Image Retrieve Based on SIFT
基于SIFT算法的遥感图像配准研究

Abstract :Automatic image registration is a vital yet challenging task,particularly for remote sensing im a g e s . A fully automatic registration approach which is accurate,robust,a n d fast is required. T h e scale-invariant feature trans form algorithm a nd its m a n y variants are widely used in feature-based remote sensing image registration. H o w e v e r ,in
关键词:S I F T 算法;特征 提取 ;图像配准;图像处理 中图分类号:T N 911.7 文献标识码:A d o i :10. 14016/ki.jgzz.2021.06. 097
Research on remote sensing image registration based on SIFT algorithm
H U A N G H a i b o , L I X i a o l i n g , N I E X i a n g f e i ,Z H A N G Y u e , F E N G L i y u a n Chongqing K e y Laboratory of Geological Environment Monitoring a n d Disaster Early-warning in Three Gorges Reservoir A r e a ,
图像识别中的SIFT算法实现与优化

图像识别中的SIFT算法实现与优化一、SIFT算法介绍SIFT算法(Scale-Invariant Feature Transform)是一种用于图像对比和匹配的局部特征提取算法,由David Lowe于1999年开发提出并持续改良。
SIFT算法可以检测出具有旋转、缩放、光照变化等不变性的图像特征点,被广泛应用于计算机视觉领域,如图像匹配、图像检索、物体识别等。
SIFT算法主要分为四步:尺度空间极值检测、关键点定位、关键点方向确定和描述子生成。
尺度空间极值检测:SIFT算法通过构建高斯金字塔来检测尺度下的极值点。
在高斯金字塔中,首先对原始图像进行下采样,生成一组不同尺度的图像。
然后在每个尺度上利用高斯差分来检测极值点,满足以下条件的点即为极值点:周围像素点中的最大值或最小值与当前像素点的差值达到一定阈值,而且是在尺度空间上达到极值。
关键点定位:对于极值点的定位,SIFT算法采用了一种基于拟合精细的方法来定位真实的关键点。
SIFT算法通过在尺度空间中计算极值点的DoG(高斯差分)的Hessian矩阵,来估计关键点的尺度和位置。
如果Hessian矩阵的行列式和迹符号都满足一定的条件,则认为该点为关键点。
关键点方向确定:在确定关键点的位置和尺度之后,SIFT算法还需要确定关键点的主方向。
该方向是通过计算关键点周围像素点的梯度方向和大小,并在组合后的梯度图像上寻找最大梯度方向得到的。
这个方向是在许多方向中确定的,而描述符是相对于主方向定义的。
描述子生成:最后,SIFT算法采用一个高维向量来描述关键点,并且具有不变性。
该向量的计算是在相对于关键点的周围图像区域内,采集图像梯度方向的统计信息来完成的。
描述符向量包含了关键点的位置、主方向,以及相对于主方向的相对性质。
二、SIFT算法优化思路尽管SIFT算法已经被广泛使用,但是由于算法复杂度和内存消耗等问题,使得在大数据和实时应用场景下,SIFT算法的运行速度和效果表现都有巨大限制。
sift算法的原理和步骤

sift算法的原理和步骤SIFT算法的原理和步骤SIFT算法是一种用于图像特征提取的算法,它能够从图像中提取出具有独特性、稳定性和可重复性的关键点,用于图像匹配、目标跟踪等任务。
本文将介绍SIFT算法的原理和步骤。
一、原理1. 尺度空间尺度空间是指同一物体在不同尺度下的表现形式。
SIFT算法采用高斯金字塔来实现尺度空间的构建,即将原始图像不断缩小并平滑处理,得到一系列模糊程度不同的图像。
2. 关键点检测在尺度空间中,SIFT算法采用DoG(Difference of Gaussian)来检测关键点。
DoG是指两个不同尺寸的高斯滤波器之间的差值,可以有效地提取出具有高斯拉普拉斯变换极值点(LoG)特征的区域。
3. 方向确定对于每个关键点,在其周围区域内计算梯度幅值和方向,并统计梯度直方图。
最终确定该关键点最显著的梯度方向作为其主方向。
4. 描述子生成以关键点为中心,生成一个16x16的方形区域,并将其分为4x4的小块。
对于每个小块,计算其内部像素的梯度方向直方图,并将其串联成一个128维的向量,作为该关键点的描述子。
5. 匹配通过计算不同图像之间的关键点描述子之间的距离来进行匹配。
采用最近邻法(Nearest Neighbor)和次近邻法(Second Nearest Neighbor)来进行筛选,从而得到最终的匹配结果。
二、步骤1. 构建高斯金字塔对于原始图像,采用高斯滤波器进行平滑处理,并将其缩小一定比例后再次平滑处理,得到一系列不同尺度下的图像。
这些图像构成了高斯金字塔。
2. 构建DoG金字塔在高斯金字塔中,相邻两层之间做差得到一组DoG金字塔。
通过在DoG金字塔上寻找局部极值点来检测关键点。
3. 确定关键点主方向对于每个关键点,在其周围区域内计算梯度幅值和方向,并统计梯度直方图。
最终确定该关键点最显著的梯度方向作为其主方向。
4. 生成描述子以关键点为中心,生成一个16x16的方形区域,并将其分为4x4的小块。
sift特征提取的几个主要步骤

sift特征提取的几个主要步骤SIFT(Scale-Invariant Feature Transform)是一种能够提取图像中的稳定、具有尺度不变性的特征点的算法,它广泛应用于计算机视觉和图像处理领域。
SIFT特征提取主要有以下几个主要步骤:1. 尺度空间构建(Scale Space Pyramid):SIFT算法首先通过使用不同尺度的高斯模糊函数对原始图像进行滤波,产生一系列图像金字塔,也称为尺度空间。
这是因为图像中的物体在不同尺度下具有不同的细节。
高斯金字塔的构建会产生一系列模糊程度不同的图像。
2. 特征点检测(Scale-Space Extrema Detection):在尺度空间中,SIFT算法通过在每个尺度上对图像进行梯度计算,并寻找图像中的极值点来检测潜在的关键点。
这些关键点通常是在空间和尺度上稳定的,它们能够在不同尺度和旋转下保持一定的不变性。
3. 关键点定位(Keypoint Localization):为了更准确地定位关键点,SIFT算法通过使用DoG(Difference of Gaussians)图像金字塔来检测潜在的关键点位置。
DoG图像是通过对高斯图像金字塔的相邻尺度进行相减得到的。
对DoG图像进行极值点检测可以找到潜在的关键点。
4. 关键点方向确定(Orientation Assignment):在确定了潜在的关键点位置后,SIFT算法会对每个关键点周围的领域计算梯度幅度和方向。
然后,使用梯度直方图来确定关键点的主要方向。
这样做能够使得后续的特征描述过程对旋转更具有鲁棒性。
5. 特征描述(Feature Description):在关键点方向确定后,SIFT算法会在每个关键点周围的邻域中构建一个针对尺度和旋转不变性的局部特征描述符。
这个描述符是由关键点周围的梯度直方图组成的,梯度直方图反映了关键点周围的图像局部特征。
6. 特征匹配(Feature Matching):在特征描述生成后,可以使用一些匹配算法来比较两个图像之间的特征点,找到两个图像中相对应的关键点对。
基于SIFT图像特征匹配的多视角深度图配准算法

基于SIFT图像特征匹配的多视角深度图配准算法一、引言介绍多视角深度图配准算法的意义及研究现状,阐述SIFT图像特征匹配在图像配准中的重要性。
二、SIFT图像特征提取介绍SIFT算法的基本原理及其实现方式,包括尺度空间构建、关键点检测、局部特征描述等。
三、基于SIFT的多视角深度图配准介绍基于SIFT图像特征匹配的多视角深度图配准算法,包括图像对齐、深度图对齐、三维点云生成等步骤。
四、实验与结果分析通过实验证明算法的有效性和准确性,采用定量和定性分析的方式比较不同方法的优劣,并讨论其应用场景。
五、结论与展望总结全文工作,归纳出本文的贡献和不足,并展望未来相关研究方向及改进措施。
随着计算机视觉和深度学习技术的快速发展,多视角深度图配准成为了一个研究热点。
多视角深度图配准是指将来自不同视角的深度图或结构光扫描等信息融合在一起,生成三维模型或场景,以便进行三维重建、机器人导航、虚拟现实等应用。
在多视角深度图配准算法中,图像配准是其中一个非常重要的环节之一。
快速准确地对于多视角的深度图进行配准就可以产生高质量的三维场景。
目前,对于多视角深度图中的配准问题,已有许多相关研究和算法。
这些算法一般采用从应用程序中收集多个图像来进行拍摄的传统摄影的方法。
然而,在图像进行配准时存在许多困难,例如光照条件的变化、图像中存在重复的物体、不同视角的误差不同等。
因此,开发一种快速准确的图像配准算法仍然是一个具有挑战性的问题。
SIFT算法是一种基于图像特征的配准方法,常常被用来进行特征提取和匹配。
它通过对图像进行尺度空间分析,检测出关键点并生成其局部特征描述符,用于图像匹配和目标识别。
由于其对于尺度和旋转不变性以及对于干扰性和噪声的抵抗能力,SIFT算法被广泛应用于图像配准的领域。
其中,SIFT算法通过关键点的检测和局部描述符的生成,将图像从二维坐标空间转化到高维向量空间中,利用向量空间的距离度量法来计算两幅图像之间的相似度,从而获得图像的配准结果。
计算机视觉技术中常见的图像识别方法

计算机视觉技术中常见的图像识别方法在计算机视觉领域,图像识别是一项重要的技术,它使得计算机能够理解和识别图像中的内容。
图像识别方法包括了很多不同的技术和算法,本文将介绍一些常见的图像识别方法。
1. 特征提取方法:特征提取是图像识别的关键步骤,它能将图像中的关键信息提取出来,以便后续的识别和分类。
常见的特征提取方法包括:- 边缘检测:边缘是图像中明显颜色或灰度值变化的地方,边缘检测方法可以通过计算像素灰度值的一阶或二阶导数来检测并标记出边缘。
常用的边缘检测方法包括Sobel算子、Canny算子等。
- 尺度不变特征变换(SIFT):SIFT是一种对图像局部特征进行提取和描述的算法。
它通过寻找图像中的关键点,并计算关键点周围的局部特征描述子来实现图像的特征提取。
SIFT算法具有尺度不变性和旋转不变性等优点,被广泛应用于目标识别和图像匹配领域。
- 主成分分析(PCA):PCA是一种统计学方法,用于将高维数据转变为低维数据,并保留原始数据的主要特征。
在图像识别中,可以使用PCA方法将图像像素矩阵转换为特征向量,从而实现图像的特征提取和降维。
2. 分类器方法:分类器方法是图像识别中常用的方法之一,它通过训练一个分类器来预测图像的类别。
常见的分类器方法包括:- 支持向量机(SVM):SVM是一种监督学习算法,它通过将数据映射到高维空间中,构建一个能够将不同类别分开的超平面来实现分类。
在图像识别中,可以利用SVM方法通过给定的特征来训练一个分类器,再用该分类器对新的图像进行预测。
- 卷积神经网络(CNN):CNN是一种前馈神经网络,它通过多层卷积和池化层来自动学习和提取图像中的特征。
CNN在图像识别领域取得了很大的成功,被广泛应用于图像分类、目标检测和图像分割等任务中。
- 决策树:决策树是一种基于树形结构的分类方法,它通过根据特征的不同取值来对样本进行分类。
在图像识别中,可以构建一棵决策树来实现对图像的分类和识别。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
图像检索(imageretrieval)-13-Smooth-AP:Smoothingth。。。

图像检索(imageretrieval)-13-Smooth-AP:Smoothingth。
Smooth-AP: Smoothing the Path Towards Large-Scale Image RetrievalAbstract优化⼀个基于排名的度量,⽐如Average Precision(AP),是出了名的具有挑战性,因为它是不可微的,因此不能直接使⽤梯度下降⽅法进⾏优化。
为此,我们引⼊了⼀个优化AP平滑近似的⽬标,称为Smooth-AP。
Smooth-AP是⼀个即插即⽤的⽬标函数,允许对深度⽹络进⾏端到端训练,实现简单⽽优雅。
我们还分析了为什么直接优化基于AP度量的排名⽐其他深度度量学习损失更有好处。
我们将Smooth-AP应⽤于标准检索基准:Stanford Online products和VehicleID,也评估更⼤规模的数据集:INaturalist⽤于细粒度类别检索,VGGFace2和IJB-C⽤于⼈脸检索。
在所有情况下,我们都改善了最先进的技术的性能,特别是对于更⼤规模的数据集,从⽽证明了Smooth-AP在真实场景中的有效性和可扩展性。
1 Introduction本⽂的⽬标是提⾼“实例查询”的性能,其任务是:给定⼀个查询图像,根据实例与查询的相关性对检索集中的所有实例进⾏排序。
例如,假设你有⼀张朋友或家⼈的照⽚,想要在你的⼤型智能⼿机图⽚集合中搜索那个⼈的所有图⽚;或者在照⽚授权⽹站上,您希望从⼀张照⽚开始查找特定建筑或对象的所有照⽚。
在这些⽤例中,⾼recall是⾮常重要的,不同于“Google Lens”应⽤程序从图像中识别⼀个物体,其中只有⼀个“hit”(匹配)就⾜够了。
检索质量的基准度量是Average Precision(AP)(或其⼴义变体,Normalized Discounted Cumulative Gain,其中包括⾮⼆进制相关性判断)。
随着深度神经⽹络的兴起,端到端训练已经成为解决特定视觉任务的实际选择。