轴对称经典题型四
轴对称相关最值问题

与轴对称有关的最值问题【典型题型一】:如图,直线 l 和 l 的异侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB最小。
APD BEC图(5)【典型题型二】如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB最小。
【练习】 1、( 温州中考题 ) 如图( 5),在菱形 ABCD中,AB=4a,E 在 BC上,EC=2a,∠ BAD=1200, 点 P 在 BD上,则 PE+PC 的最小值是()解:如图( 6),由于菱形是轴对称图形,因此 BC中点 E 对于对角线 BD的对称点 E 必定落在 AB的中点 E1,只需连结 CE1,CE1 即为 PC+PE的最小值。
这时三角形 CBE1 是含有 30 角的直角三角形, PC+PE=C1E=23 a 。
因此选( D)。
2、如图( 13),一个牧童在小河南 4 英里处牧马,河水向正东方流去,而他正位于他的小屋 B 西 8 英里北 7 英里处,他想把他的马牵到小河畔去饮水,而后回家,他可以达成这件事所走的最短距离是()(A) 4+ 185 英里(B) 16 英里(C) 17 英里(D) 18 英里3.如图, C为线段 BD上一动点,分别过点 B、D作 AB⊥BD,ED⊥BD,连结 AC、EC。
已知 AB=5,DE=1,BD=8,设 CD=x.请问点 C知足什么条件时, AC+CE的值最小 ?AC' 4.如图,在△ ABC中,AC=BC=2,∠ACB=90°, D是 BC边的中点, E是 AB边上一动点,则 EC+ED的最小值为 _______。
E即是在直线 AB上作一点 E,使 EC+ED最小作点 C对于直线 AB的对称点 C' ,连结 DC'交AB E DC' EC+ED DBC' DB=1 BC=2 于点,则线段的长就是的最小值。
在直角△中,,依据勾股定理可得, DC'= 55.如图,等腰 Rt△ABC的直角边长为 2,E是斜边 AB的中点, P 是 AC边CBD A上的一动点,则 PB+PE的最小值为E 即在 AC上作一点 P,使 PB+PE最小P作点 B对于 AC的对称点 B' ,连结 B'E,交 AC于点 P,则 B'E = PB'+PE = PB+PEB'E 的长就是 PB+PE的最小值B' CBF在直角△ B'EF 中,EF = 1 ,B'F = 3 依据勾股定理, B'E = 10A D6.如下图,正方形 ABCD的面积为 12,△ ABE是等边三角形,点 E 在正方形 ABCD内,E 在对角线 AC上有一点 P,使 PD+PE的和最小,则这个最小值为()P A.2 3 B.2 6 C.3 D. 6B C即在 AC上求一点 P,使 PE+PD的值最小点 D对于直线 AC的对称点是点 B,连结 BE交 AC于点 P,则 BE = PB+PE= PD+PE,BE的长就是 PD+PE的最小值 BE = AB = 2 37.如图,若四边形 ABCD是矩形, AB = 10cm ,BC = 20cm,E 为边 BC上的一个动点, P 为C'BD上的一个动点,求 PC+PD的最小值;A D作点 C对于 BD的对称点 C' ,过点 C',作 C'B⊥BC,交 BD于点 P,则 C'E 就是 PE+PC的最小20值直角△ BCD中,CH= 错误!不决义书签。
八上 期中复习 轴对称必考题型 分类全面

教学主题轴对称期中复习教学目标巩固轴对称易考题型重要知识点1.轴对称2.线段、角的轴对称性3.等腰三角形的轴对称性教学过程知识点一、轴对称图形1、下列图案是几种名车的标志,请你从中判断哪些是轴对称图形,并画出其对称轴.2、下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.4知识点二、线段轴对称性1.线段垂直平分线的性质定理:线段垂直平分线上的点_____________________.2.线段垂直平分线的性质定理的逆定理:到线段两端距离相等的点 .例题:1.下列图形中,不是轴对称图形的是 ( )A.两条相交直线 B.线段C.有公共端点的两条相等线段 D.有公其端点的两条不相等线段2.到三角形的三个顶点距离相等的点是 ( )A.三条角平分线的交点 B.三条中线的交点C.三条高的交点 D.三条边的垂直平分线的交点3..如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE分别交BC、BA于点D、E,则△AEC的周长等于 ( )A.a+b B.a-b C.2a+b D.a+2b4.如图,三角形纸片ABC,AB=10 cm,BC=7 cm,AC=6 cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为_______cm;连接CE,则线段BD、CE的关系是__________________________________.知识点三、角的轴对称性角平分线上的点到角的两边距离___________.到角两边距离相等的点在___________.例题:1.如图,AD∥BC,DC⊥AD,AE平分∠BAD,且E是DC的中点,EF⊥AB于点F.问AD、BC与AB之间有何关系?为什么?2.如图,已知BD为∠ABC的平分线,DE⊥BC于E,且AB+BC=2BE(1) 求证:∠BAD+∠BCD=180°;(2) 若将条件“AB+BC=2BE”与结论“∠BAD+∠BCD=180°”互换,结论还成立吗?请说明理由知识点四、等腰三角形的轴对称性1、定理:等腰三角形的两底角相等(简称“等边对等角”).2、定理:等腰三角形底边上的高线、中线及角平分线重合.3.等边三角形的判定方法:(1)___________________三角形是等边三角形;(2)定理:_____________________三角形是等边三角形;(3)定理:有一个角是______0的等腰三角形是等边三角形.4、直角三角形斜边上的中线等于斜边的一半。
专题05 轴对称重难点题型分类(原卷版)—八年级数学上册重难点题型分类高分必刷题(人教版)

专题05轴对称重难点题型分类-高分必刷题(原卷版)专题简介:本份资料包含《轴对称》这一章除各类压轴题之外的六种主流题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含的题型有:轴对称图形、垂直平分线的性质与判定、尺规作图、最短路径问题、等腰三角形的性质与判定、等边三角形的性质与判定。
适合于培训机构的老师给学生作培训时使用或者学生考前刷题时使用。
题型一轴对称图形1.(2021·湖南)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(2021·辽宁)若点M(2,a)和点N(a+b,3)关于y轴对称,则a、b的值为()A.a=3,b=-5B.a=-3,b=5C.a=3,b=5D.a=-3,b=13.如图,是小亮在镜中看到身后墙上的时钟,此时时钟的实际时刻是()A.3:55B.8:05C.3:05D.8:554.(2022·浙江)如图,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N 的位置上,若55∠-∠的值为()∠=︒,则21EFGA.35︒B.40︒C.45︒D.55︒题型二垂直平分线的性质与判定1.垂直平分线的定义经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线).2.垂直平分线的性质垂直平分线上任意一点,到线段两端点的距离相等..3.垂直平分线的判定到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.5.(2015·湖北)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8B.9C.10D.116.(2017·湖北)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20°B.40°C.50°D.60°8.(2021·宁夏)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,9.(2021·北京)如图所示,AD是ABC∠=∠.连结AF,求证:BAF ACF10.(2021·山东)已知:如图,在△ABC中,∠BAC的平分线AP与BC的垂直平分线PQ相交于点P,过点P分别作PM⊥AC于点M,PN⊥AB交AB延长线于点N,连接PB,PC.求证:BN=CM.11.如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6cm,AC=10cm,求AD的长.12.已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线D交于点D,DM⊥AB于M,DN⊥AC的延长线于N.(1)证明:BM=CN;(2)当∠BAC=70°时,求∠DCB的度数.13.(2022·广东)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.14.(2019·广东)如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .求证:(1)∠ECD =∠EDC ;(2)OC =OD ;(3)OE 是线段CD 的垂直平分线.题型三尺规作图15.(2022·辽宁)已知在ABC 中,点D 为线段BC 边上一点,则按照顺序,线段AD 分别是ABC 的()A .①中线,②角平分线,③高线B .①高线,②中线,③角平分线C .①角平分线,②高线,③中线D .①高线,②角平分线,③中线16.(2022·山东)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若ABC 的周长为12,5AB ,则ADC 的周长为()A .10B .9C .8D .717.(2022·福建)如图,已知△ABC .(1)求作BC边上高AD,交BC于点D,∠BAC的平分线AE,交BC于点E(要求:尺规作图,不写作法,保留作图痕迹).(2)若∠B=35°,∠C=65°,求∠DAE的度数.18.按要求完成下列作图,不要求写作法,只保留作图痕迹.(1)已知:线段AB,作出线段AB的垂直平分线MN.(2)已知:∠AOB,作出∠AOB的平分线OC.19.(2020·北京)如图,已知∠BAC及两点M、N.求作:点P,使得PM=PN,且P到∠BAC两边的距离相等.题型四最短路径问题=,AD、CE是△ABC的两条中线,P是AD上一个动点,20.(青竹湖)如图,在△ABC中,AB AC则下列线段的长度等于BP EP+最小值的是()A.BCB.CEC.ADD.AC21.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40°B.100°C.140°D.50°22.(2020·北京)如图,在平面直角坐标系xOy中,点O(0,0),A(-1,2),B(2,1).(1)在图中画出△AOB关于y轴对称的△A1OB1,并直接写出点A1和点B1的坐标;(2)在x轴上画出点P,使得PA+PB的值最小.23.(北雅)阅读下列一段文字:已知在平面内两点P1(x1,y1)、P2(x2、y2),其两点间的距离P1P2=(1)试求A、B两点的距离;(2)在x轴上找一点P(不求坐标,画出图形即可),使PA+PB的长度最短,求出PA+PB的最短长度.(3)在x轴上有一点M,在y轴上有一点N,连接A、N、M、B得四边形ANMB,若四边形ANMB的周长最短,请找到点M、N(不求坐标,画出图形即可),求出四边形ANMB的最小周长.题型五等腰三角形的性质与判定1.定义:两条边相等的三角形是等腰三角形。
初二数学轴对称图形经典题

初二数学增补习题一、选择题1.以下命题中:①两个全等三角形合在一同是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直均分线;④一条线段能够看着是以它的垂直均分线为对称轴的轴对称图形.正确的说法有()个A.1 个B.2 个C.3 个D.4 个2.以下图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.此中是轴对称图形有()个A.1 个B.2 个C.3 个D.4 个3.已知∠ AOB=30°,点 P 在∠ AOB的内部, P1与 P 对于 OA对称, P2与 P 对于 OB对称,则△P OP是()12A.含 30°角的直角三角形;B.顶角是 30 的等腰三角形;A C.等边三角形D.等腰直角三角形 .4.如图:等边三角形ABC中, BD= CE, AD与 BE订交于点 P,则∠ APE的度数是()A.45°B.55°EP C.60°D.75°5. 等腰梯形两底长为4cm 和 10cm,面积为 21cm2,则这个梯形较小B CD 的底角是()度 .A.45°B.30°C.60°D.90°6.已知点 P 在线段 AB的中垂线上,点Q 在线段 AB的中垂线外,则()A . PA+PB> QA+QB B. PA+PB< QA+QBD . PA+PB= QA+QB D.不可以确立7.已知△ ABC与△ A1B1C1对于直线 MN对称,且 BC与 B1C1交与直线 MN上一点 O,则()A.点 O 是 BC 的中点B.点 O是 B C 的中点11C .线段 OA与 OA1对于直线MN对称D.以上都不对8.如图:已知∠AOP=∠BOP=15°, PC∥ OA,B PD⊥ OA,若 PC=4,则 PD=()A.4B. 3CC.2D. 1P9.∠ AOB的均分线上一点P 到 OA的距离为 5, Q 是 OB上任一点,则()O AA .PQ>5B.PQ≥5DC .PQ<5D.PQ≤510 .等腰三角形的周长为15cm,此中一边长为 3cm.则该等腰三角形的底长为()A.3cm 或 5cm B . 3cm 或 7cm C. 3cm D. 5cm 二.填空题11.线段轴是对称图形,它有_______ 条对称轴.12.等腰△ ABC中,若∠ A=30°,则∠ B=________.13.在 Rt △ ABC中,∠C=90°,AD均分∠ BAC交 BC于 D,若 CD=4,则点 D到 AB的距离是__________ .14.等腰△ ABC中, AB=AC=10,∠ A=30°,则腰 AB上的高等于 ___________ .15.如图:等腰梯形ABCD中, AD∥ BC, AB=6, AD=5, BC=8,且 AB∥ DE,则△ DEC的周长是____________ .A D 16.等腰梯形的腰长为2,上、下底之和为10 且有一底角为60°,则它的两底长分别为____________ .17.若 D 为△ ABC的边 BC上一点,且 AD=BD, AB=AC=CD,CBE 则∠ BAC=____________.18.△ ABC中,AB、AC的垂直均分线分别交BC 于点 E、F,若∠ BAC=115°,则∠ EAF=___________.三.解答题19.如图:已知∠ AOB和 C、 D 两点,求作一点 P,使 PC=PD,且 P 到∠ AOB两边的距离相等.②如图:某地有两所大学和两条订交错的公路,(点 M,N表示大学, AO,BO表示公路) .AC·A· DO M现计划修筑O N B 一座物质库房,希望库房到两所大学的B 距离相等,到两条公路的距离也相等。
轴对称的题型分类

专题一:根据轴对称及线段垂直平分线性质的作图题1如图所示,EFGH 是一矩形的弹子球台面,有黑、?白两球分别位于 A 、B 两点的位置上,试问:怎样撞击白球,使白球先撞击边EF?反弹后再击中黑球? 2. 如图所示,一牧人带马群从 A 点出发,先到草地边缘 MN 放牧,再带马群到河边缘PQ 去给马饮水,试问:?牧人应走哪条路线才能使总路程最短? 3. 如图,P 为/ AOB 内任意一点,分别在 OA 0B 上求作点P i 、电使厶PPP 的周长最小。
1.如图所示,在△ ABC 中,AB=AC ,/ A=120 ° , AB?的垂直平分 线MN?分别交BC 、AB 于点M 、N ,求证:CM=2BM .2.如图所示,AD >^ ABC 的角平分线,EF 是AD 的垂直平分线,交 BC 的 延长线于点 F ,连结 AF.求证:/ BAF=/ ACF专题三:等腰三角形边与角计算中的分类讨论思想与方程思想1•已知等腰三角形的一个内角是80°,则它的另外两个内角是 _______________ 2.已知等腰三角形的一个内角是 100°,则它的另外两个内角是 _______________3•已知等腰三角形有两边的长分别为6, 3,则这个等腰三角形的周长是 ________________ 4.已知等腰三角形的周长为 _________________________ 24, —边长为6,则另外两边的长是 5.等腰三角形的周长是 ________________________________________ 16,其中两边之差为 2,则它的三边的长分别为6. 等腰三角形一腰上的高与另一腰的夹角为 ___ 30°,则它的顶角度数为7. —等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则这个等腰三角形的底边长是 ___________专题四•关于等腰、等边三角形证明题1•如图,在 Rt △ ABC 中,AB=AC , / BAC=90 ° , D 为 BC 的中点.&如图,/ DEF =36 B D F10.如图所示,在△ ABC 中,D 在BC 上,若 AD=BD AB=AC=CD 求/ BAC的度数.(1)写出点D至U从BC三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM ,请判断△ DMN的形状,并证明你的结论NA M2.如图,在等边厶ABC中,延长AC到D,以BD为一边作等边△ BDE连接AE求证:AD=AE+AC.13.如图14- 104 所示,已知/ ACB=90 , CD是高,/ A=30° .求证BD=_ AB41ABC 中,/ BAC=120 ° , D 为BC 中点,DE丄AB 于E。
有关坐标对称及最值问题5种题型

坐标对称及最值问题是数学中的常见问题,常常出现在函数、几何、三角函数等领域。
这类问题需要运用对称思想,以及寻找最值的方法。
下面列举了5种常见的题型及相应的解法。
题型一:函数的最值对于函数f(x),其最值可能出现在最小值(f(x)min)和最大值(f(x)max)上。
对于这类问题,我们通常需要观察函数的对称性,例如,如果函数是关于原点对称的,那么最小值和最大值可能在左右两侧取得。
解法上,我们通常需要利用导数或其他方法来找到函数的极值点,从而确定最值。
题型二:两点之间的距离在两点之间的距离问题中,如果两个点关于某个轴对称,那么它们之间的距离可以通过简单的轴对称距离公式来计算。
解法上,我们通常需要利用轴对称距离公式,以及两点之间的距离公式来求解。
题型三:圆的半径的最值在圆的半径的最值问题中,如果圆关于某条直线对称,那么我们需要找到圆的半径与对称轴的位置关系,从而确定圆的半径的最值。
解法上,我们通常需要利用圆的半径公式,以及对称轴的位置关系来求解。
题型四:三角形的重心坐标在三角形的重心坐标问题中,如果三个顶点关于某条直线对称,那么我们需要找到重心坐标与对称轴的关系,从而确定重心的坐标。
解法上,我们通常需要利用重心的几何性质,以及对称轴的位置关系来求解。
题型五:椭圆的离心率在椭圆的离心率问题中,如果焦点关于某轴对称,那么我们需要找到椭圆的离心率与对称轴的关系,从而确定椭圆的离心率。
解法上,我们通常需要利用椭圆的离心率公式,以及对称轴的位置关系来求解。
总的来说,坐标对称及最值问题的解法主要依赖于对称性和位置关系。
对于不同类型的题目,我们需要灵活运用这些方法来解决问题。
同时,对于不同类型的题目,也需要进行相应的变化和拓展,以适应更复杂的情况。
希望以上信息对您有所帮助。
如果您有任何具体问题或需要进一步的解释,请随时告诉我。
直线中的对称问题方法总结及典型例题

直线中的对称问题—4类对称题型直线的对称问题是我们学习平面解析几何过程中的不可忽视的问题,我们可以把它主要归纳为,点关于点对称,点关于线对称,线关于点对称,线关于线对称问题,下面我们来一一探讨:一、点关于点对称问题解决点点对称问题的关键是利用中点坐标公式,同时也是其它对称问题的基础.例1.求点(1)()3,1A 关于点()2,3P 的对称点'A 的坐标,(2)()2,4A ,()'0,2A 关于点P 对称,求点P 坐标.解:由题意知点P 是线段'AA 的中点,所以易求(1)()'1,5A(2)()1,3P .因此,平面内点关于对称点坐标为平面内点,关于点对称二、点关于线对称问题 求定点关于定直线的对称问题时,根据轴对称定义利用①两直线斜率互为负倒数,②中点坐标公式来求得.例2.已知点直线:,求点关于直线的对称点的坐标 解:法(一)解:设,则中点坐标为且满足直线的方程 ①又与垂直,且斜率都存在即有 ②由①②解得 ,法(二)求点点关于线对称问题,其实我们可以转化为求点关于点对称的问题,可先求出的直线方程进而求与的交点坐标,再利用中点坐标公式建立方程求坐标.三、线关于点对称问题求直线关于某一点的对称直线的问题,一般转化为直线上的点关于点的对称问题.例3.求直线:关于点的对称直线的方程.解:法(一)直线:与两坐标轴交点为,点关于对称点点关于对称点过的直线方程为故所求直线方程为.法(二)由两直线关于点对称,易知两直线平行,则对称点到两直线的距离相等,可以建立等式,求出直线方程.四、线关于线的对称问题求直线关于直线的对称问题,一般转化为点关于直线对称问题:即在已知直线上任取两不同点,求出这两点关于直线的对称点再求出直线方程.例4.求已知直线:关于直线对称的直线方程.解:在:上任取一点直线的斜率为3过点且与直线垂直的直线斜率为,方程为得所以点为直线与的交点,利用中点坐标公式求出关于的对称点坐标为又直线与的交点也在所求直线上由得所以交点坐标为.过和的直线方程为,故所求直线方程.。
专题05设计轴对称图案(2个知识点4种题型1种中考考法)(原卷版)

专题05设计轴对称图案(2个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.利用轴对称的性质设计图案(重点)知识点2.轴对称图形在现实生活中的广泛应用【方法二】实例探索法题型1.折叠剪纸问题题型2.在网格中设计轴对称图案题型3.图案设计在生活中的应用题型4.根据设计,说出创意【方法三】仿真实战法考法. 利用轴对称设计图案【方法四】成果评定法【学习目标】1.欣赏生活中的轴对称图案,感受轴对称在现实生活中的广泛应用和文化价值。
2.能利用轴对称进行简单的图案设计,感受数学之美。
3.通过画图、拼图、剪图,培养动手操作能力。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.利用轴对称的性质设计图案(重点)利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.【例1】(2022秋·八年级课时练习)如图是由三个全等的菱形拼接成的图形,若平移其中一个菱形,与其他两个菱形重新拼接(无覆盖,有公共顶点),可以拼接成不全等的轴对称图形有()A.3种B.4种C.6种D.8种【变式1】.(2021秋·江苏盐城·八年级校联考阶段练习)如图,将已知四边形分别在方格纸上补成以已知直线l为对称轴的轴对称图形.【变式2】(2022秋·浙江绍兴·八年级校考期中)如图正方形网格中的每一个小正方形边长都是1.(1)画出下面图形的另一半,使得它们是轴对称图形.(2)求图中这棵树的面积.【变式3】(2022秋•兴化市校级期末)如图是由三个阴影的小正方形组成的图形,请你在网格图中补画一个有阴影的小正方形,使四个阴影的小正方形组成的图形为轴对称图形.知识点2.轴对称图形在现实生活中的广泛应用在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.【例2】如图(1)所示的两种瓷砖.请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,使拼铺的图案成轴对称图形(如示例图(2)).(要求:分别在图(3)、图(4)中各设计一种与示例不同的拼法的轴对称图形)【变式1】(2022秋·北京朝阳·八年级校考期中)如图,棋盘现有四颗棋子,要求只移动其中的一颗棋子,只移动一次,且每次只能移动一步(前后左右移动,也可以沿正方形的对角线的方向移动),使得移动后的所有棋子所组成的图形可以是一个轴对称图形.(1)请按照要求在图1中标出四颗棋子的位置,使得图1成为轴对称图形,并画出对称轴;(2)请按照要求在图2中标出四颗棋子的位置,使得图2成为至少有2条对称轴的图形.【变式2】(2023春·山西晋中·七年级统考期末)春天正值放风筝的美好时节,为了丰富同学们的校园生活,某校七年级开展了“万物‘筝’春·逐梦远方”的风筝节比赛,要求同学们自制风筝积极参赛.如何设计与制作风筝呢?请同学们阅读“勤学小组”的项目实施过程,帮助他们解决项目实施过程中遇到的问题.项目主题:设计与制作风筝.项目实施: 任务一:了解风筝 “勤学小组”的同学查阅了有关风筝的历史,种类,结构,制作等方面的资料,同时还收集到如下图的风筝图案,请你帮助他们从中选出不是轴对称图形的风筝图案________.A .B .C .D . 任务二:设计风筝设计风筝时主要进行风筝面与风筝骨架的设计.“勤学小组”的同学设计好了风筝面,接下来在正方形网格中进行风筝骨架的设计,请你帮助他们以直线l 为对称轴画出风筝骨架的另一半.任务三:制作风筝传统风筝的技艺概括起来四个字:扎、糊、绘、放,简称“四艺”.“勤学小组”的同学准备用竹条扎制如图所示的风筝骨架,已知AD BC ⊥于点D ,BD CD =,60cm AB =,则竹条AC 的长为________cm .任务四:放飞风筝同学们拿着自己设计与制作的风筝进行了试飞,并根据试飞结果对风筝进行了修改完善.项目反思:同学们对项目学习的整个过程进行反思,并编写了“简易风筝制作说明书”.请你写出一条在项目实施的过程中用到的数学知识________________.【方法二】实例探索法题型1.折叠剪纸问题1.(2023秋·全国·八年级专题练习)把一张正方形纸片按如图方式对折两次后,再挖去一个小圆孔,那么展开后的图形应为()A.B.C.D.2.(2022秋·山东济宁·八年级济宁市第十三中学校考阶段练习)将一个正方形纸片依次按下图的方式对折,然后沿图中的虚线裁剪,最后将该图纸再展开铺平,所看到的图案是().A.B.C.D.3.(2013秋•张家港市校级期末)如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.题型2.在网格中设计轴对称图案⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中ABC 4.如图,在33⨯的正方形格纸中,与ABC成轴对称的格点三角形最多有()是一个格点三角形,在这个33A.3个B.4个C.5个D.6个5.(2023秋·全国·八年级专题练习)如图,在33⨯的正方形格纸中,有一个以格点为顶点的ABC ∆,请你找出格纸中所有与ABC ∆成轴对称且也以格点为顶点的三角形,这样的三角形共有 个.6.(2021秋·江苏常州·八年级校考阶段练习)如图,在44⨯的网格中,有格点三角形,试画出与它成轴对称的格点三角形.7.(2023·全国·八年级专题练习)(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.8.(2023秋·江苏泰州·八年级校考期末)如图是由三个阴影的小正方形组成的图形,请你在网格图中补画一个有阴影的小正方形,使四个阴影的小正方形组成的图形为轴对称图形.题型3.图案设计在生活中的应用9.(2022秋·江苏泰州·八年级校考期中)数学活动课上,张老师组织同学们设计多姿多彩的几何图形,下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形,请画出4种不同的设计图形.题型4.根据设计,说出创意10.(2022秋·河南漯河·八年级校考期中)如图,仿照例子利用“两个圆、两个三角形和两条平行线段”设计一个轴对称图案,并说明你所要表达的含义.【方法三】仿真实战法考法. 利用轴对称设计图案11.(2023•泰州)书法是我国特有的优秀传统文化,其中篆书具有象形特征,充满美感.下列“福”字的四种篆书图案中,可以看作轴对称图形的是()A.B.C.D.12.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.213.(2020•德州)如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.【方法四】成果评定法一、单选题1.(2021秋·江苏连云港·八年级校联考阶段练习)如图,阴影部分是由3个小正方形组成的一个图形,若在图中剩余的方格中涂黑一个正方形,使整个阴影部分成为轴对称图形,涂法有()A.2种B.3种C.4种D.5种2.(2022秋·河北邢台·八年级校考期中)图1,图2均是由大小相等的的正方形组成的,现在图2中添加一个同样大小的正方形,若所得图形与图1不全等,则添加的正方形是()A.①B.②C.③D.④3.(2022秋·八年级课时练习)图中阴影部分是由4个完全相同的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形应该添加在()A.区域①处B.区域②处C.区域③处D.区域④处4.(2022秋·湖南长沙·八年级统考期末)如图是2×5的正方形网格,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形.则在网格中,能画出且与△ABC成轴对称的格点三角形一共有()个.A.1B.2C.3D.45.(2022秋·八年级单元测试)给图中的1个白色小方格涂上颜色,使涂色部分成为一个轴对称图形,有()种涂法.A.2B.3C.4D.56.(2022秋·江苏苏州·八年级阶段练习)在如图所示的方格纸中,ABC的顶点均在方格纸的格点上,则在方格纸中与ABC成轴对称的格点三角形共有()A.1个B.2个C.3个D.4个7.(2023秋·天津和平·八年级天津市汇文中学校考期末)在下列方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有()A.3种B.5种C.4种D.6种8.(2022秋·江苏盐城·八年级校考阶段练习)如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.2种B.3种C.4种D.5种9.(2022秋·全国·八年级专题练习)如图,在5×5的小正方形网格中有4个涂阴影的小正方形,它们组成一个轴对称图形.现在移动其中一个小正方形到空白的小正方形处,使得新的4个阴影的小正方形组成一个轴对称图形,不同的移法有()A.8种B.12种C.16种D.20种的正方形网格中,图中的ABC为格点三角形,在图中10.(2023秋·全国·八年级专题练习)如图,在33与ABC成轴对称的格点三角形最多可以找出()A.6个B.5个C.4个D.3个二、填空题11.(2022秋·甘肃庆阳·八年级校考期中)如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形构成一个轴对称图形,那么涂法共有种.12.(2023秋·浙江·八年级专题练习)图中阴影部分是由4个完全相同的正方形拼接而成的,若要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形可添加的区域有个.13.(2022秋·江苏泰州·八年级统考期中)如图是3×3的正方形网格,要在图中再涂黑一个小正方形,使得图中黑色的部分成为轴对称图形,这样的小正方形有个.14.(2022秋·江苏盐城·八年级校联考阶段练习)如图,在44的正方形网格中已将图中的四个小正方形涂上阴影,如果再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是.15.(2023秋·全国·八年级专题练习)如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有种补法.16.(2022秋·江苏泰州·八年级校考期中)如图,是44正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形........构成轴对称图形,这样的白色小方格有种选择.17.(2022秋·江苏淮安·八年级统考期中)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.18.(2023·江苏·八年级假期作业)如图,在正方形网格中,如果将其中1个白色方格涂上阴影,使整个阴影部分成为一个轴对称图形,一共有种不同的涂法.三、解答题19.(2023秋·浙江·八年级专题练习)下图是由5个全等的正方形组成的,请你移动其中一个正方形,使它变成轴对称图形.(在网格图中画出4种形状不同的图形,涂上阴影)20.(2022秋·江苏宿迁·八年级统考期中)如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使整个图形成为轴对称图形.21.(2023秋·湖北咸宁·八年级统考期末)在如图所示的正方形网格中,已有两个正方形涂黑,请再将其中的一个空白正方形涂黑,使整个图形是一个轴对称图形.(要求:①画出4种不同的补充完整的轴对称图形;②画出补充完整轴对称图形的一条对称轴;③每个图形所画对称轴是不同的直线)22.(2022秋·江苏·八年级泰州市姜堰区第四中学校考周测)如图,在4×4的正方形网格中,图中四个小正方形已涂色.(1)若从余下的小正方形中任选一个涂色,使整个涂色部分组成的图形是轴对称图形,则符合条件的小正方形位置共有个.(2)若从余下的小正方形中任选两个涂色,使得整个涂色部分组成的图形是轴对称图形,请在以下网格中设计三种不同的方案.23.(2022秋·江苏徐州·八年级统考阶段练习)如图①,ABC和DEF的顶点都在正方形网格中正方形格子的顶点上,我们把这样的三角形叫做“格点三角形”.正方形网格中,格点ABC和格点DEF关于某条直线成轴对称,请画出图1中的对称(1)在图①的33轴.(2)请你利用轴对称的原理在图②,图③,图④中分别画出一个位置不同且与ABC成轴对称的格点DEF.24.(2023·全国·八年级假期作业)如图是小正三角形组成的网格,每个网格里已经有3个涂上了阴影的小正三角形.在每个网格里,再将两个小正三角形涂上阴影,使得整个阴影部分构成轴对称图形.(每个网格里的阴影部分的图形不能相同)25.(2023秋·浙江·八年级专题练习)下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充.(1)使得图①成为轴对称图形;(2)使得图②成为有4条对称轴且阴影部分面积等于3的图形;(3)使得图③成为至少有2条对称轴且面积不超过6的图形.26.(2022秋·浙江温州·八年级统考期中)在3×3的方格图中,有三个小正方形格子被涂成阴影,请在剩下的7个白色格子中选择2个格子,将它涂上阴影,使得整个图形是一个轴对称图形,要求画出三种不同形状的图形.27.(2023春·山东济南·七年级校考阶段练习)已知在平面直角坐标系xOy 中,ABC 如图所示,()52A -,,()5,2B --,14C ,.''';(1)作出ABC关于y轴对称的图形A B C(2)求出ABC的面积28.(2023秋·江西宜春·八年级统考期末)如图是由正六边形ABCDEF和等边AFG组合在一起的轴对称图形,请仅用无刻度的直尺........,分别按下列要求作图.(1)在图1中,画出组合图形的对称轴;(2)在图2中,点M是边DE上一点,画出一个以EM为边的等边三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1._____的_____叫做等腰三角形.
2.(1)等腰三角形的性质1是______________________________________________.(2)等腰三角形的性质2是______________________________________________.(3)等腰三角形的对称性是_____,它的对称轴是_____.
图5-1
3.如图5-1,根据已知条件,填写由此得出的结论和理由.
(1)∵ΔABC中,AB=AC,
∴∠B=______.()
(2)∵ΔABC中,AB=AC,∠1=∠2,
∴AD垂直平分______.()
(3)∵ΔABC中,AB=AC,AD⊥BC,
∴BD=______.()
(4)∵ΔABC中,AB=AC,BD=DC,
∴AD⊥______.()
4.等腰三角形中,若底角是65°,则顶角的度数是_____.
5.等腰三角形的周长为10cm,一边长为3cm,则其他两边长分别为_____.
6.等腰三角形一个角为70°,则其他两个角分别是_____.
7.等腰三角形一腰上的高与另一腰的夹角是20°,则等腰三角形的底角等于_____.二、选择题
8.等腰直角三角形的底边长为5cm,则它的面积是()
A.25cm2B.12.5cm2
C.10cm2D.6.25cm2
9.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cm
C.63cm和51cm D.以上都不正确
10.△ABC中,AB=AC,D是AC上一点,且AD=BD=BC,则∠A等于()A.45°B.36°C.90°D.135°
综合、运用、诊断
一、解答题
11.已知:如图5-2,ΔABC中,AB=AC,D、E在BC边上,且AD=AE.求证:BD=CE.
图5-2
12.已知:如图5-3,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.
图5-3
13.已知:如图5-4,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.
图5-4
拓展、探究、思考
14.已知:如图5-5,RtΔABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)ΔDEF为等腰直角三角形.
图5-5。