人教A版高中数学必修二1.1.2简单组合体的结构特征word教案
人教A版高中数学必修2教学案1.1.2简单组合体的结构特征

1.1.2简单组合体的结构特征【教学目标】1、认识简单组合体的结构特征2、能根据对简单组合体的结构特征的描述,说出几何体的名称3、学会观察、分析图形,提高空间想象能力和几何直观能力.【教学重难点】描述简单组合体的结构特征.【教学过程】1、情景导入在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师出示课题:简单几何体的结构特征.2、展示目标、检查预让学生说出本节课的学习目标及简单组合体的概念3、合作探究、交流展示(1)提出问题①请指出下列组合体是由哪些简单几何体组合而成的.图1②观察图1,结合生活实际经验,说出简单组合体有几种组合形式?③请总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?(2)活动:让学生仔细观察图1,教师适时提示.①略.②图1中的三个组合体分别代表了不同形式.③学生可以分组讨论,教师可以制作有关模型展示.(3)讨论结果:①图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.4、典型例题例1 请描述如图2所示的组合体的结构特征.图2解析:将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.点评:本题主要考查简单组合体的结构特征和空间想象能力.变式训练1:(1) 如图3说出下列物体可以近似地看作由哪几种几何体组成?图3(2)如图4(1)、(2)所示的两个组合体有什么区别?图4答案:(1) 图3(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.(2)图4(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图(2)所示的组合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.例2 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5解析:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构特征解:如图所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.点评:本题主要考查空间想象能力以及旋转体、简单组合体.变式训练2(1)如图所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图6(2)如图所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,说出它形成的几何体的结构特征图7答案:(1)如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.(2)一个大球内部挖去一个同球心且半径较小的球.5、课堂检测:课本P8,习题1.1 A组第3题,B组第1、2题。
新课标人教A版高中数学必修二课程目标细化

高中数学必修二课程纲要(细化)一、课程目标(一)空间几何体1、认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2、能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.3、会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4、会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5、了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(二)点、直线、平面之间的位置关系1、理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理 1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理 2:过不在同一条直线上的三点,有且只有一个平面.◆公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理 4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.2、以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定. 理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3、能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(三)直线与方程1、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
人教A版高中数学必修二1.1.2简单组合体的结构特征教学课件

3.在正方体中按图中所示截去 一个三棱锥,所剩部分有什么特征?
4.如图,长方体被截去一部分,其中EH∥FG ∥ A′D′. 剩下的几何体是什么?截去的几何体是什 么?你能说出它们的名称吗?
D’
G
A’
F
H
D
E
C
A
B
探究:如图,长方体被截去一部分,其中
EH∥FG ∥ A′D′. 剩下的几何体是什么?你能说
R
a
·
正方体的边长a与球的半径R有什么关系呢? 2.球与正方体的各个面相切
.R
R
a
a
球 的半径 R a 2
课堂小结
定义
构成形式 简单组合体
简单几何体拼接而成
简单几何体截去或 挖去一部分而成
形状:观察、割、补
结构探究 大小:截面探究
怎样描述下列事物的结构特征呢?
①
②
③
④
⑤
⑥
⑦
怎样描述生活中实物的结构特
征?
提示:在观察实物的过程中,要 从数学的角度深入认识几何体,这就 只需要关注物体的形状和大小即可, 而舍弃颜色、材料、艺术风格等非本 质因素.描述实物的结构特征就是将 复杂实物分解成柱、锥、台、球等简 单几何体.
例1.下面这个瓶子是由哪些简单几何体构成的?
1.1.2 简单组合体的结构特征
温故知新
柱体 锥体 台体 球
由若干个平面多边形围成的几何体。
多 面 体
由一个平面图形绕它所在平面内的一条 定直线旋转所形成的封闭几何体。
旋 转 体
问题引入
在我们的生活周围,有不少 有特色的建筑物,它们有丰富 多彩的结构.什么叫简单组合体?
探究新知
现实世界中的物体表示的几何体, 除柱体、锥体、台体和球体等简单 几何体外,还有大量的几何体是由 简单几何体组合而成的,这些几何 体叫做简单组合体.
人教A版高中数学必修二1.1.2-简单组合体的结构特征课件

思考总结
例3和例4都是由简单几何体挖去一部分而成. 由此我们总结出:
简单组合体的构成,第二种基本形式是由简 单几何体挖去一部分而成.
至此,我们发现,简单组合体的构成有两种基 本形式: 1.由简单几何体拼接而成; 2.简单几何体挖去一部分而成.
小试牛刀
1.下面这个几何体是由哪些简单几何体构成的?
由一个四棱柱和一 个圆柱拼接而成.
1.1.2 简单组合体的结构特征
温故知新
上节课我们学习了柱、锥、台、 球等简单几何体的结构特征.
情境引入
在我们的生活周围, 有不少有特色的建筑物, 它们有丰富多彩的结构.
日常生活中我们常用到的日用品,比如:消毒液、暖 瓶、洗洁精等的主要几何结构特征是什么?
由柱、锥、台、球组成了一些简单的组合体.认识 它们的结构特征要注意整体与部分的关系.
这个零件的外观 是一个大圆柱挖掉了 一个小圆柱.
例4 下面这个几何体是由哪些简单几何体构成的?
这个几何体的外观是一个大棱 柱挖掉了一个小棱柱.
思考总结
思考题:回顾前面的例题和习题, 你是否能总结出简单组合体的另外 一种组合方式的分类?
简单组合体包括三类: ☆ 旋转体与旋转体的组合体 ☆ 多面体与多面体的组合体 ☆ 多面体与旋转体的组合体
◇简单组合体包括三类: 1.旋转体与旋转体的组合体; 2.多面体与多面体的组合体; 3.多面体与旋转体的组合体.
2.下面这个几何体是由哪些简单几何体构成的?
由一个圆锥和一个 圆柱拼接而成.
3.下面这个几何体是由哪些简单几何体构成的?
由一个圆柱挖去一 个圆台而成.
4.下面这个几何体是由哪些简单几何体构成的?
由一个四棱锥、一 个四棱柱拼接,又在四 棱柱中挖去了一个圆柱 而成.
1.1.2简单组合体的结构特征

(2)
(3)
圆锥
球
(4) 圆柱
2. 一个等腰梯形绕着两底边中点的连线所在 的直线旋转180度形成的封闭曲面所围成的几何体 是_圆__台___.
3. 一个矩形绕着一边的中垂线旋转180度形成 的封闭曲面所围成的几何体是圆__柱__。
4. 一个等腰三角形绕着底边上的高所在的直 线旋转180度形成的封闭曲面所围成的几何体是 _圆__锥___。
其中正确的是____(_4_)____。
课堂小结
现实世界中,我们看到的物体大多由具有柱、 锥、台、球等几何结构的物体组合而成。有两种 基本形式:一种由简单几何体拼接而成,一种是 简单几何体截去或挖去一部分而成。
有两种基本形式
一种由简单几何体拼接而成。 一种是简单几何体截去或挖去一部分而成。
凡事欲其成功,必要付出代价:奋斗。 ——爱默生
பைடு நூலகம்
上图由一个圆柱和 一个长方体组成。
上图由一个长方体截 去一个三棱锥得到。
思考
下面这些几何体是那种构成形式呢?组合而成呢? 还是由什么简单几何体截去或挖去一部分而成?
去掉
去掉
例:请描述如图2所示的组合体的结构特 征.
图2
课堂练习
1.说出下列图形绕虚线旋转一周,可以形成怎样 的几何体?
(1) 圆台
棱锥
圆柱
棱台
圆台
这些几何体又是什么呢?
1.1.2 简单组合体的结构特征
现实世界中的物体表示的几何体,除柱、 锥、台、球等简单几何体外,还有大量的几何 体是由简单几何体组合而成的,这些几何体叫 做简单组合体。
活动探究:请指出下列几何体是由哪些简单 几何体组合而成的.
简单组合体的构成有两种基本形式:一 种由简单几何体拼接而成,一种是简单几何 体截去或挖去一部分而成。
高中数学人教A版必修二1.1.2【教学设计】《 简单组合体的结构特征》

《简单组合体的结构特征》立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素。
本节教材主要是为了让学生在学习了空间几何体的分类以及棱柱、棱锥、棱台的基础上,进一步学习圆柱、圆锥、圆台、球这几个旋转体,并运用它们的结构特征来描述简单组合体的结构特征。
【知识与能力目标】(1)会用语言概述圆柱、圆锥、圆台、球的结构特征。
(1)理解由柱、锥、台、球组成的简单组合体的结构特征。
(2)能运用简单组合体的结构特征描述现实生活中的实际模型。
【过程与方法目标】(1)让学生通过直观感受空间物体,从实物中概括出圆柱、圆锥、圆台、球的几何结构特征。
(2) 让学生通过观感觉空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式。
【情感态度价值观目标】培养学生的空间想象能力,培养学习教学应用意识。
【教学重点】圆柱、圆锥、圆台的结构特征.,以及简单几何体的结构特征。
【教学难点】归纳棱柱、棱锥、棱台的结构特征.,以及简单几何体的结构特征。
多媒体课件观察课件第二页的图片, 这些图片中的物体具有怎样的形状?我们如何描述它们的形状?二、课堂探究:1、圆柱的结构特征:提出问题1.图片中(课件第四页)物体具有什么样的共同特征?2.请给出圆柱的定义。
3.其他旋转体相比,图片中(课件第六页)的物体具有什么样的共同特征?4.请给出圆锥的定义。
5.类比圆锥和圆柱的定义方法,请给出圆台的定义。
6.用同样的方法给出球的定义。
2、讨论结果:1.静态的观点:有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,像这样的旋转体称为圆柱。
2.定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱旋转轴叫做圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,圆柱的侧面又称为圆柱面,无论转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
高中数学人教A版必修2《1.1.2简单组合体的结构特征》教学案5

必修二1.1.2 简单组合体的结构特征(一)教学目标1、理解由柱、锥、台、球组成的简单组合体的结构特征.2、能运用简单组合体的结构特征描述现实生活中的实际模型.(二)重点、难点重点与难点都是认识简单组体体的结构特征.(三)教学方法概念形成过程中,学生观察、思考、讨论、交流与教师引导相结合,然后通过对一些具体问题的讨论,加深对简单组合体的结构特征的理解.教学环节教学内容师生互动设计意图创设情境观察教材下列各图,说出这些几何体是由哪些简单几何体构成的.学生回答,然后师生共同讨论他们的联系与区别.通过问题解决,学生复习了上课时所学知识,同学又为学习新知识作准备概念形成1.简单组合体概念,由柱体锥体,台体和球体等简单几何体组合而成的几何体.2.简单组合体为构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.学生归纳,总结后教师予以适当修饰,补充.培养学生总结概括,表述的能力,加强对概念的理解.应用举例例1 已知球的外切圆台教师出示简单组合通过上、下底面的半径分别为r ,R ,求球的半径.【解析】圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R + r ,梯形的高即球的直径为22)()(r R R r --+=2rR ,所以,球的半径为rR .圆锥底面半径为1cm ,高为2cm ,其中有一个内接正方体,求这个内接正方体的棱长.【解析】锥的轴截面SEF ,正方体对角面CDD 1C 1,如图所示.设正方体棱长x ,则CC 1 = x ,C 1D 1 =2x.作SO ⊥EF 于O ,则SO =2,OE = 1,∵△ECC 1~△EOS ,∴SOCC 1=EOEC 1,即2x =1)2/2(1x-. 体,学生说出简单组合体的结构特征,然后探索各有关量的联系方法,找到适当的轴截面,求解,教师板书. 直观、观察加强学生对简单组合体结构特征的认识,培养学生空间想象能力和逻辑推理能力.EC 1 OD 1=1FDCS∴x=22(cm),即内接正方体棱长为22cm.归纳总结一、知识点(1)简单组合体定义(2)简单组合体构成形式二、注意事项轴截面在旋转体与多面体组合而成的几何体中的应用.师生共同总结——交流——完善巩固、加深对概念的理解、培养思维严谨性.课后作业学生独立完成巩固深化,提高学生解决问题的能力.备选例题例1 左下图是由右下图中的哪个平面图旋转得到的【解析】因为简单组合体为一个圆台和一个圆锥,因此平面图应由一个直角三角形和一个直角梯形构成,可排除B、D,再由圆台上、下底的大小比例关系可排除C.【点评】组合体通过分拆,可转化为几个简单几何体,从而研究其结构特征.图4—1—9。
高中数学人教版必修2教案:1.1.2简单组合体

备课人授课时间课题§1.1.2简单组合体结构教学目标知识与技能能根据几何结构特征对空间物体进行分类,通过实物操作,增强学生的直观感知概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征过程与方法启发引导,充分发挥学生的主体作用情感态度价值观使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
重点让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征难点柱、锥、台、球的结构特征的概括教学设计教学内容教学环节与活动设计(一)知识回顾:几何体的结构特征及图例1.棱柱:(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等圆柱:(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成曲面所围成的几何体.OBABAO母线侧面轴底面底面侧棱侧面顶点F EDCBAB CDEF2.棱锥:(1)底面是多边形,各侧面均是三角形;(2)各侧面有一个公共顶点.圆锥:(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.OBA母线侧面轴底面S底面侧棱侧面顶点F EDCBSA1教学设计教学内容教学环节与活动设计3.棱台:(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台:(1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.OBA母线侧面轴底面底面侧棱侧面顶点F EDCBOAAB CDEF4.球:(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.半径圆心(二)简单组合体的结构特征:(学生阅读教材并讨论)①定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.②讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?→列举生活中的实例(三)例题讲解【例1】请描述下列几何体的结构特征,并说出它的名称.(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;(2)如右图,一个圆环面绕着过圆心的直线l旋转180°.解:(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形. 几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.【例2】若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.解:底面正三角形中,边长为3,高为333sin602⨯︒=,中心到顶点距离为332323⨯=,则棱锥的高为222(3)1-=.2课堂教学设计lSO Arlr4SO Arlr4教学设计教学内容教学环节与活动设计【例3】用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长.解:设圆台的母线为l,截得圆台的上、下底面半径分别为r,4r.根据相似三角形的性质得,334rl r=+,解得9l=.所以,圆台的母线长为9cm点评:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,构设相关几何变量的方程组而解得.(四)巩固练习 :1. 练习:书P8 A组 1~4题.2. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?3. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高4. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.(五)作业讲解A-31教学小结学习了柱、锥、台、球的定义、表示;性质;分类课后反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1.2 简单组合体的结构特征
一、教材分析
立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础.简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素.本节教材主要是为了让学生在学习了柱、锥、台、球的基础上,运用它们的结构特征来描述简单组合体的结构特征.
二、教学目标
1.知识与技能
(1)理解由柱、锥、台、球组成的简单组合体的结构特征.
(2)能运用简单组合体的结构特征描述现实生活中的实际模型.
2.过程与方法
让学生通过下观感觉空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.
3.情感态度与价值观
培养学生的空间想象能力,培养学习教学应用意识.
三、重点难点
描述简单组合体的结构特征.
四、课时安排
1课时
五、教学设计
(一)导入新课
思路1.在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师指出课题:简单几何体的结构特征.
思路2.现实世界中的物体表示的几何体,除柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体,这节课学习的课题是:简单几何体的结构特征.
(二)推进新课、新知探究、提出问题
①请指出下列几何体是由哪些简单几何体组合而成的.
图1
②观察图1,结合生活实际经验,简单组合体有几种组合形式?
③请你总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?
活动:让学生仔细观察图1,教师适当时候再提示.
①略.
②图1中的三个组合体分别代表了不同形式.
③学生可以分组讨论,教师可以制作有关模型展示.
讨论结果:①由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.
②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1
(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.
③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.
(二)应用示例
思路1
例1 请描述如图2所示的组合体的结构特征.
图2
活动:回顾简单几何体的结构特征,再将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.
解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;
图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;
图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.
点评:本题主要考查简单组合体的结构特征和空间想象能力.
变式训练
如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.
图3
答案:一个大球内部挖去一个同球心且半径较小的球.
例2 连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.
活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.
(1) (2)
图4
解:如图4(1),正方体ABCD—A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.由点O1、O2、O3、O4、O5、O6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图4(2)所示.
点评:本题中的八面体,事实上是正八面体——八个面都是全等的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜”些,并且“后面的”线,即被前面平面所遮住的线,如图中的O1O5、O6O5、O5O2、O5O4应画成虚线.
变式训练
连接上述所得的几何体的相邻各面的中心,试问所得的几何体又是几面体?
答案:六面体(正方体).
思路2
例1 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图5 图6
活动:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构
特征.
解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.
点评:本题主要考查空间想象能力以及旋转体、简单组合体.
变式训练
如图7所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图7 图8
答案:如图8所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.
例2 如图9(1)、(2)所示的两个组合体有什么区别?
图9
活动:让学生分组讨论和思考,教师及时点拨和评价学生.
解:图9(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图9(2)所示的组合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.
点评:考查空间想象能力和组合体的概念.
变式训练
如图10,说出下列物体可以近似地看作由哪几种几何体组成?
图10
答案:图10(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图10(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.
(三)知能训练
1.(2005湖南数学竞赛,9)若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是()
A.64
B.66
C. 68
D.70
分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数.
答案:B
2.图11是一个奖杯,可以近似地看作由哪几种几何体组成?
图11
答案:奖杯的底座是一个正棱台,底座的上面是一个正四棱柱,奖杯的最上部,在正棱柱上底面的中心放着一个球.
(四)拓展提升
1.请想一想正方体的截面可能是什么形状的图形?
活动:静止是相对的,运动是绝对的,点动成线,线动成面.用运动的观点看几何问题的形成,容易建立空间想象力,这样对于分割和组合图形是有好处的.
明确棱柱、棱锥、棱台等多面体的定义及圆柱、圆锥、圆台的生成过程,以及柱、锥、台的相互关系,对于我们正确的割补图形也是有好处的.
对于正方体的分割,可通过实物模型,实际切割实验,还可借助于多媒体手段进行切割实验.对于切割所得的平面图形可根据它的定义进行证明,从而判断出各个截面的形状.
探究:本题考查立体几何的空间想象能力,通过尝试、归纳,可以有如下各种肯定或否定性的答案:
(1)截面可以是三角形:等边三角形、等腰三角形、一般三角形.
(2)截面三角形是锐角三角形,截面三角形不能是直角三角形、钝角三角形.
(3)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形至少有一组对边平行.
(4)截面不能是直角梯形.
(5)截面可以是五边形:截面五边形必须有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形.
(6)截面可以是六边形:截面六边形必须有分别平行的边,同时有两个角相等.
(7)截面六边形可以是等角(均为120°)的六边形,即正六边形.
截面图形如图12中各图所示:
图12
(五)课堂小结
本节课学习了简单组合体的概念和结构特征.
(六)作业
习题1.1 A组第3题;B组第2题.。