递推数列求通项公式方法归类

合集下载

递推公式求数列通项公式

递推公式求数列通项公式

递推公式求数列通项公式求解数列的通项公式是数学中常见的问题。

在进行数列的通项公式推导时,有几种常见的方法可以使用,包括递归法、差分法、代数法、矩阵法等。

以下将针对这些方法进行详细阐述。

一、递归法递归法是数列求解中最常见的方法之一、利用递归关系式,可以将数列的第n项表示成前n-1项的表达式。

常见的递归方法有等差、等比数列等。

1.1等差数列的通项公式等差数列是指数列中每个相邻项之间的差值都相等的数列。

设数列的首项为 a1,公差为 d,则递推关系式为 an = a1 + (n-1)d,其中 n 表示项数。

首先求取数列的第一项和第二项的值,然后利用递推公式即可求得数列的通项公式。

1.2等比数列的通项公式等比数列是指数列中每个相邻项之间的比值都相等的数列。

设数列的首项为 a1,公比为 q,则递推关系式为 an = a1 * q^(n-1)。

首先求取数列的第一项和公比的值,然后利用递推公式即可求得数列的通项公式。

二、差分法差分法是通过找到数列的差分递推关系,进而进行推导。

通过一次差、二次差等操作,可以将数列的通项公式转化为关于n的多项式。

2.1一次差的差分法对于一个数列 {an},定义一次差数列 {bn} = {an+1 - an},即 b1 = a2 - a1,b2 = a3 - a2,以此类推。

如果一次差数列 {bn} 满足等差数列的递推关系,即 bn = c,则原数列的通项公式为 an = c*n +d。

其中 d 为首项的值。

2.2二次差的差分法对于一个数列 {an},定义二次差数列 {cn} = {bn+1 - bn},即 c1 = b2 - b1,c2 = b3 - b2,以此类推。

如果二次差数列 {cn} 满足等差数列的递推关系,即 cn = c,则原数列的通项公式为 bn = c*n^2 +d*n + e。

其中 d 为二次差数列首项的值,e 为数列首项的值。

三、代数法代数法以解线性方程组的形式求解数列的通项公式。

数列-递推公式求通项的十大模型

数列-递推公式求通项的十大模型

递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。

在数学中,有几种方法可以求解这类问题。

一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。

这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。

k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。

解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。

二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。

该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。

解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。

利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。

三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。

该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。

(完整版)求数列通项公式的十种方法

(完整版)求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

由递推公式求通项公式五类型

由递推公式求通项公式五类型

由递推公式求通项公式类型一 累加相消法(“)(1n f a a n n +=+型”)例1.设数列{}n a 满足),3,2,1(12,111 =++==+n n a a a n n 求{}n a 的通项公式 解:由(1)),3,2,1(121 =+=-+n n a a n n 可知,;11212+⨯=-a a ;12223+⨯=-a a ;1)1(2;1+-⨯=--n a a n n上述等式累加可得,21)1())1(21(2n a n n a a n n =⇒-+-+++⨯=-类型二 累乘相消法(“)(1n f a a n n ⋅=+型”)例2.设数列{}n a 满足),3,2,1(2,111 =⋅==+n a a a n n n ,求{}n a 的通项公式 解:由(2)),3,2,1(21 =⋅=+n a a n n n 可知,212=a a ;2232=a a ;3342=a a112--=n n n a a 上述等式累乘可得,2)1(132122222--=⇒⋅⋅=n n n n n a a a类型三 倒数法 CBa Aa a n nn +=型数列(C B A ,,为非零常数)例3.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a a n nn 求{}n a 的通项公式 解:211211+=+=+nn n n a a a a ∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=n a +2(n -1)=316-n ∴a n =163-n 类型四 构建新数列( 待定系数法) (1)q a p a n n +⋅=+1型例4.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a n n ,求{}n a 的通项公式 解 :设)(21x a x a n n +=++,即x a a n n +=+21与递推式比较,可得1=x ,所以递推式转化为)1(211+=++n n a a 则可构造新数列,令1+=n n a b ,有⎩⎨⎧===+=+),3,2,1(221111 n b b a b n n ),3,2,1(122 =-=⇒=⇒n a b n n n n (2)a n +1 = p a n + f (n )型例5.已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21. 所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且a 1-23=-21.所以23n n a -=-21,即a n =213-n .(3) 11-++=n n n qa pa a 型(其中p ,q 为常数)例6. 已知数列{}n a 满足06512=+-++n n n a a a ,且5,121==a a ,且满足,求n a .解:令)(112n n n n xa a y xa a -=-+++,即0)(12=++-++n n n xya a y x a ,与已知06512=+-++n n n a a a 比较,则有⎩⎨⎧==+65xy y x ,故⎩⎨⎧==32y x 或⎩⎨⎧==23y x 下面我们取其中一组⎩⎨⎧==32y x 来运算,即有)2(32112n n n n a a a a -=-+++,则数列{}n n a a 21-+是以3212=-a a 为首项,3为公比的等比数列,故n n n n a a 333211=⋅=--+,即n n n a a 321+=+,利用类型(2)的方法,可得n n n a 23-=.类型五 取对数 r n n pa a =+1(其中p ,r 为常数)型例6. 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式. 解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b ,则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log12-=-n a n ,∴1212--=n n a。

数列通项的七种方法

数列通项的七种方法

数列通项的七种方法一、递推公式法递推公式法是一种常见的求解数列通项的方法。

通过观察数列中相邻两项的关系,可以找到递推公式,从而求得数列的通项。

例如,我们考虑一个等差数列,已知首项为a,公差为d。

根据等差数列的性质,我们可以得到递推公式an = an-1 + d。

其中,an 表示数列的第n项,an-1表示数列的第n-1项。

利用递推公式,我们可以通过已知的首项和公差,依次求得数列的每一项。

这种方法简单直观,适用于求解各种类型的数列。

二、通项公式法通项公式法是一种通过数学公式来表示数列通项的方法。

对于某些特殊的数列,可以通过观察数列中的规律,建立通项公式,从而直接求得数列的任意项。

例如,斐波那契数列就可以通过通项公式来表示。

斐波那契数列的通项公式为Fn = (1/sqrt(5)) * (((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n)。

其中,Fn表示数列的第n项。

通项公式法适用于某些特殊的数列,可以直接求得数列的任意项,省去了逐项求解的步骤,提高了求解效率。

三、递归关系法递归关系法是一种通过递归关系来求解数列通项的方法。

通过观察数列中相邻两项的关系,可以建立递归关系式,从而求得数列的通项。

例如,斐波那契数列就可以通过递归关系来表示。

斐波那契数列的递归关系式为Fn = Fn-1 + Fn-2。

其中,Fn表示数列的第n项,Fn-1表示数列的第n-1项,Fn-2表示数列的第n-2项。

利用递归关系,我们可以通过已知的前两项,依次求得数列的每一项。

递归关系法适用于一些特殊的数列,可以通过递归的方式来求解。

四、等差数列通项公式对于等差数列,我们可以通过等差数列的通项公式来求解数列的任意项。

等差数列的通项公式为an = a1 + (n-1)d。

其中,an表示数列的第n项,a1表示数列的首项,d表示数列的公差。

利用等差数列的通项公式,我们可以直接求解数列的任意项,无需逐项计算,提高了求解效率。

六类递推数列通项公式的求解方法

六类递推数列通项公式的求解方法

六类递推数列通项公式的求解方法一、an-1=an+f(n)型利用叠加法.a2=a1+f(1),a3=a2+f(2),…,an=an-1+f(n-1),an=a1+∑n-1k=1f(k).【例1】数列{an}满足a1=1,an=an-1+1n2-n(n≥2) ,求数列{an}的通项公式.解:由an+1=an+1(n+1)2-(n+1) 得an=a1+∑n-1k=11(k+1)2-(k+1) =1+∑n-1k=1(1k-1k+1)=1+1-1n =2-1n.二、an+1=anf(n)型利用叠代法.a2=a1f(1),a3=a2f(2),…,an=an-1f(n-1).an=a1∏n-1k=1f(k).【例2】数列{an}中a1=2,且an=(1-1n2)an-1 ,求数列{an}的通项.解:因为an+1=[1-1(n+1)2 ]an,所以an=a1∏n-1k=1f(k)=2∏n-1k=1[1-1(k+1)2 ]=2∏n-1k=1[kk+1 ×k+2k+1 ]=n+1n .三、an+1=pan+q,其中p,q为常数,且p≠1,q≠0当出现an+1=pan+q(n∈n*)型时可利用叠代法求通项公式,即由an+1=pan+q得an=pan-1+q=p(pan-2+q)+q=…=pn-1a1+(pn-2+pn-3+…+p2+p+1)q=a1pn-1+q(pn-1-1)p-1 (p≠1).或者利用待定系数法,构造一个公比为p的等比数列,令an+1+λ=p(an+λ),则(p-1)λ=q,即λ=qp-1 ,从而{an+qp+1 }是一个公比为p的等比数列.【例3】设数列{an}的首项a1=12 ,an=3-an-12 ,n=2,3,4,…,求数列{an}的通项公式.解:令an+k=-12(an-1+k) ,又∵an=3-an-12=-12an-1+32 ,n=2,3,4,…,∴k=-1,∴an-1=-12(an-1-1) ,又a1=12,∴{an-1} 是首项为-12,公比为-12 的等比数列,即an-1=(a1-1)(-12)n-1 ,即an=(-12)n+1 .四、an+1=pan+qan-1(n≥2),p,q为常数可用下面的定理求解:令α,β为相应的二次方程x2-px-q=0的两根(此方程又称为特征方程),则当α≠β时,an=aαn+bβn;当α=β时,an=(a+bn)αn-1,其中a、b分别由初始条件a1、a2所得的方程组aα+bβ=a1,aα2+bβ2=a2和 a+b=a1,(a+2b)α=a2唯一确定.【例4】数列{an},{bn}满足:an+1=-an-2bn①,bn+1=6an+6bn ②,且a1=2,b1=4,求an,bn.解:由②得an=16bn+1-bn,∴an+1=16bn+2-bn+1 ,代入①到式中,有bn+2=5bn+1-6bn,由特征方程可得bn=-12×2n+283×3n ,代入②式中,可得an=8×2n-143×3n .五、an+1=pan+f(n)型,这里p为常数,且p≠1【例5】在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n ∈n*),其中λ>0,求数列{an}的通项公式.解:由 a1=2,an+1=λan+λn+1+(2-λ)2n(n∈n*),λ>0,可得,an+1λn+1-(2λ )n+1=anλn -(2λ )n+1,所以{anλn-(2λ)n}为等差数列,其公差为1,首项为0.故anλn-(2λ )n=n-1,所以数列{an}的通项公式为an=(n-1)λn+2n.六、an+1=makn(m>0,k∈q,k≠0,k≠1)一般地,若正项数列{an}中,a1=a,an+1=makn(m>0,k∈q,k≠0,k≠1),则有lgan+1=klgan+lgm,令lgan+1+a=k(lgan+a)(a为常数),则有a=1k-1lgm.数列{lgan+1k-1lgm }为等比数列,于是lgan+1k-1lgm=(lga+1k-1lgm)kn-1 ,从而可得an=akn-1?mkn-1-1k-1 .【例6】已知各项都是正数的数列{an}满足a1=32,an+1=12an(4-an) ,求数列{an}的通项公式.解:由已知得an+1=-12(an-2)2,令2-an=bn,则有b1=12,bn+1=12b2n .∵an>0,∴0<an+1<2,又0<a1<2,∴0<an<2,从而bn>0.取对数得lgbn+1=2lgbn-lg2,即lgbn+1-lg2=2(lgbn-lg2).∴{lgbn-lg2}是首项为-2lg2,公比为2的等比数列,∴lgbn-lg2=-2nlg2,∴bn=21-2n,∴an=2-21-2n.(责任编辑金铃)。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法
根据递推关系数列通项公式的几种求法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s 1 这里不妨选用 1 (当然也可选用 t 3
1 s 3 , 大 家 可 以 试 一 试 ), 则 t 1
1 1 an 2 a n1 (an 1 a n ) an1 an 是以首项为 a2 a1 1 , 公比为 的等比数列, 3 3 1 n1 所以 a n 1 a n ( ) ,应用类型 1 的方法,分别令 n 1,2,3, , (n 1) ,代入上式得 3 1 1 ( ) n1 1 1 1 3 (n 1) 个等式累加之,即 a n a1 ( ) 0 ( )1 ( ) n2 1 3 3 3 1 3 7 3 1 n1 又 a1 1 ,所以 a n ( ) 。 4 4 3
递推数列题型分类归纳解析
例 1:已知数列 an 满足 a1 解:由条件知: a n 1 a n
1 1 , a n 1 a n 2 ,求 an 。 2 n n
1 1 1 1 n n n(n 1) n n 1
2
分 别 令 n 1,2,3, , (n 1) , 代 入 上 式 得 (n 1) 个 等 式 累 加 之 , 即
1 2
n2
得: S n 1 4 a n 1
1 2 n 1
于是 S n 1 S n (a n a n 1 ) ( 所以 a n 1 a n a n 1
1 2
n2
1 a n 1 2 n1
) 2 n 1 1 1 an n . 2 2
1 2


、 0,a 0) 类型 7 an1 pan an b ( p 1
解 法 : 这 种 类 型 一 般 利 用 待 定 系 数 法 构 造 等 比 数 列 , 即 令
an1 x(n 1) y p(an xn y) , 与 已 知 递 推 式 比 较 , 解 出 x, y , 从 而 转 化 为
解法:把原递推公式转化为
变式:已知 a1 3 , a n 1
3n 1 a n (n 1) ,求 an 。 3n 2
例 3:已知数列 an 中, a1 1 , an1 2an 3 ,求 an . 解:设递推公式 an1 2an 3 可以转化为 an1 t 2(an t ) 即 an1 2an t t 3 . 故递推公式为 an1 3 2(an 3) ,令 bn an 3 , 则 b1 a1 3 4 ,且
其中 s,t 满足
s t p st q
解法二(特征根法):对于由递推公式 an2 pan1 qan ,a1 , a2 给出的数列 an , 方程 x 2 px q 0 , 叫做数列 an 的特征方程。 若 x1 , x 2 是特征方程的两个根, 当 x1 x 2
又由 a1 a, a2 b ,于是
a A B A 3b 2a 2 b A B B 3(a b) 3
故 a n 3b 2a 3(a b)( )
2 3
n 1
例:已知数列 an 中, a1 1 , a2 2 , a n 2 解:由 a n 2
bn1 an1 3 2. bn an 3
所 以 bn 是 以 b1 4 为 首 项 , 2 为 公 比 的 等 比 数 列 , 则 bn 4 2n1 2n1 , 所 以
an 2n1 3 .
。 an1 pan q (其中 p,q 均为常数, ( pq( p 1) 0) )
把以上各式相加,得
2 2 2 a n a1 (b a)[1 ( ) ( ) n 2 ] 3 3 3
2 1 ( ) n 1 3 (b a) 。 2 1 3
2 2 a n [3 3( ) n 1 ]( b a) a 3(a b)( ) n 1 3b 2a 。 3 3
类型 6 递推公式为 S n 与 an 的关系式。(或 Sn f (an ) ) 解 法 : 这 种 类 型 一 般 利 用
S1 (n 1) an S n S n 1 (n 2)

1
(2)应用类型 4( an1 pan q n (其中 p,q 均为常数, ( pq( p 1)(q 1) 0) ) )的方 法,上式两边同乘以 2 由 a1 S1 4 a1
n 1
得: 2n1 an1 2n an 2
1 a1 1 .于是数列 2 n an 是以 2 为首项,2 为公差的等差数列, 2 n 所以 2n an 2 2(n 1) 2n a n n 1 2
(a2 a1 ) (a3 a2 ) (a4 a3 ) (an an1 )
1 1 1 1 1 1 1 (1 ) ( ) ( ) ( ) 2 2 3 3 4 n 1 n 1 所以 a n a1 1 n 1 1 1 3 1 a1 , a n 1 2 2 n 2 n
,得:
an1 p an 1 引入辅助数列 q n1 q q n q
bn (其中 bn an n
q
) ,得: bn1
p 1 bn 再待定系数法解决。 q q
类型 5 递推公式为 an2 pan1 qan (其中 p,q 均为常数) 。 解法一(待定系数法):先把原递推公式转化为 an2 san1 t (an1 san )
an xn y是公比为 p 的等比数列。
例:设数列 an : a1 4, an 3an1 2n 1, (n 2) ,求 an .
解:设 bn an An B, 则an bn An B ,将 a n , a n 1 代入递推式,得
n1 n1 时,数列 an 的通项为 an Ax1 ,其中 A , B 由 a1 , a2 决定(即把 Bx2 n1 n1 代入 an Ax1 , 得到关于 A、 B 的方程组) ; 当 x1 x 2 时, a1 , a2 , x1 , x2 和 n 1,2 , Bx2 n1 数列 an 的通项为 an ( A Bn) x1 , 其中 A, B 由 a1 , a2 决定 (即把 a1 , a2 , x1 , x2 n1 和 n 1,2 ,代入 an ( A Bn) x1 ,得到关于 A、B 的方程组) 。
解法二(特征根法) :数列 an : 3an2 5an1 2an 0(n 0, n N ) , a1 a, a2 b 的特征方程是: 3x 5 x 2 0 。
2
x1 1, x 2
2 , 3
2 n1 A B ( ) n 1 。 an Ax1n1 Bx2 3
且 a2 a1 b a 。 则数列 an1 an 是以 b a 为首项,
2 为公比的等比数列,于是 3
2 a n 1 a n (b a)( ) n 1 。把 n 1,2,3, , n 代入,得 3
a2 a1 b a ,
2 a3 a 2 (b a ) ( ) , 3 2 a 4 a3 (b a) ( ) 2 , 3 2 a n a n 1 (b a)( ) n 2 。 3
类型 1
an 1 an f (n)
解法:把原递推公式转化为 an1 an f (n) ,利用累加法(逐差相加法)求解。
例 2:已知数列 an 满足 a1 解:由条件知 之,即
ቤተ መጻሕፍቲ ባይዱ
2 n a n ,求 an 。 , a n 1 3 n 1
an1 n ,分别令 n 1,2,3, , (n 1) ,代入上式得 (n 1) 个等式累乘 an n 1
例 4:已知数列 an 中, a1 类型 4 。 an1 pan q n (其中 p , q 均为常数, ( pq( p 1)(q 1) 0) ) (或
an1 pan rqn ,其中 p,q, r 均为常数) 。
解法:一般地,要先在原递推公式两边同除以 q
n 1
a a a 2 a3 a 4 1 2 3 n 1 1 n n n a1 a2 a3 an1 2 3 4 a1 n
又 a1
2 2 , a n 3 3n
类型 2
an1 f (n)an
an1 f (n) ,利用累乘法(逐商相乘法)求解。 an
类型 3
解法(待定系数法) :把原递推公式转化为: an1 t p(an t ) ,其中 t 换元法转化为等比数列求解。
q ,再利用 1 p
变式:递推式: an1 pan f n 。解法:只需构造数列 bn ,消去 f n 带来的差异.
5 1 1 n 1 , a n 1 a n ( ) ,求 an 。 6 3 2 1 1 n 1 2 n n 1 n 1 解:在 a n 1 a n ( ) 两边乘以 2 得: 2 a n 1 (2 a n ) 1 3 2 3 2 2 n 令 bn 2n an ,则 bn 1 bn 1 ,解之得: bn 3 2( ) 3 3 b 1 1 3( ) n 2( ) n 所以 a n n n 2 3 2
解法一(待定系数——迭加法): 数列 an : 3an2 5an1 2an 0(n 0, n N ) , a1 a, a2 b ,求数列 an 的通项 公式。 由 3an2 5an1 2an 0 ,得
a n 2 a n 1
相关文档
最新文档