16
开平方,得
x 7 25 .
4
16
2
x1 , x2 3.
1
解这两个方程,得
44
44
x1 , x2 .
75
75
解法2:配方法
配方法的基本步骤:
1、将二次项系数化为1:两边同时除以二次项系数; 2、移项:将常数项移到等号一边; 3、配方:左右两边同时加上一次项系数一半的平方; 4、等号左边写成( )2 的形式; 5、开平方:化成一元一次方程; 6、解一元一次方程; 7、写出方程的解.
2
2x 22 5.
解:系数化1,得 x 22 5 ,
2
开平方,得
x2
5.
2
x 2 10 或 x 2 10 .
2
2
解这两个一元一次方程,得
2
2
x1 2 10 , x2 2 10 .
解法1:直接开平(a≠0, ac<0) 或 a(x+p)2+q=0 (a≠0, aq<0)
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
解: 3x2 7,
x2 7 , 3
x 7, 3
x 21 , 3 21
(完整版)一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】=0(a≠0),把方程ax2+c例:用直接开平方法解方程:1.9x2-25=0;;2.(3x+2)2-4=04.(2x+3)2=3(4x+3).解:1.9x2-25=0259x2=2.(3x+2)2-4=0(3x+2)2=43x+2=±22±23x=-4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除+以二次项系数,使二次项系数为1,如x21.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+47(x-2)2=3.4x2+4x+1=7一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。
例:用公式法解一元二次方程:2.2x2+7x-4=0;.4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x)2.2x2+7x-4=0∵a=2,b=7,c=-4.81b2-4ac=72-4×2×(-4)=49+32=4.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)22b≥0)时,得当(a-【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:例:解下列一元二次方法:.3.(m2+1)x2=0;其中m2+1>0,x2=0.∴ x1=x2=0.4.16x2-25=06x2=25。
一元二次方程的解法汇总

一元二次方程的解法汇总一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c 为已知常数,且a ≠ 0。
解一元二次方程是数学中非常重要的一部分,它在实际问题中的应用广泛,如物理、经济学等领域。
本文将对一元二次方程的解法进行汇总,包括求解公式、配方法、因式分解法和图像法等。
1. 求解公式法求解公式法是最常用的解一元二次方程的方法。
根据一元二次方程的定义可知,其解可以通过求根公式来得到。
一元二次方程的求根公式为x = (-b ± √(b^2 - 4ac)) / 2a。
其中,±表示两个解,分别对应加号和减号。
这个公式又称为二次方程的根公式,可以直接带入方程的系数a、b、c来计算方程的解。
2. 配方法当一元二次方程的系数不方便使用求解公式的时候,可以采用配方法来求解。
配方法的基本思想是将一元二次方程的二次项与一次项相乘,使其变为一个完全平方的形式。
具体步骤如下:- 将一元二次方程写成a(x^2 + b/a*x) + c = 0的形式,其中b为一次项的系数。
- 将方程中的b/a*x一项配方,即加上一个常数使其变为一个完全平方的形式。
- 将方程中的常数项与刚刚配方得到的项合并,得到一个完全平方的二次项。
- 将方程进行因式分解,得到一个一次项与一个完全平方的二次项相乘的形式。
- 令一次项与完全平方的二次项分别等于0,解得方程的解。
3. 因式分解法因式分解法是一种利用因式分解的方法来解一元二次方程的方法。
当一元二次方程的系数较为复杂时,可以尝试使用因式分解法来求解。
具体步骤如下:- 将一元二次方程写成(a1x + b1)(a2x + b2) = 0的形式,其中a1、a2、b1、b2为已知常数。
- 将方程进行因式分解,得到两个一次项相乘的形式。
- 令每个一次项等于0,解得方程的解。
4. 图像法图像法是一种通过观察二次函数的图像来求解一元二次方程的方法。
根据二次函数的图像特征,可以直观地确定一元二次方程的解。
完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题一元二次方程的解法及经典练题方法一:直接开平方法(基于平方根的定义)平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。
即,如果x²=a,那么x=±√a。
注意,x可以是多项式。
一、使用直接开平方法解下列一元二次方程:1.4x²-1=22.(x-3)²=233.81(x-2)²=1644.(x+1)²/4=255.(2x+1)²=(x-1)²6.(5-2x)²=9(x+3)²7.2(x-4)²/3-6=0.方法二:配方法解一元二次方程1.定义:把一个一元二次方程的左边配成一个平方,右边为一个常数,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。
2.配方法解一元二次方程的步骤:1)将方程移项,使等式左边为完全平方,右边为常数。
2)将等式左右两边开平方。
3)解出方程的根。
二、使用配方法解下列一元二次方程:1.y²-6y-6=02.3x²-2=4x3.3x²-4x=94.x²-4x-5=05.2x²+3x-1=06.3x²+2x-7=0方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法。
2.公式的推导:使用配方法解方程ax²+bx+c=0(a≠0),解得x=[-b±√(b²-4ac)]/(2a)。
3.由上可知,一元二次方程ax²+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因为1)当b²-4ac>0时,方程有两个实数根,x₁=[-b+√(b²-4ac)]/(2a),x₂=[-b-√(b²-4ac)]/(2a)。
2)当b²-4ac=0时,方程有一个实数根,x₁=x₂=-b/(2a)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a≠0, b2-4ac≥0)
4a2 0 当 b2 4ac 0 时
.b2-4ac<0.原方程无解
你能用公式法解方程 2x2-9x+8=0 吗? 1.变形:化已知方程为一般形式; 2.确定系数:用a,b,c写出各项系数; 3.计算: b2-4ac的值;判断是否有解 4.代入:把有关数值代入公式计算;
解: x2+4x-3=0
x2+4x=3 x2+4x+4=3+4
(x+2)2=7
x+2= 7
x1=2+ 7
x2=2- 7
一次项一 半的平方
完全平方 式
开方
你能用配方法解方程 2x2-9x+8=0 吗?
1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边;
3.配方:方程两边都加上一
4
x
-4
-20x+3x=-17x
用因式分解法解一元二次方程的步骤
1、方程右边不为零的化为零 。 2、将方程左边分解成两个一次因式 的乘积。 3、至少有一个 一次因式为零,得到 两个一元一次方程。 4、两个一元一次方程的解 就是原方 程的解。
简记歌诀:
右化零 两因式
左分解 各求解
配方法
x2+4x-3=0
试一试
解下列方程:
(1)x2=4, (2)x2_1=0 (3)(x+1)2–4=0,(4)12(2–x)2–9=0,
如果方程能化成 么可得
的形式,那
做一做
解方程:(1)4x2-9=0 (2) (x-2)2=16
(3)(2x2-3)2=25 (4)2(x2+5)2=32
(5)(2x+3)2=4(3x-2)2
回顾复习 认识一元 二次方程
1、下列式子哪些是方程?
方程的本质特征是什 么?
2+3=5 没有未知数 3x+2 不是等式 5x+3等式叫方程
3 1 2 不是等式 x
2、我们学过哪些方程?
• 一元一次方程、二元一次方程、分式方程。
3、什么叫一元一次方程?方程的“元”和“次”是什么意思?
5.定根:写出原方程的根.
例 解方程:
x b
b2 4αc 2α
x2-7x-18=0
解:这里 a=1, b= -7, c= -18.
∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
x
7 121 21
7
11 2
,
即:x1=9, x2= -2.
4x²+1=-4x 解:移项,得4x²+4x+1=0 a=4,b=4,c=1,b²-4ac=4²-4×4×1=0
特别注意:当 b2 4ac 0 时无解 3、代入求根公式 : x b b2 4ac
2a
4、写出方程的解: x1、x2
2、分解因式的方法:
(1)提取公因式法: am+bm+cm=m(a+b+c). (2)公式法: a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2. (3)十字相乘法: x2+(a+b)x+ab= (x+a)(x+b). a1a2 x2 (a1c2 a2c1)x c1c2 (a1x c1)(a2 x c2 )
一元
一次
只含有一个未知数,并且未知数的次数是1次的整式方程叫一元一次方程。
只含有一个未知数,并且未知数的最高次数是2的整式 方程叫做一元二次方程。
一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
特征:方程的左边按x的降幂排列,
右边=0
一元二次方程的项和各项系数
二次项 系数
一次项 系数
b
b 4ac
x 2a
4a 2
移项,得
x2 b x c
a
a
即 x b b2 4ac
2a
2a
一元二次方程
配方,得
x2
b a
x
b 2a
2
c a
b 2a
2
即
x
b 2a
2
b2 4ac 4a2
的求根公式
x b b2 4ac 2a
或7x2 - 4=0
7
1 -8
04 0 -4
试一试
将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:
3x2- x=5 2x2- 7x+3=0 x2 - 5x =0 2x2 -11= -5x
3x2-1x-5=0 2x2-7x+3=0
1x2-5x+0=0 2x2+5x-11=0 友情提示:某一项的系数包括它前面的符号。
x2 (2 3)x 6
x2 (-3 2)x 6
x2 5x6
x2 x6
(3). (x-2)(x-3);
解 : 原式 x2 - 3x - 2x (-2) (-3)
x2 (-3 2)x 6 x2 5x 6
(4)(x+a)(x+b);
X=
=-
X1=X2 =-
• 猜一猜:对于一般式ax²+bx+c=0 (a≠0)的根 与b²-4ac的符号有什么关系?
因为ax²+bx+c=0 (a≠0)的求根公式是
x b b2 4ac 2a
故对于方程ax²+bx+c=0 (a≠0)有下列关系:
(1)当b²-4ac>0时,方程有两个不相等的根
(x+2) (x+3) 解:原式=x²+(2+3)x+2 3
=(x+2) (x+3)
(1).因式分解 竖直写; (2).交叉相乘凑中间; 2(3x+).3横x向=5写x 出两因式; (x+2)和(x+3)
×
数2,3与原式 中系数有什么
关系。
x
2
x
3
2x+3x=5x
(1)x2+4x+3=0
解:(x+1)(x+3)=0 x+1=0或x+3=0 x1=-1,x2=-3
(2)当b²-4ac=0时,方程有两个相等的 根x1 = x2 =
(3)当b²- 4ac<0时,方程没有实数根.
b 一般地,式子 2 4ac 叫做方程
ax2 bx c 0 (a≠0)
根的判别式,通常用希腊字母△表示它,即
△= b2 4ac
1、几种解一元二次方程的方法:
(1)直接开平方法: x2=a (a≥0)
(2)配方法: (x+h)2=k (k≥0)
(3)因式分解法
(4)公式法:
x b b2 4ac . b2 4ac 0 . 2a
用公式法解一元二次方程的一般步骤: 1、把方程化成一般形式,并写出 a、b、c 的值。
2、求出 b2 4ac 的值判断根的情况,
a≠0 ax2+bx+c=0
二次项 一次项
常数项(0次项)
a为二次项系数, ax2叫做二次项, b为一次项系数,bx叫做一次项, c为常数项,
例1 下列方程哪些是一元二次方程?
(1) 7x2-6x=0
(2) 2x2-5xy+6y=0
(3) 2x2- 1 -1 =0 3x
y2
(4)
- 2
=0
(5) x2+2x-3=1+x2
三、合作探究2,获取新知
例3 求解:3x2-10x+3=0 解:(x-3)(3x-1)=0
x
-3
x-3=0或3x-1=0 3x
-1
x1
1, x2
1 3
-9x-x=-10x
例4 求解: 5x 2-17x-12=0
5x
+3
解:(5x+3)(x-4)=0
5x+3=0或x-4=0
x1
-
3 5
,
x2
x 0,或x 1 0
所以原方程的解为:x1=0,x2=1
两个因式相乘 等于0,那么 每个因式都可 以等于0。
下面的解法正确吗?如果不正确, 错误在哪?
()
试一试
完成下列运算(5分钟):
(1). (x+2)(x+3);
(2). (x+2)(x-3);
解:原式 x2 2x 3x 23 解:原式 x2 -3x 2x 2(-3)
次项系数绝对值一半的平方;
4.变形:方程左分解因式,右边
合并同类;
5.开方:根据平方根意义,方程
两边开平方;
6.求解:解一元一次方程;
7.定解:写出原方程的解.
用配方法解一般形式的一元二次方程
ax2 bx c 0
解: 把方程两边都除以 a
x2 b x c 0 aa
2
思考:解方程 x2=x
直接开方,可以吗? 两边同除以x,得 x=1
这样解是否正确呢? 方程的两边同时除以同一个
不等于零的数,所得的方程与原 方程 同解。
思考:解方程 x2=x 解法一:
这种解法有些复杂
思考:解方程 x2=x 解法二:
解:移项的,x2-x=0
提取公因 式
分解因式,得:x(x-1)=0,
(2) X2+7x+6=0
解:(x+1)(x+6)=0 x+1=0或x+6=0 x1=-1,x2=-6