2012-2013江岸区八下期末数学试卷(扫描版)
2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷及答案解析

2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.16的算术平方根是( )A .8B .﹣8C .4D .±4 2.式子√2x+1x−1有意义的x 的取值范围是( ) A .x ≥−12且x ≠1 B .x ≠1 C .x ≥−12 D .x >−12且x ≠1 3.下列各组线段能构成直角三角形的一组是( )A .3,4,5B .2,3,4C .1,2,3D .4,5,64.下列二次根式中,与√6是同类二次根式的是( )A .√12B .√18C .√23D .√305.已知平行四边形ABCD 中,∠B =4∠A ,则∠C =( )A .18°B .36°C .72°D .144°6.下列命题中,是假命题的是( )A .对顶角相等B .同位角相等C .同角的余角相等D .全等三角形的面积相等7.如图,在宽为30m ,长为40m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )A .1200m 2B .1131m 2C .1181 m 2D .1209m 28.如图,一根垂直于地面的旗杆在离地面5m 处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是( )A .5mB .12mC .13mD .18m 9.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+210.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB,垂足E在线段AB上,F、G分别是AD、CE的中点,连接FG,EF、CD的延长线交于点H,则下列结论:①∠DCF=1∠BCD;②EF=CF:③S△BEC=2S△CEF;④∠DFE=3∠AEF.其中,正确结论的个数2是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.若x<2,化简√(x−2)2−|4﹣x|的结果是.12.已知√18−n是整数,自然数n的最小值为.13.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.14.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.15.如图,在ABC中,AB=BC=3,∠ABC=120°,点E是AB边上一个动点(不与端点重合),ED⊥AC交AC于点D,将△ADE沿DE折叠,点A的对应点为F,当△BCF为等腰三角形时,则AE的长为.16.如图,菱形ABCD的边长是4,∠ABC=60°,点E,F分别是AB,BC边上的动点(不与点A,B,C重合),且BE=BF,若EG∥BC,FG∥AB,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为.三.解答题(共8小题,满分72分)17.(8分)计算:2√18+6√12−5√6+√318.(8分)先化简,再求值:(x﹣2+8xx−2)÷x+22x−4,其中x=−12.19.(8分)如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)连接BD交EF于点O,当BE⊥EF时,BE=8,BF=10,求BD的长.20.(8分)如图,在8×8的正方形网格中,若小正方形的边长为1,△ABC的顶点A、B、C在网格的格点上(1)图1中△ABC的面积为.(2)若点A的坐标为(0,﹣1),请你在图中找出一点D,使A、B、C、D四个点为顶点的四边形为平行四边形,则满足条件的D点地坐标是.(3)在图2中画出三边长分别为√10,2√5,√26的格点△DEF.21.(8分)如图,长方形ABCD中,AB∥CD,∠D=90°,AB=CD,AD=4cm,点P从点D出发(不含点D)以2cm/s的速度沿D→A→B的方向运动到点B停止,点P出发1s后,点Q才开始从点C出发以acm/s的速度沿C→D的方向运动到点D停止,当点P 到达点B时,点Q恰好到达点D.(1)当点P到达点A时,△CPQ的面积为3cm2,求CD的长;(2)在(1)的条件下,设点P运动时间为t(s),运动过程中△BPQ的面积为S(cm2),请用含t(s)的式子表示面积S(cm2),并直接写出t的取值范围.22.(10分)已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.23.(10分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明:不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.24.(12分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.16的算术平方根是( )A .8B .﹣8C .4D .±4【解答】解:∵(±4)2=16,∴16的算术平方根是4,故选:C .2.式子√2x+1x−1有意义的x 的取值范围是( ) A .x ≥−12且x ≠1 B .x ≠1 C .x ≥−12 D .x >−12且x ≠1 【解答】解:由题意,得2x +1≥0且x ﹣1≠0,解得x ≥−12且x ≠1,故选:A .3.下列各组线段能构成直角三角形的一组是( )A .3,4,5B .2,3,4C .1,2,3D .4,5,6 【解答】解:A 、32+42=52,能构成直角三角形,故选项正确;B 、22+32≠42,不能构成直角三角形,故选项错误;C 、12+22≠32,不能构成直角三角形,故选项错误;D 、42+52≠62,不能构成直角三角形,故选项错误.故选:A .4.下列二次根式中,与√6是同类二次根式的是( )A .√12B .√18C .√23D .√30【解答】解:A 、√12=2√3,与√6不是同类二次根式,故本选项错误;B 、√18=3√2,与√6不是同类二次根式,故本选项错误;C 、√23=√63,与√6是同类二次根式,故本选项正确;D 、√30与√6不是同类二次根式,故本选项错误.故选:C .5.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选:B.6.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【解答】解:A、对顶角相等是真命题,故此选项不合题意;B、同位角相等是假命题,故此选项符合题意;C、同角的余角相等是真命题,故此选项不合题意;D、全等三角形的面积相等是真命题,故此选项不合题意;故选:B.7.如图,在宽为30m,长为40m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为()A.1200m2B.1131m2C.1181 m2D.1209m2【解答】解:可把两条路平移到耕地的边上,如图所示,则耕地的长变为(40﹣1)m,宽变为(30﹣1)m,耕地面积为:39×29=1131(m2).故选:B.8.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为√122+52=13m,所以旗杆折断之前高度为13m+5m=18m.故选:D.9.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+2【解答】解:∵第一个图案中,有白色的是6个,后边是依次多4个.∴第n个图案中,是6+4(n﹣1)=4n+2.故选:D.10.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB,垂足E在线段AB上,F、G分别是AD、CE的中点,连接FG,EF、CD的延长线交于点H,则下列结论:①∠DCF=12∠BCD ;②EF =CF :③S △BEC =2S △CEF ;④∠DFE =3∠AEF .其中,正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①∵F 是AD 的中点,∴AF =FD ,∵在▱ABCD 中,AD =2AB ,∴AF =FD =CD ,∴∠DFC =∠DCF ,∵AD ∥BC ,∴∠DFC =∠FCB ,∴∠DCF =∠BCF ,∴∠DCF =12∠BCD ,故此选项正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,{∠A =∠FDM AF =DF ∠AFE =∠DFM,∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.若x<2,化简√(x−2)2−|4﹣x|的结果是﹣2.【解答】解:∵x<2,∴√(x−2)2−|4﹣x|=|x﹣2|﹣(4﹣x)=2﹣x﹣4+x=﹣2.故答案为:﹣2.12.已知√18−n是整数,自然数n的最小值为2.【解答】解:∵√18−n是整数,n为最小自然数,∴18﹣n=16,∴n=2,故答案为:2.13.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=105°.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=12∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=12∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°14.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为2√10.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB=√62+22=2√10,故答案为:2√10.15.如图,在ABC中,AB=BC=3,∠ABC=120°,点E是AB边上一个动点(不与端点重合),ED⊥AC交AC于点D,将△ADE沿DE折叠,点A的对应点为F,当△BCF为等腰三角形时,则AE的长为2或3−√3.【解答】解:如图1,当BF=CF时,过点F作FM⊥AB于点M,∵AB=BC=3,∠ABC=120°,∴∠A=∠C=30°,∵CF=BF,∴∠CFB=∠CBF=75°,∴∠EBF=120°﹣75°=45°,设AE=x,∵将△ADE沿DE折叠,点A的对应点为F,∴AE=EF=x,∠A=∠EF A=30°,∴∠BEF=∠A+∠EF A=60°,∴EM=12x,MF=BM=√32x,∴x+12x+√32x=3,解得x=3−√3.∴AE=3−√3.如图2,当BF=CF时,∴∠C=∠FBC=30°,∴∠ABF=90°,∴BF=3×√33=√3,同理可知∠BEF=2∠A=60°,∴EF=AE=BFsin60°=√3√32=2.∴AE的长为2或3−√3.故答案为:2或3−√3.16.如图,菱形ABCD的边长是4,∠ABC=60°,点E,F分别是AB,BC边上的动点(不与点A,B,C重合),且BE=BF,若EG∥BC,FG∥AB,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为4−4√33或83.【解答】解:如图,连接AC交BD于O,∵菱形ABCD的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,∵EG∥BC,FG∥AB,∴四边形BEGF 是平行四边形,又∵BE =BF ,∴四边形BEGF 是菱形,∴∠ABG =30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD =30°,∴AO =12AB =2,BO =√3AO =2√3,∴BD =4√3,AC =4,同理可求BG =√3BE ,若AD =DG '=4时,∴BG '=BD ﹣DG '=4√3−4,∴BE '=4−4√33,若AG ''=G ''D 时,过点G ''作G ''H ⊥AD 于H ,∴AH =HD =2,∵∠ADB =30°,G ''H ⊥AD ,∴HG ''=2√33,DG ''=2HG ''=4√33, ∴BG ''=BD ﹣DG ''=8√33, ∴BE ''=83, 综上所述:BE 为4−4√33或83. 三.解答题(共8小题,满分72分)17.(8分)计算:2√18+6√12−5√6+√3【解答】解:原式=6√2+3√2−5√6+√3=9√2−5√6+√3.18.(8分)先化简,再求值:(x ﹣2+8x x−2)÷x+22x−4,其中x =−12.【解答】解:原式=(x 2−4x+4x−2+8x x−2)•2(x−2)x+2=(x+2)2x−2•2(x−2)x+2=2(x+2)=2x+4,当x=−12时,原式=2×(−12)+4=﹣1+4=3.19.(8分)如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)连接BD交EF于点O,当BE⊥EF时,BE=8,BF=10,求BD的长.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形;(2)解:∵BE⊥AC,∴∠BEF=90°,在Rt△BEF中,EF=√BF2−BE2=√102−82=6,∴OE=OF=3,在Rt△BEO中,OB=√BE2+OE2=√82+32=√73,∴BD=2OB=2√73.20.(8分)如图,在8×8的正方形网格中,若小正方形的边长为1,△ABC 的顶点A 、B 、C 在网格的格点上(1)图1中△ABC 的面积为 72 .(2)若点A 的坐标为(0,﹣1),请你在图中找出一点D ,使A 、B 、C 、D 四个点为顶点的四边形为平行四边形,则满足条件的D 点地坐标是 (﹣2,2)或(4,0)或(2,﹣4) .(3)在图2中画出三边长分别为√10,2√5,√26的格点△DEF .【解答】解:(1)△ABC 的面积为3×3−12×1×2−12×2×3−12×1×3=72,故答案为:72;(2)如图1所示,满足条件的点D 的坐标为(﹣2,2)或(4,0)或(2,﹣4),故答案为:(﹣2,2)或(4,0)或(2,﹣4);(3)如图所示,△DEF 即为所求.21.(8分)如图,长方形ABCD 中,AB ∥CD ,∠D =90°,AB =CD ,AD =4cm ,点P 从点D 出发(不含点D )以2cm /s 的速度沿D →A →B 的方向运动到点B 停止,点P 出发1s 后,点Q 才开始从点C 出发以acm /s 的速度沿C →D 的方向运动到点D 停止,当点P 到达点B 时,点Q 恰好到达点D .(1)当点P 到达点A 时,△CPQ 的面积为3cm 2,求CD 的长;(2)在(1)的条件下,设点P 运动时间为t (s ),运动过程中△BPQ 的面积为S (cm 2),请用含t (s )的式子表示面积S (cm 2),并直接写出t 的取值范围.【解答】解:(1)设点P 运动时间为t (s ),根据题意,得点P 出发1s 后,点Q 才开始从点C 出发以acm /s 的速度沿C →D 的方向运动到点D 停止,当点P 到达点B 时,点Q 恰好到达点D .∴2(t ﹣2)=a (t ﹣1),当点P 到达点A 时,△CPQ 的面积为3cm 2,即12a ×1×4=3,∴a =32.即2(t ﹣2)=32(t ﹣1),解得t =5,所以CD =a (t ﹣1)=6.答:CD 的长为6;(2)根据题意,得BC =AD =4,CD =6DP =2t ,CQ =1.5(t ﹣1),①点P 的运动时间为t ,0﹣1秒时点Q 还在点C ,△BPQ 面积不变为12×4×6=12; 即S =12(0<t ≤1)②当1<t ≤2时,DQ =6﹣1.5(t ﹣1)=7.5﹣1.5t ,S =S 梯形DPBC ﹣S △DPQ ﹣S △BQC=12(2t +4)×6−12×2t ×(7.5﹣1.5t )−12×1.5(t ﹣1)×4=1.5t 2﹣4.5t +15;③当2<t ≤5时,BP =10﹣2t ,S =12BP •BC=12(10﹣2t)×4=20﹣4t.综上所述:运动过程中△BPQ的面积为S(cm2),用含t(s)的式子表示面积S(cm2)为:S=12 (0<t≤1)或S=1.5t2﹣4.5t+15(1<t≤2)或S=20﹣4t(2<t≤5).22.(10分)已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.【解答】解:设AB=AC=acm,∵BC=10cm,CD=8cm,BD=6cm,∴BD2+CD2=BC2,∴∠BDC=90°,即∠ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a﹣6)2+82,解得:a=25 3,即AB=253cm.23.(10分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明:不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【解答】(1)证明:连接AC,如图所示,∵菱形ABCD,∠BAD=120°,∴∠BAC=∠DAC=60°,∴∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,BC∥AD,∴∠ABC=∠BAC=∠ACB=60°,∴△ABC、△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,{∠1=∠3AB=AC∠ABC=∠4,∴△ABE≌△ACF(ASA).∴BE=CF;(2)解:四边形AECF的面积不变.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=12BC•AH=12BC•√AB2−BH2=4√3.24.(12分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.【解答】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB +BD =AE ,理由如下:如图2,在AB 上取BH =BD ,连接DH ,∵BH =BD ,∠B =60°,∴△BDH 为等边三角形,∴∠BHD =60°,BD =DH ,∵AD =DE ,∴∠E =∠CAD ,∴∠BAC ﹣∠CAD =∠ACB ﹣∠E 即∠BAD =∠CDE , ∵∠BHD =60°,∠ACB =60°,∴180°﹣∠BHD =180°﹣∠ACB 即∠AHD =∠DCE , ∵∠BAD =∠CDE ,AD =DE ,∠AHD =∠DCE , 在△AHD 和△DCE ,{∠BAD =∠CDE ∠AHD =∠DCE AD =DE,∴△AHD ≌△DCE (AAS ),∴DH =CE ,∴BD =CE ,∴AE =AC +CE =AB +BD .(3)AB =BD +AE ,如图3,在AB 上取AF =AE ,连接DF ,∵△ABC 为等边三角形,∴∠BAC =∠ABC =60°,∴△AFE 是等边三角形,∴∠F AE =∠FEA =∠AFE =60°,∴EF ∥BC ,∴∠EDB =∠DEF ,∵AD =DE ,∴∠DEA =∠DAE ,∴∠DEF =∠DAF ,∵DF =DF ,AF =EF ,在△AFD 和△EFD 中,{AD =DE DF =DF AF =EF,∴△AFD ≌△EFD (SSS )∴∠ADF =∠EDF ,∠DAF =∠DEF ,∴∠FDB =∠EDF +∠EDB ,∠DFB =∠DAF +∠ADF , ∵∠EDB =∠DEF ,∴∠FDB =∠DFB ,∴DB =BF ,∵AB =AF +FB ,∴AB =BD +AE .。
成都市八年级下期末考试数学B卷汇编

成都市八年级下期末考试数学B 卷汇编 成华区2010~2011学年度下期期末质量测评22. 如图,在正方形ABCD 中,AC 与BD 相交于点O ,E 为AD 上的一点,连接BE ,点G 在BE 上,连结OG 并延长交AD 于点F ,若045FGE ∠=. (1)求证:BO 2=BG •BE ;(2)连接AG ,试判断AG 与BE 有怎样的位置关系?并说明理由B 卷(共50分)一、填空题(每小题4分,共20分)23. 如图,AB ∥CD ,∠BAE = 135º,∠DCE = 40º,则∠AEC = 度.24. 已知一个样本1,3,1,0,4,x 的平均数为2,则这个样本的标准差为 .25. 如图,正方形ABCD 的边长为4,AE=EB ,MN=2,线段MN 的两端在CB 、CD 上滑动,当CM= 时,ΔADE 与ΔCMN 相似.26. 如果关于x 的方程42212-=-+x mx x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x的一个解,则m 的取值范围为 . 27.已知在∆ABC 中,AB=6,AB 边上的高为4.如图(1),在∆ABC 内作正方形EFGH ,且E 、F 在边AB 上,G 、H 分别在边AC 、BC 上,则该正方形的边长为 ;如图(2),在∆ABC 内作并排的两个全等的正方形GDKH 和HKEF ,它们组成的矩形DEFG 的顶点D 、E 在∆ABC 的边AB 上,G 、F 分别在边AC 、BC 上,则每个正方形的边长为________;……如图(3),按此方法,在∆ABC 内作并排的n 个全等的正方形(其中n 为正整数),它们组成的最大矩形的两个顶点在∆ABC 的边AB 上,其它顶点分别在边AC 、BC 上,则每个正方形的边长可用含n 的代数式表示为___ _.二、(共8分)28. 某体育用品商场预测某品牌运动服能够畅销,就用3.2万元购进了一批这种运动服,上市后很快脱销,商场又用6.8万元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于35%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)三、(共10分)29. 如图①,在矩形ABCD 中,AB=4,AD=2,现将矩形ABCD 沿EF 折叠,使点B 与AD 边上的点M 重合(点M 不与A 、D 重合),折痕EF 交AB 于点E ,交DC 于点F ,点C 落在点N 处,MN 与CD 相交于点P ,连结EP. (1)若M 为AD 边上的中点:①请直接写出△AEM 的周长为 ;②试判断AE 、DP 、EP 三条线段的等量关系,并说明理由;(2)如图②,现将矩形ABCD 变为边长为k 的正方形(其中k 为常量,且0≠k ),其余条件不变. 此时,当点M 在AD 边上运动时,△PDM 的周长是否发生变化?若变化,请说明理由;若不变化,请求出△PDM 的周长.(用含k 的代数式表示)四、(共12分)30. 已知:如图,直线421+-=x y 与x 轴交于A 点,与y 轴交于B 点.点C 是x 轴负半轴上的一点,且满足OC ︰BC=3︰5. (1)求线段BC 的长;(2)设点C 关于原点O 对称的点为点M ,过点M 作直线l 平行于y 轴.试问在直线l 上是否存在点P ,使得△ABP 是以AB 为一条直角边的直角三角形?若存在,请求出点P 的坐标,若不存在,请说明理由;(3)若点G 是线段AC 上的一个动点,过点G 作GD ∥BC ,交AB 于点D ,连结BG ,设点G 的横坐标为t ,△BGD 的面积为S ,求S 与t 之间的函数关系式.AB C Oxy第23题图第25题图金牛10-11八年级下学期期末试题B 卷 (共50分)一、填空题(每题4分,共20分) 21. 已知234(1)()12x A Bx x x x -=+----,则整式A= 和整式B= . 22. 已知关于x 的方程m x m x =--+2123的解是非正数,则m 的取值范围是 . 23.如下图,如果Rt △ABC 中,∠BAC=90°,A 点在y 轴上且B (-2,0),C (6,0),则点A 的坐标为 .24. 已知12-=m , 则2011201020092m m m +-的值是 .25.如图所示,D 、F 分别为ABC △边AB AC ,上的点,且::2:3AD DB CF FA ==,连DF 交BC 边延长线于E ,那么:EF FD = .二、解答题(共8分)26.某工程机械厂根据市场需求,计划生产A B ,两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 AB成本(万元/台) 200 240 售价(万元/台)250300(1(2)该厂用哪种生产方案能获最大利润?最大利润是多少?三、解答题(共10分)27.如图,在△ABC 中,∠BAC=90°,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B ,C 重合),EF ⊥AB ,EG ⊥AC ,垂足分别为F ,G .(1)求证:CDADAD BD =; (2)FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由;四、解答题(共12分)28.如图,在R t△ABC 中,AC=BC ,∠BAC 的平分线AE 与BC 交于点E ,过点B 作AE 的垂线交AE 延长线于点D ,BD 、AC 的延长线交于点F ,连结CD ,G 是CD 的中点,O 为AB 的中点,连结0G . (1)判断0G 与CD 的位置关系,写出你的结论并证明; (2)求证:AE=BF ;(3)若3(2OG DE ⋅=,求△ABF 的面积.AB OCDEFG青羊区2008—2009学年度下期期末F AGCE D B八年级数学调研考试题B 卷(共50分)一、填空题(每小题4分,共20分)21.如果b a +=8,ab =15,则a 2b +ab 2的值为 。
2012-2013学年八年级上学期期末考试数学试卷

岳池县2012—2013学年度上期八年级期末考试数学试卷一、选择题:请选择一个最适合的答案,填在题前括号中,祝你成功!(每小题3分,共30分)( ) 1. 1000的立方根是 A.100 B.10 C.-10 D.-100( ) 2. 如果a 3=-27,b 2=16,则ab 的值为 A.-12 B.12 C.1或-7 D.±12 ( ) 3. 下列说法中,不正确的是A.大小不同的两个图形不是全等形B.等腰三角形是轴对称图形C.负数有平方根D.( ) 4. 已知点M (0,3)关于x 轴对称的点为N ,则线段MN A.(0,-3) B.(0,0) C.(-3,0) D.(0,( ) 5. 已知正比例函数的图象如图所示,则这个函数的关系式为A. y=xB. y=-xC. y=-3x ( ) 6. 一次函数的图象经过点A (2,1),且与直线y=3x-2为A. y=3x-5B. y=x+1C. y=-3x+7D. 非上述答案 ( ) 7. 下列式子中是完全平方式的是A. a 2-ab-b 2B. a 2+2ab+3C. a 2-2b+b 2D. a 2-2a+1 ( ) 8. 下列计算正确的是A. (x 3)2=x 5B. a 2+a 3=a 5C. a 6÷a 2=a 3D. (-bc)3÷(-bc)2=-bc( ) 9. 一次函数经过第一、三、四象限,则下列正确的是 A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0 ( ) 10. 拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中剩油11. 如果一个三角形的两个内角分别为75o 和30o,那么这个三角形是 三角形。
12. 36的算术平方根是。
13. 直线y=3x-21与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
湖北省武汉市青山区2023-2024学年八年级下学期期末考试数学试卷(含详解)

湖北省武汉市青山区2023-2024学年八年级下学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________2.下列各曲线中,表示y 是x的函数的是( )A.B.C.D.3.以下列各组数为边长,能构成直角三角形的是( )4.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如下表所示:A.甲B.乙C.丙D.丁5.如图,在中,对角线AC ,BD 相交于点O .添加下列条件不能判定为矩形的是( )A. B. C. D.6.正方形的边长为,它的面积与长为,宽为的矩形的面积相等.则a 的值为( )A. C. D.7.已知一次函数,那么下列结论正确的是( )A.图象经过第一、二、四象限B.y 的值随x 的值增大而减小C.图象经过点D.当时,ABCD Y ABCD Y AC BD ⊥OA OB =AC BD =90ABC ∠=︒cm a 48cm 6cm 1221y x =-(1,2)1y <-0x <8.某登山队测得气温(单位:℃)与海拔高度(单位:)的对应关系如下表:A. B. C. D.9.如图,在菱形ABCD 中,,,E ,F 分别是边CD 和BC 的延长线上一点,且,以CE ,CF 为边作,H 是AG 的中点.则线段CH 的长为( )A.10.函数的图象与函数的图象有两个交点,则m 的取值范围(或取值)是( )A. C.________.12.写出一个图象在第一、三象限的正比例函数解析式是________.13.红星中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小邱的三项成绩(百分制)依次是95,90,88.则小邱这学期的体育成绩是________分.14.如图,在正方形ABCD 内,作等边三角形ADE ,连接BD ,BE .则________°.15.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,往返速度的大小不变,两车离甲地的距离与慢车行驶时间之间的函数关系如图所示.则下列结论:km 4km 4.5km 5km 2km-60B ∠=︒6AB =2CE CF ==CEGF Y |1|(12)y x x =--≤≤12y x m =+0m <≤102m <≤12m -≤≤12=-=DBE ∠=(km)y (h)t①快车比慢车晚出发;②快车速度是慢车速度的2倍;;④若两车第二次相遇地距乙地距离为,则.其中正确的有________.(请填写序号)16.如图,在矩形ABCD 中,,,点E 是对角线BD 上的动点,连接CE ,以CE ,CD 为边作,连接CF .则的最小值为________.三、解答题17.计算:;(2)18.(本题满分8分)如图,在中,E ,F 分别是AB ,CD 的中点.(1)求证:四边形EBFD 是平行四边形;(2)连接BD ,当满足什么条件时,四边形EBFD 为菱形?(不需要说明理由)19.为了了解某校学生的身高情况,随机抽取该校若干名学生测量他们的身高,已知抽取的学生中,男生、女生的人数相同,利用所得数据绘制成如下的女生身高频数分布表和男2h m 90km 360km a =5AB =10BC =CEFD Y CE CF ++ABCD Y ABD △生身高频数分布直方图,请根据图表提供的信息,解答下列问题:身高分组标准(1)在女生身高频数分布表中:________,________,________;(2)补全男生身高频数分布直方图,男生身高的中位数分布在________组;(3)若学校共有女生1500人,男生1600人,请估计身高在之间的学生共约有多少人?20.已知点及在第二象限内的动点,且,设的面积为S .a =b =c =155170x ≤<(8,0)A -(,)P x y 10y x -=OPA △(1)求S 关于x 的函数解析式,并写出x 的取值范围;(2)在所给的平面直角坐标系中画出函数S 的图象;(3)当时,求P 点坐标.21.如图,是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,的三个顶点都是格点,仅用无刻度的直尺在给定网格中完成画图.(画图过程用虚线表示,画图结果用实线表示).(1)如图1,先画点D 使四边形ABDC 为平行四边形,连接AD 交BC 于点E ,再在AC 上画点F ,使;(2)在图2中,先在内部画格点M ,连接AM ,BM ,CM ,使,再画点M 关于AB 的对称点N .22.A 城有肥料,B 城有肥料,现要把这些肥料全部运往C ,D 两乡.从A 城往C ,D 两乡运肥料的费用分别为20元/t 和25元/t ;从B 城往C ,D 两乡运肥料的费用分别为15元/t 和24元/t.现C 乡需要肥料,D 乡需要肥料.设从A 城运往C 乡x t 肥料,总运费为y 元.(1)①从B 城运往C 乡的肥料为________;从B 城运往D 乡的肥料为________t(用含x 的式子表示).②求y 关于x 的函数解析式,并求出最少总运费;(2)由于更换车型,使从A 城运往C 乡的运费每吨减少m 元(),其他不变,这时怎样调12S =8⨯8ABC △//EF AB ABC △ABM BCM ACM S S S ==△△△400t 600t 480t 520t t 46m <<运才能使总运费最少?23.如图,M 为正方形ABCD 内一点,,连接MD ,BM .(1)如图1,求的度数;(2)过点B 作于点G ,连接CG .①如图2,试探究DM 和CG 的数量关系,并证明;②如图3,连接AG 交BC 于点E ,若,,请直接写出CG 的长为________.24.已知,在平面直角坐标系中,直线与直线分别与x 轴交于B ,C 两点,与y 轴交于点A .(1)如图1,若,.①求点A ,B ,C 的坐标;②点M ,N 分别在射线CA 和射线BA 上,点P 在x 轴上,若四边形CMNP 为菱形,求点P 的坐标;(2)如图2,若,连接BD 交AC 于点Q ,若,请直接写出h 的值.AM AD =BMD ∠BG DM ⊥6AB =2BE CE =:4m y kx =-:4n y hx =-1k =-2h =k =(0,2)D -45BQC ∠=︒参考答案1.答案:B解析:根据二次根式有意义的条件得:,解得,观察四个选项,符合条件的答案只有B,故选:B.2.答案:C 解析:3.答案:D解析:A 、,以1,2,3为边不能组成三角形,故A 不符合题意;B 、,以2,3,4为边不能组成直角三角形,故B 不符合题意;,,,D 、,,,以4,5,3为边能组成直角三角形,故D 符合题意;故选:D.4.答案:D解析:,丁的方差最小,成绩最稳定的是丁,故选:D.5.答案:A解析:四边形ABCD 是平行四边形,是矩形,故A 错误;C 正确;四边形ABCD 是平行四边形,30x -≥3x ≥123+= ∴2245+=< ∴2213+= 22=2221∴+≠224325+= 2525=222435∴+=∴0.600.560.500.45>>> ∴∴ AC BD= ABCD ∴△,,,,是矩形,故B 正确;四边形ABCD 是平行四边形,,是矩形,故D 正确;故选:A.6.答案:C 解析:根据题意得:,解得故选:C.7.答案:D解析:A 、,,图象过一、三、四象限,故此选项错误;B 、,随x 的增大而增大,故此选项错误;C 、当时,.所以图象不过,故此选项错误;D 、画出草图,当时,图象在x 轴下方,,故此选项正确.故选:D.8.答案:AAO OC ∴=BO OD =OA OB = AC BD ∴=ABCD ∴W 90ABC ∠=︒ ABCD ∴W 2486a =⨯a =20> 10-<∴20> y ∴1x =1y =(1,2)1y <-0x ∴<解析:令登山队测得气温为y ,海拔高度为x ,由题意可知,,所以当时,即,解得:,故选:A.9.答案:D 解析:如图,延长GE 交AB 于点K ,分别过点A 、K 作与点N ,与点M ,设A G 与CD 交于点O ,易知四边形BKEC ,BDGF 均为平行四边形,四边形KMNP 为矩形,在中,,,,,在中,,,,在中,,,,,,在中,,为直角三角形,为AG 的中点,4(1)1(1)561.51y x x ---=-+-=--19y =-1956x -=-4x =AN BC ⊥KM BC ⊥Rt ABN △6AB =60B ∠=︒132BN AB ==AN ==Rt AKP △4AK AB BK AB EC =-=-=60AKP B ∠=∠=︒122KP AK ∴==AP ==826PG KG KP BF KP ∴=-=-=-=Rt AKP △AG ==////EG CF AD EGO DAO ∴∽△△13EO GO EG OD AO AD ∴===AG = 624DE =-=114EO ED ∴==14OG AG ==EOG △222134EO OG EG +=+==EOG ∴△90HOC ∴∠=︒H故选:D.10.答案:B解析:如图,当经过点,解得当经过点,解得,所以,两个函数图象有两个交点时,m 的取值范围是.故选:B.11.答案:312GH AG ∴==OH GH OG ∴=-=HC ==12y x m =+0m +=m =12y x m =+21m +=0m =102m -<≤3==故答案为:3.12.答案:解析:正比例函数的图象在第一、三象限,,符合条件的正比例函数解析式可以为:(答案不唯一).故答案为:(答案不唯一).13.答案:90解析:根据题意得:(分)答:该生这学期的体育成绩是90分.故答案为:90.14.答案:解析:四边形ABCD 是正方形,,,是等边三角形,,,,,,故答案为:30.15.答案:①③④解析:由图象可得,快车比慢车晚出发2h,故①正确;快车速度是慢车速度的3倍,故②错误;,2y x= y kx =0k ∴>∴2y x =2y x =9520%9030%8850%90⨯+⨯+⨯=30︒90BAD ∴∠=︒AB AD =45DBA ∠=︒ADE △60DAE ∴∠=︒AD AE =9060150BAE ∴∠=︒+=︒︒AB AE =()1180150152ABE AEB ∴∠=∠=⨯-︒=︒︒30DBE DBA EBA ∴∠=∠-∠=︒(km /h)2a =/h)3, 26a a ∴÷=∴1(2)2am a m =-解得,,故③正确;,解得,此时慢车距乙地的距离为:解得,故④正确,故答案为:①③④.解析:四边形ABCD 是矩形,四边形CEFD 是平行四边形,,,,,,,,四边形ABEF 是平行四边形,点F 的运动轨迹是AF 所在的直线,,,要求的最小值,可以转化到求的最小值,如图,作点D 关于直线AF 的对称点G ,连接CG ,过G 作,设DG 与AF 交于点M ,过M 作,延长AM 交CH 于点N ,连接GF,,当C ,F ,G 三点共线时取等号,此时最小.由四边形ABEF 是平行四边形,四边形CEFD 是平行四边形知:,,即,,四边形FEDN 是平行四边形.,,,,3m =3(km)2a ⨯=162222a n a -⎛⎫+--= ⎪⎝⎭92n =19190, 624a a a -⨯==360a = AB CD ∴=//AB CD EF CD =//EF CD CE DF =AB EF ∴=//AB EF ∴∴CE DF = CE CF CF DF ∴+=+∴CE CF +CF DF +GH CD ⊥MP CH ⊥CF DF CF GF CG ∴+=+≥CF DF CG +=//AF BE //EF DC //FN ED //FE ND ∴EF DN ∴=DN AB ∴=5AB = 10BC =,,在中,,在中,,,在中,是DG 中点,,是的中位线,,,在中,17.答案:(1)5DN ∴=10AD =Rt ADN △AN ==DM AN ⊥ AD DN DM AN⋅∴==Rt DMN △MN ==MP CN ⊥ 2DM MN MP DN⋅∴==Rt MDP △4DP ==M //MP CH MP ∴DGH △24GH MP ∴==28DH DP ==13CH CD DH ∴=+=Rt CHG △CG ==CE CF ∴+-(2)解析:(1)原式(2)原式18.答案:(1)证明见解析(2)证明见解析解析:(1)∵四边形ABCD 是平行四边形∴,∵E ,F 分别是AB ,CD 的中点∴,∴.∴四边形EBFD 是平行四边形;(2)当满足时,四边形EBFD 为菱形.19.答案:(1)0.2,40,6(2)图见解析(3)2250人解析:(1)女生的总人数是:(人),则,,,故答案为:0.2,40,6;(2)补全直方图如图所示,(3)4+=+=4=+==+AB CD =//EB FD12BE AB =12DF CD =BE DF =ABD △90ADB ∠=︒120.3040÷=80.2040a ==40b =400.156c =⨯=81481500(0.300.250.15)160010501200225040++⨯+++⨯=+=答:估计身高在之间的学生共约有2250人.20.答案:(1),图见解析(2)解析:(1)由得,由P 在第二象限,得,解得则,x 的取值范围为S 的图象如图所示(2)当时,,解得,则,点P 的坐标为.21.答案:(1)图见解析(2)图见解析解析:(1)如图1所示,点D 和点F 即为所求;(2)如图所示,点M 和点N 为所求.22.答案:(1)①;②最少总运费为20080元155170x ≤<100x -<<(7,3)-10y x -=10y x =+0100x x <⎧⎨+>⎩100x -<<18(10)4402S x x =⨯⨯+=+100x -<<12S =44012x +=7x =-3y =(7,3)-(480)t x -(120)tx +(2)调运方案为:从A 城运往C 乡肥料,从B 城运往D 乡肥料,运往D 乡肥料,运费最少解析:(1)①从B 城运往C 乡的肥料为:;从B 城运往D 乡的肥料为:.②∵,∴y 随x 的增大而增大.∵∴当时,y 取得最小值,为20080.∴最少总运费为20080元.(2)设更换车型后的总运费为w 元.由题意,得∵∴∴w 随x 的增大而减小,∴当时,w 取得最小值.调运方案为:从A 城运往C 乡肥料,从B 城运往D 乡肥料,运往D 乡肥料,运费最少.23.答案:(1)(2)①,证明见解析解析:(1)∵四边形ABCD 为正方形∴,∵∴∴可设,在四边形ABMD 中400t 80t 520t (480)x -t (120)x +t 2015(480)25(400)24(120)y x x x x =+-+-++420080x =+40k =>040x ≤≤0x =(20)25(400)15(480)24(120)w m x x x x =-+-+-++(4)20080(040)m x x =-+≤≤46m <<240m -<-<400x =400t 80t 520t 135︒DM CQ =90BAD ∠=︒AB AD=AM AD=AB AM=AMD ADM x ∠=∠=︒ABM AMB y ∠=∠=︒9022360BAD ADM ABM BMD y x ∠+∠+∠+∠=++=︒︒︒︒解得:则:(2)①过C 作,且,连接MQ 交BC 点H ,连接GQ .∵四边形ABCD 为正方形∴,∵,且∴四边形DCQM 为平行四边形∴,且∴∵∴由(1)证得:∴∴∵∴∴∴,∴即:在等腰中∴②如图,135x y +=135BMD BMA AMD x y ︒+︒∠∠===∠+︒//CQ DM CQ DM =BC DC =90DCB ∠=︒//CQ DM CQ DM=//MQ CD MQ CD=90MHB DCB ∠=∠=︒MQ DC BC==BG DM⊥90BGM ∠=︒135BMD ∠=︒45BMG MBG ∠=∠=︒BG MG=12∠=∠901902GBC GMQ ︒∠=∠=-=︒∠-∠(SAS)BGC MGQ ≌△△GC GQ =BGC MGQ∠=∠BGC MGC MGQ MGC∠-∠=∠-∠90CGQ BGM ∠=∠=︒Rt CGQ△CQ ===DM CQ =连接BD ,作,交BM 的延长线于点H,,,,,,,,由①得,,,设,则,,在中,,,由①知,24.答案:(1)①,点和点DH BM ⊥6AB = 2BE CE =2CE ∴=4BE =BD =90BCD BGM ∠=∠=︒ DEC BEG ∠=∠CDE CBG ∴∠=∠DBM CBG∠=∠DBM CDE ∴∠=∠90H BCD ∠︒∠== BDH DEC ∴∽△△3BH CD DH CE∴==DH a =3BH a =45DMH BMG ∠︒∠== DM ∴==Rt BDH △DH a =3BH a =BD ==1a ∴=2=DH ∴=DM =CG DH ∴==(0,4)A -(4,0)B -(2,0)C②或(2)解析:(1)①∵,.∴与直线令,则,解得:,令,则,∴点A ,B ,C 的坐标分别是点,点和点;②∵点M ,N 分别在射线CA 和射线BA 上,设点∵四边形CMNP 为菱形∴轴,∴∴则,∵点,由勾股定理得:∴解得:∴①∴②1P ⎫⎪⎪⎭2P ⎫⎪⎪⎭h =1k =-2h =:4m y x =-:24n y x =-0y =40x --=240x -=4B x =-2C x =0x =4y =-(0,4)A -(4,0)B -(2,0)C (,24)M m m -//MN x MN CM CP==24M N y y m ==-(2,24)N m m --|3|M N MN x x m =-=(2,0)C 222(2)(24)CM m m =-+-222(2)(24)9m m m -+-=)3m -=)3m m-=-1m =2=32P CP MN m x ====-P x =32P CP MN m x ==-==-∴综上:点P 的坐标为或(2)由B 、D 的坐标得:直线BD 的表达式为:联立上式和直线AC 的表达式为:解得:则点,设点,过点B 作于点T ,则为等腰直角三角形,则,,过点T 作x 轴的平行线交过点B 和y 轴的平行线于点N ,交过点C 和y 轴的平行线于点M ,设点,,,,,则,,即且解得:P x =1P ⎫⎪⎪⎭2P ⎫⎪⎪⎭12,4y x =-142, 4hx x -=-Q x =82,14141Q h h ⎛⎫- ⎪--⎝⎭(,4)T t th -BT AC ⊥BCT △CT BT =90CTB ∠=︒(,4)T t th -90MTC NTB ∠+∠=︒ 90NTB TBN ∠+∠=︒MTC TBN ∴∠=∠90CMT TNB ∠=∠=︒ (AAS)CMT TNB ∴≌△△MC TN =BN MT =284141t th h ⎛⎫-=--- ⎪-⎝⎭8441th t h -=--12h =经检验12h ==。
湖北省武汉市江岸区2019-2020学年八年级(下)期中数学试卷(含解析)

2019-2020学年湖北省武汉市江岸区八年级(下)期中数学试卷一、选择题(共10小题).1.要使二次根式有意义,则x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x≠﹣3 D.x≥32.下列根式中是最简二次根式的是()A.B.C.D.3.以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4 B.1、1、C.3、4、5 D.5、12、134.下列计算正确的是()A.﹣=B.3﹣=3 C.×=D.÷2=5.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直6.下列命题的逆命题是真命题的是()A.同旁内角互补,两直线平行B.等边三角形是锐角三角形C.如果两个实数相等,那么它们的绝对值相等D.全等三角形的对应角相等7.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.则DH=()A.6 B.C.D.58.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10 B.12 C.13 D.149.如图,四边形AEFD和EBCF都是平行四边形,过点E作直线交边AD于点M,交边BC于点N,连接MF,NF.若▱AEFD和▱EBCF的面积分别为4和6,则△MNF的面积为()A.5 B.5.5 C.6 D.810.如图,△ABC中,∠C=45°,点E在边BC上,且满足AE=AB,D为线段AE的中点,若∠EDB=∠CAB,DB=3,则AE=()A.3B.2C.3D.6二、填空题(共6小题).11.=.12.已知是整数,则满足条件的最小正整数n为.13.在△ABC中,∠C=90°,∠A=30°,AC=2,则斜边AB=.14.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为.15.如图,四边形ABCD中,AD∥BC,∠B=90°,点E为线段CD的中点,AD=1,CB=2,AE=3,则AB=.16.如图,在平面直角坐标系中,A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),点E在x轴上,满足∠BED=∠DEC,则点E的坐标为.三、解答题(共72分)17.计算:(+)÷.18.如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.20.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?21.如图,是由49个边长为1的小正方形组成的7×7的正方形网格,小正方形的顶点为格点,点O、A、M、N、B均在格点上.(1)直接写出OM=;(2)点E在网格中的格点上,且△OME是以O为顶角顶点的等腰三角形,则满足条件的点E有个;(3)请在如图所示的网格中,借助矩形MNBA和无刻度的直尺作出∠MON的角平分线,并保留作图痕迹.22.小明在学完了平行四边形这个章节后,想对“四边形的不稳定性”和“四边形的判定”有更好的理解,做了如下的探究:他将8个木棍和一些钉子组成了一个正方形ABCD和平行四边形HEFG(如图1),且BC,EF在一条直线上,点D落在边HE上.经小明测量,发现此时B、D、G三个点在一条直线上,∠F=67.5°,DG=2.(1)求HG的长度;(2)设BC的长度为a,CE=(用含a的代数式表示);(3)小明接着探究,在保证BC,EF位置不变的前提条件下,从点A向右推动正方形,直到四边形EFGH刚好变为矩形时停止推动(如图2).若此时DE2=8(﹣1),求BF的长度.23.矩形ABCD的对角线交于点O,∠MON=α.(1)如图1,AD=DC,α=90°,点M在边AD上,点N在边CD上,求证:MO=ON;(2)如图2,∠ACD=30°,α=60°,点M在线段AD的延长线上,点N在线段CD的延长线上,若OM=ON,求的值;(3)如图3,AD=6,DC=8,α=45°,点M在线段AD的延长线上,点N在线段CD的延长线上,若DM=DN,直接写出线段ON的长度.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.参考答案一、选择题(共10小题).1.要使二次根式有意义,则x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x≠﹣3 D.x≥3【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.解:根据题意得:x+3≥0,解得,x≥﹣3.故选:B.2.下列根式中是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式的定义对各选项进行判断.解:=,==,=2,只有为最简二次根式.故选:B.3.以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4 B.1、1、C.3、4、5 D.5、12、13【分析】根据勾股定理的逆定理,可以判断各个选项中的三条线段是否可以构成直角三角形,从而可以解答本题.解:∵22+32=4+9=13≠16=42,故选项A中三条线段不能构成直角三角形;∵12+12=1+1=2=()2,故选项B中三条线段能构成直角三角形;∵32+42=9+16=25=52,故选项C中三条线段能构成直角三角形;∵52+122=25+144=225=152,故选项D中三条线段能构成直角三角形;故选:A.4.下列计算正确的是()A.﹣=B.3﹣=3 C.×=D.÷2=【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D进行判断.解:A、原式=2﹣,所以A选项错误;B、原式=2,所以B选项错误;C、原式==,所以C选项正确;D、原式=2÷2=,所以D选项错误.故选:C.5.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直【分析】利用正方形、矩形的性质即可判断.解:正方形、矩形都具有四个角都是直角,正方形的对角线互相垂直平分且相等,矩形的对角线互相平分且相等,故选:D.6.下列命题的逆命题是真命题的是()A.同旁内角互补,两直线平行B.等边三角形是锐角三角形C.如果两个实数相等,那么它们的绝对值相等D.全等三角形的对应角相等【分析】首先写出逆命题,然后再判断是否是真命题即可.解:A、同旁内角互补,两直线平行,逆命题是两直线平行,同旁内角互补,是真命题,故此选项符合题意;B、等边三角形是锐角三角形的逆命题是锐角三角形是等边三角形,是假命题,故此选项不合题意;C、如果两个实数相等,那么它们的绝对值相等,逆命题是两个实数绝对值相等,则这两个实数相等,是假命题,故此选项不合题意;D、全等三角形的对应角相等,逆命题是对应角相等的两个三角形全等,是假命题,故此选项不合题意;故选:A.7.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.则DH=()A.6 B.C.D.5【分析】先根据菱形的性质得OA=OC=4,OB=OD=3,AC⊥BD,再利用勾股定理计算出AB=5,然后根据菱形的面积公式得到•AC•BD=DH•AB,再解关于DH的方程.解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,则AD=5,∵S菱形ABCD=•AC•BD,S=DH•AB,菱形ABCD∴DH•5=×6×8,∴DH=.故选:B.8.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10 B.12 C.13 D.14【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.9.如图,四边形AEFD和EBCF都是平行四边形,过点E作直线交边AD于点M,交边BC于点N,连接MF,NF.若▱AEFD和▱EBCF的面积分别为4和6,则△MNF的面积为()A.5 B.5.5 C.6 D.8【分析】由平行四边形的性质得出△EMF的面积=平行四边形AEFD的面积=2,△ENF的面积=平行四边形EBCF的面积=3,进而得出答案.解:∵四边形AEFD和EBCF都是平行四边形,∴AD∥EF,BC∥EF,∴△EMF的面积=平行四边形AEFD的面积=×4=2,△ENF的面积=平行四边形EBCF的面积=×6=3,∴△MNF的面积=△EMF的面积+△ENF的面积=2+3=5;故选:A.10.如图,△ABC中,∠C=45°,点E在边BC上,且满足AE=AB,D为线段AE的中点,若∠EDB=∠CAB,DB=3,则AE=()A.3B.2C.3D.6【分析】过点A作AF⊥BE于F,交BD于G,由等腰三角形的性质及重心定理可得BG,再证明∠DBE=∠ACB=45°,∠FGB=45°,可证得FG=FB,由勾股定理解得FG,则可得BF、EF及AG,从而可得AF,最后在Rt△AEF中,由勾股定理可求得AE的长.解:过点A作AF⊥BE于F,交BD于G,如图:∵AE=AB,AF⊥BE,∴BF=EF,∠AEB=∠ABE,∵D为线段AE的中点,∴G为△AEB的重心,∴BG=2DG=BD=×3=2,AG=2FG,在△BDE和△CAB中,∠BED=∠CBA,∠BDE=∠CAB,∠BED+∠BDE+∠DBE=∠CBA+∠CAB+∠C=180°,∠C=45°,∴∠DBE=∠ACB=45°,在Rt△GFB中,∠GFB=90°,∠GBF=45°,∴∠FGB=90°﹣∠GBF=90°﹣45°=45°=∠GBF,∴FG=FB,∵FG2+FB2=BG2,∴2FG2=,∴FG=2,∴AG=2FG=2×2=4,∴FB=FG=2,∴AF=AG+FG=4+2=6,在Rt△AEF中,∠AFE=90°,EF=BF=2,AF=6,∴AE===2.故选:B.二、填空题(每小题3分,共18分)11.=10.【分析】直接利用二次根式的性质化简得出答案.解:==10.故答案为:10.12.已知是整数,则满足条件的最小正整数n为 3 .【分析】先变形得到=,根据题意n必须是3的完全平方数倍,所以最小正整数n为3.解:∵=,而是整数,∴最小正整数n为3.故答案为3.13.在△ABC中,∠C=90°,∠A=30°,AC=2,则斜边AB=.【分析】根据含30°角的再见三角形性质求出AB=2CB,根据勾股定理得出方程,求出BC即可.解:∵在△ABC中,∠C=90°,∠A=30°,∴AB=2BC,由勾股定理得:AB2=AC2+BC2,即(2BC)2=22+BC2,解得:BC=,所以AB=,故答案为:.14.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为(﹣2,﹣1).【分析】求出OC、OD的长,根据菱形的性质求出OA=OC=2,根据矩形的性质求出OB=EA=1,即可得出答案.解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).15.如图,四边形ABCD中,AD∥BC,∠B=90°,点E为线段CD的中点,AD=1,CB=2,AE=3,则AB=3.【分析】延长AE交BC的延长线于F,根据平行线的性质得到∠DAE=∠F,∠D=∠ECF,根据全等三角形的性质得到CF=AD=1,EF=AE=3,由勾股定理即可得到结论.解:延长AE交BC的延长线于F,∵AD∥BC,∴∠DAE=∠F,∠D=∠ECF,∵DE=CE,∴△ADE≌△FCE(AAS),∴CF=AD=1,EF=AE=3,∵BC=2,∴BF=3,AF=6,∵∠B=90°,∴AB===3,故答案为:3.16.如图,在平面直角坐标系中,A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),点E在x轴上,满足∠BED=∠DEC,则点E的坐标为(1,0)或(4,0).【分析】①过D作DE⊥AC于E,得到正方形,利用正方形的性质可得结论,②过D作DH⊥EC于H,利用角平分线的性质与勾股定理可得答案.解:①如图,过D作DE⊥AC于E,∵A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),∴∠DBA=∠BAE=∠AED=90°,BD=BA=6,∴四边形ABDE是正方形,连接AD,则∠BAD=∠EAD=45°,∴E,A重合时,有∠BED=∠DEC,∴E点的坐标为(4,0).②如图,过D作DH⊥EC于H,∵∠BED=∠DEC,DB⊥BE,∴DB=DH=6,∵C(4,4),D(﹣2,6),∴CD==,CH==2,由三角形内角和定理可得:∠BDE=∠HDE,∵DB⊥BE,DH⊥EH,∴BE=HE设BE=x,则HE=x,CE=x+2,AE=6﹣x,∵CA⊥EA,CA=4,∴(x+2)2=(6﹣x)2+42,解得,x=3,∴BE=3,∴E点的坐标为(1,0);综上,E点的坐标为(1,0)或(4,0).故答案为:(1,0)或(4,0).三、解答题(共72分)17.计算:(+)÷.【分析】利用二次根式的除法法则运算.解:原式=+=4+2.18.如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.【分析】首先利用平行四边形的性质,得出对角线互相平分,进而得出EO=FO,BO =DO,即可得出答案.【解答】证明:∵▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,∴AO=CO,BO=DO,∵AE=CF,∴AF=EC,则FO=EO,∴四边形BFDE是平行四边形.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.【分析】观察可知:(1)式是完全平方和公式,(2)是平方差公式.先转化,再代入计算即可.解:(1)当x=+1,y=﹣1时,原式=(x+y)2=(+1+﹣1)2=12;(2)当x=+1,y=﹣1时,原式=(x+y)(x﹣y)=(+1+﹣1)(+1﹣+1)=4.20.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?【分析】(1)根据勾股定理即可得到结论;(2)设梯子的A端下滑到D,如图,求得OC=0.7+0.8=1.5,根据勾股定理即可得到结论.解:(1)在Rt△AOB中,OB===0.7(m);(2)设梯子的A端下滑到D,如图,∵OC=0.7+0.8=1.5,∴在Rt△OCD中,OD===2(m),∴AD=OA﹣OD=﹣2=0.4,∴梯子顶端A下移0.4m.21.如图,是由49个边长为1的小正方形组成的7×7的正方形网格,小正方形的顶点为格点,点O、A、M、N、B均在格点上.(1)直接写出OM= 5 ;(2)点E在网格中的格点上,且△OME是以O为顶角顶点的等腰三角形,则满足条件的点E有 3 个;(3)请在如图所示的网格中,借助矩形MNBA和无刻度的直尺作出∠MON的角平分线,并保留作图痕迹.【分析】(1)利用勾股定理即可求出OM的长;(2)由OM=5,得OE=5,根据网格即可找到点E;(3)连接AN和BM交于点D,连接OD,即可作出∠MON的角平分线.解:(1)根据网格可知:OM==5,故答案为:5;(2)如图,由OM=5,∴OE=5,所以满足条件的点E有3个,分别为E1,E2,E3.故答案为:3;(3)如图,连接AN和BM交于点D,连接OD,则OD即为∠MON的角平分线.22.小明在学完了平行四边形这个章节后,想对“四边形的不稳定性”和“四边形的判定”有更好的理解,做了如下的探究:他将8个木棍和一些钉子组成了一个正方形ABCD和平行四边形HEFG(如图1),且BC,EF在一条直线上,点D落在边HE上.经小明测量,发现此时B、D、G三个点在一条直线上,∠F=67.5°,DG=2.(1)求HG的长度;(2)设BC的长度为a,CE=(﹣1)a(用含a的代数式表示);(3)小明接着探究,在保证BC,EF位置不变的前提条件下,从点A向右推动正方形,直到四边形EFGH刚好变为矩形时停止推动(如图2).若此时DE2=8(﹣1),求BF的长度.【分析】(1)根据平行四边形的性质得到∠H=∠GFE=67.5°,HE∥FG,求得∠GFE=67.5°,得到∠HDG=∠BDE=67.5°,根据等腰三角形的判定定理即可得到结论;(2)由(1)知,∠BDE=∠BED=67.5°,得到BE=BD,根据等腰直角三角形的性质得到BD=BC=a,于是得到结论;(3)设CD=a,根据矩形的性质得到EF=HG=2,∠HEF=90°,根据勾股定理即可得到结论.解:(1)∵四边形HEFG是平行四边形,∴∠H=∠GFE=67.5°,HE∥FG,∴∠GFE=67.5°,∵四边形ABCD是正方形,∴∠DCB=90°,∠BDC=∠BDC=45°,∴∠DCE=90°,∴∠CDE=22.5°,∴∠BDE=∠BDC+∠CDE=67.5°,∴∠HDG=∠BDE=67.5°,∴∠H=∠GDH,∴HG=DG=2;(2)由(1)知,∠BDE=∠BED=67.5°,∴BE=BD,∵BC的长度为a,∴BD=BC=a,∴CE=BE﹣BC=a﹣a=(﹣1)a;故答案为:(﹣1)a;(3)∵在推进过程中CD的长度保持不变,设CD=a,∵四边形EFGH是矩形,∴EF=HG=2,∠HEF=90°,∴∠DEC=90°,∴DE2=CD2﹣CE2,∵BC,EF位置不变,∴CE=(﹣1)a,∴在Rt△CDE中,由勾股定理得,DE2=CD2﹣CE2,∴8(﹣1)=a2﹣(﹣1)2a2,∴a2=4,∵a>0,∴a=2,∴BF=BE+EF=2+2.23.矩形ABCD的对角线交于点O,∠MON=α.(1)如图1,AD=DC,α=90°,点M在边AD上,点N在边CD上,求证:MO=ON;(2)如图2,∠ACD=30°,α=60°,点M在线段AD的延长线上,点N在线段CD的延长线上,若OM=ON,求的值;(3)如图3,AD=6,DC=8,α=45°,点M在线段AD的延长线上,点N在线段CD的延长线上,若DM=DN,直接写出线段ON的长度.【分析】(1)根据正方形的性质得到OD=OC,OD⊥OC,由全等三角形的性质即可得到结论;(2)如图2,在DM上截取PM=DO,连接OP,根据矩形的性质得到OD=OC,求得∠ODC=∠ACD=30°,根据全等三角形的性质得到ND=OP,求得∠N=∠POM,得到∠DOP =30°,设DO=PD=x,根据三角函数的定义即可得到结论;(3)如图3,过O作OG⊥CD于G,根据三角形中位线定理得到OG=3,DG=4,连接MN,得到∠DNM=45°,过N作NH⊥OM于H,根据等腰直角三角形的性质得到NH=ON,设DM=DN=x,根据勾股定理得到ON==,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,AD=CD,∴四边形ABCD是正方形,∴OD=OC,OD⊥OC,∵∠MON=90°,∴∠MOD=∠NOC,在△DMO与△DNO中,∴△DMO≌△CNO(AAS),∴MO=ON;(2)解:如图2,在DM上截取PM=DO,连接OP,∵四边形ABCD是矩形,∴AO=OC=AC,DO=OB=BD,AC=BD,∴OD=OC,∴∠ODC=∠ACD=30°,∵∠NOD+∠DOM=∠DOM+∠M=60°,∴∠NOD=∠M,∵OM=ON,∴△OND≌△OMP(SAS),∴ND=OP,∴∠N=∠POM,∴∠POM+∠NOD=∠N+∠MOD=∠ODC=30°,∴∠DOP=30°,即△DOP是顶角为120°的等腰三角形,∴设DO=PD=x,∴ND=OP=x,∵DM=DP+PM=DP+DO=2x,∴==;(3)如图3,过O作OG⊥CD于G,∴OG∥AD,∵AO=CO,∴OG=AD,DG=CG=CD,∵AD=6,DC=8,∴OG=3,DG=4,连接MN,∵∠MDN=90°,DM=DN,∴∠DNM=45°,过N作NH⊥OM于H,∵∠NOM=45°,∴△ONH是等腰直角三角形,∴NH=ON,设DM=DN=x,∴MN=x,NG=4+x,∴ON==,∴NH=,∵∠ONH=∠DNM=45°,∴∠ONG=∠MNH,∵∠NHM=∠NGO=90°,∴△ONG∽△MNH,∴,∴=,解得:x=5(负值舍去),∴ON==3.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=BE,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=DE.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.【分析】问题背景:利用平行四边形的性质以及等边三角形的性质即可解决问题.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.证明△FHE≌△MKN(AAS)可得结论.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.证明△MNG是等腰直角三角形即可解决问题.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接PA交BD于O.证明AP=CD,求出PA的最小值即可解决问题.解:问题背景:根据平行四边形的性质可知AC=BE,根据等边三角形的性质可知CD=DE,故答案为BE,DE.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.∵四边形ABCD是正方形,∴∠A=∠B=∠C=90°,∵FH⊥BC,∴∠FHB=90°,∴四边形AFHB是矩形,∴FH=AB,同理可证:MK=BC,∵AB=BC,∴FH=MK,∵MN⊥EF,∴∠EON=∠ECN=90°,∴∠MNK+∠CEO=180°,∵∠FEH+∠CEO=180°,∴∠MNK=∠FEH,∵∠FHE=∠MKN=90°,∴△FHE≌△MKN(AAS),∴EF=MN.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.∴FM=EG,FM∥EG,EF=MG,EF∥MG,∴∠NOE=∠NMG=90°,∵MN=EF,∴MN=MG,∴GN=MG=EF,∵FM+EN=EG+EN≥NG,∵EF≥AB=4,∴FM+NE≥4.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接PA交BD于O.∴DP=AB=BC,∴∠DPB=∠ABC=∠ACB,∵DP=AC,∠DPB=∠ACB,PC=OC,∴△DPC≌△ACP(SAS),∴DC=AP,∵A到DB的距离为2,∴AO≥2,∴DC=AP=2AO≥4,∴CD的最小值为4.。
初二下册数学期末复习03勾股定理必刷提高练习题(原卷版)

2019-2020学年八年级数学下册同步闯关练(人教版)第十七章《勾股定理》17.117.2勾股定理及勾股定理的逆定理知识点1:勾股定理【例1】(2020春•朝阳区校级月考)如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,DE是AC 的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD等于()A.4B.3C.2.5D.2.4【变式1-1】(2019秋•雨花区校级期末)如图,Rt△ACB中,∠ACB=90°,AB=13cm,AC=5cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts,当△APB为等腰三角形时,t的值为()A.或B.或12或4C.或或12D.或12或4【变式1-2】(2020•浙江自主招生)如图,边长为的立方体中,B,C,D为三条棱中点,过BCD的平面切割立方体得四面体,则以△BCD为底面的四面体的高为.【变式1-3】(2019秋•南岸区校级期末)如图,在Rt△ABC,∠ACB=90°,AD在△ABC外,AD=AC,∠CAD=∠ABC,连接BD.若AB=5,AC=3,则BD=.【变式1-4】(2019秋•高安市校级期末)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD =4,CD=10,求BD的长.【变式1-5】(2019秋•邳州市期末)如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.【变式1-6】(2019秋•南召县期末)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.知识点2:勾股定理的证明【例2】(2019春•德州期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【变式2-1】(2019秋•铁西区校级月考)“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.9B.36C.27D.34【变式2-2】(2017秋•新泰市期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于.【变式2-3】(2017春•厦门期末)公元3世纪,我国数学家赵爽用弦图证明了勾股定理,在前面的学习中,我们知道根据勾股定理可以用长为有理数的线段来作出长为,,的线段.若一个直角三角形的一条边长为,其他两边长均为有理数,则其它两边的长可以为,.【变式2-4】(2018秋•泰兴市校级月考)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2.【变式2-5】(2018秋•商河县期中)如图1是用硬纸片做成的两个全等的直角三角形,两条直角边长分别为a和b,斜边为c;图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图,并用它验证勾股定理;(2)假设图3中的直角三角形有若干个,你能运用图中所给的直角三角形拼出另一种能够验证勾股定理的图形吗?画出拼成图形的示意图(不写验证过程).【变式2-6】(2016秋•甘州区校级月考)请选择一个图形来证明勾股定理.(可以自己选用其他图形进行证明)【变式2-7】(2018春•遵义期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD =a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.知识点3:勾股定理的逆定理【例3】(2019春•贵池区期中)△ABC的三边分别为a,b,c,下列条件能推出△ABC是直角三角形的有()①a2﹣c2=b2;②(a﹣b)(a+b)+c2=0;③∠A=∠B﹣∠C;④∠A:∠B:∠C=1:2:3;⑤;⑥a=10,b=24,c=26.A.2个B.3个C.4个D.5个【变式3-1】(2019秋•义乌市期末)在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC 是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a:b:c=1:1:【变式3-2】(2019秋•南岸区校级月考)如图,在四边形ABCD中,AB=BC=2,DC=3,AD=,∠ABC=90°,则四边形ABCD的面积是【变式3-3】(2019•郫都区模拟)如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.【变式3-4】(2019秋•泰安期末)如图所示,已知△ABC中,AB=8cm,AC=6cm,BC=10cm.分别以三边AB,AC及BC为直径向外作半圆,求阴影部分的面积.【变式3-5】(2018秋•长丰县期末)如图,在△ABC中,AB=30cm,BC=35cm,∠B=60°,有一动点E 自A向B以2cm/s的速度运动,动点F自B向C以4cm/s的速度运动,若E、F同时分别从A、B出发.(1)试问出发几秒后,△BEF为等边三角形?(2)填空:出发秒后,△BEF为直角三角形?【变式3-6】(2019春•三台县期中)如图,在四边形ABCD中,O是BD的中点,且AD=8,BD=12,AC=20,∠ADB=90°.求BC的长和四边形ABCD的面积.知识点4:勾股数【例4】(2017秋•靖江市校级月考)下列一组数是勾股数的是()A.1.5,2,2.5B.7,40,41C.5,12,13D.12,15,20【变式4-1】下列各组数为勾股数的是()A.2,2,5B.15,8,17C.9,12,13D.3a,4a,5a【变式4-2】(2019秋•眉山期中)观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是.【变式4-3】(2017春•永城市期中)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.【变式4-4】(2015秋•泰兴市期末)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.【变式4-5】(2014秋•兴化市校级月考)观察下列等式:32=4+5=(5+4)(5﹣4)=52﹣42;52=12+13=(13+12)(13﹣12)=132﹣122;72=24+25=(25+24)(25﹣24)=252﹣242;…(1)仿照上述等式的规律写出:92=+=2﹣2(2)从上面的式子中,可以得到哪些勾股数?按此规律,你还能写出哪些勾股数?(至少三个)【变式4-6】(2018秋•内江期末)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称,;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)知识点5:勾股定理的应用【例5】(2019春•江岸区校级月考)在平静的湖面上,有一支红莲,高出水面0.1米,一阵风吹来,红莲吹到一边花朵齐及水面,已知红莲移动的水平距离为0.5米,则这里的水深是()A.1米B.1.5米C.1.2米D.1.3米【变式5-1】(2019秋•诸暨市校级月考)如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为()A.6秒B.8秒C.10秒D.18秒【变式5-2】(2019秋•温州期末)如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B.最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为米.【变式5-3】(2019春•金州区校级月考)如图,有一个长方体的盒子,它的长、宽、高分别是4m,3m和12m,则盒内可放的木棒最长为m.【变式5-4】(2019秋•金台区期末)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB 于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【变式5-5】(2019春•马山县期中)如图,某开发区有一块四边形空地ABCD,现计划在空地上种植草皮.经测量,∠B=90°,AB=20m,BC=15m,CD=7m,AD=24m.(1)求这块四边形空地的面积;(2)若每平方米草皮需要200元,则种植这片草皮需要多少元?【变式5-6】(2019秋•泉港区期末)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?。
2013—2014学年第二学期八年级数学期末试题(含答案)

2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期末试卷

八年级数学人教新课标版(2012教材)下学期期末试卷(答题时间:90分钟) 一、选择题 1. 如果2(21)a =1−2a ,则( )A. a <12B. a ≤12C. a >12D. a ≥122. 某次器乐比赛设置了6个获奖名额,共有ll 名选手参加,他们的比赛得分均不相同。
若知道某位选手的得分。
要判断他能否获奖,在下列ll 名选手成绩的统计量中,只需知道( )A. 平均数B. 众数C. 中位数D. 无法判断 3. 计算(2-1)(2+1)2的结果是( ) A. 2+1 B. 3(2-1) C. 1D. -1 4. 如图,正方形OABC 的边长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A. 1B.2 C. 1.5 D. 2 5. 一条直线y =kx +b ,其中k +b =-5、kb =6,那么该直线经过( ) A. 第二、四象限B. 第一、二、三象限C. 第一、三象限D. 第二、三、四象限*6. 你喜欢看篮球比赛吗?美国休斯敦火箭队为了能够重塑昔日辉煌,在这个夏天的转会市场上引爆了一个“重磅炸弹”,他们用弗朗西斯交换来两届得分王麦格雷迪,下表为休斯球龄(年)1 2 3 6 7 9 10 12 13 人数 41 2 3 1 1 2 2 1 A. 1,6 B. 6,1 C. 1,1 D. 6,3*7. 直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A. x >-1B. x <-1C. x <-2D. 无法确定*8. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 对应点为A ′,且B ′C =3,则AM 的长是( )A. 1.5B. 2C. 2.25D. 2.5**9. 把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A. 1<m <7 B. 3<m <4 C. m >1 D. m <4**10. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A. 1B. 2C. 4-22D. 32-4二、填空题 11. 某班七个兴趣小组人数分别为:3,3,4,x ,5,5,6,已知这组数据的平均数是4,则这组数据的中位数是________。