浙教版七年级(上)数学期末模拟试卷(二)
【浙教版】七年级数学上期末模拟试题(附答案)

一、选择题1.如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对 2.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )A .点B 在线段CD 上(C 、D 之间)B .点B 与点D 重合C .点B 在线段CD 的延长线上 D .点B 在线段DC 的延长线上 3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°4.下列图形中,是圆锥的表面展开图的是( )A .B .C .D . 5.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折 6.若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-3 7.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+8.方程的解是( )A .B .C .D .9.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 10.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b 元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元 11.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12 B .扩大到原来的10倍 C .缩小到原来的110D .扩大到原来的2倍 12.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3二、填空题13.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.14.如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=________.15.已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____ 16.某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.17.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.18.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)19.计算(﹣1)÷6×(﹣16)=_____. 20.若m ﹣1的相反数是3,那么﹣m =__.三、解答题21.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.22.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE=9cm ,求AB 的长.(2)若CE=5cm ,求DB 的长.23.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 24.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?25.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?26.计算:(1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由OM 是∠AOD 的平分线,求得∠AOM =21°,利用∠BOC =34°,根据平角的定义求出答案.【详解】∵OM 是∠AOD 的平分线,∴∠AOM =21°.又∵∠BOC =34°,∴∠MOC =180°-21°-34°=125°.故选:A .【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.2.A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B 的位置.【详解】解:将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,如图,∴点B 在线段CD 上(C 、D 之间),故选:A .【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力. 3.A解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.A解析:A【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选A .【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.5.C解析:C【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 800 20%800⨯-≥,解不等式可得:8x ≥. 【详解】设打折x 折,由题意可得:12000.1x 80020%800⨯-≥, 解得:8x ≥.故选C.【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.6.B解析:B【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.7.D解析:D【分析】方程两边每一项都乘以6即可得.【详解】方程两边都乘以6,得:2(2x-1)=6-3(5x+2),故选D.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.8.C解析:C【解析】【分析】方程移项合并,把x系数化为1,即可求出解.【详解】方程,移项合并得:-2x=2,解得:x=-1,故选:C.【点睛】此题考查了解一元一次方程,解方程移项注意要变号.9.B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.10.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-2 3020302222a b a b a b a a b aa b++++ -+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.11.A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b∴两数乘积为ab根据题意,得11 10202a b ab=故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.12.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.二、填空题13.20【解析】【分析】本题需先求出AB之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE是线段AB上的三个点根据题意可得:图中共用=10条线段∵A到B与B到A车票不同∴从A到B的车票解析:20【解析】【分析】本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.【详解】设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()5152-⨯=10条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为20.【点睛】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.14.53°【解析】由∠BOE与∠AOF是对顶角可得∠BOE=∠AOF又因为∠COD是平角可得∠1+∠2+∠AOF=180°将∠1=95°∠2=32°代入即可求得∠AOF的度数即∠BOE的度数解析:53°【解析】由∠BOE与∠AOF是对顶角,可得∠BOE=∠AOF,又因为∠COD是平角,可得∠1+∠2+∠AOF=180°,将∠1=95°,∠2=32°代入,即可求得∠AOF的度数,即∠BOE的度数.15.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故解析:52 91【分析】根据比例设这三个数分别为2x ,4x ,7x ,再根据这三个数的和是169列方程即可求解.【详解】设这三个数分别为2x ,4x ,7x ,则2x+4x+7x=169,解得x=13,所以这三个数分别为26,52,91.故答案为:26,52,91.【点睛】此题主要考查列一元一次方程解应用题,根据比例设未知数是解题关键.16.赚了8元【解析】【分析】根据题意设一个价钱为x 元另一个价钱为y 元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x 元y 元则x 解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程 解析:赚了8元【解析】【分析】根据题意设一个价钱为x 元,另一个价钱为y 元,列出方程,求出未知数的值,再计算即可.【详解】解:设两种计算器进价分别为x 元,y 元,则x (160%)=64+,(120%)64y -=.解得40x =,80y =.4080120x y +=+=. 6421201281208⨯-=-=(元), 所以赚了8元.【点睛】本题主要考查列一元一次方程解决实际问题,解决本题的关键是要熟练掌握根据进价、售价与利润率之间的关系分别求出两种计算机的进价.17.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x 2+5x -4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x 的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x 的二次三项式,二次项系数是-3,∴二次项是-3x 2,∵一次项系数是,∴一次项是5x ,∵常数项是-4,∴这个二次三项式为:-3x 2+5x-4.故答案为:-3x 2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.18.【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键.19.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.20.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m 的方程,根据解方程,可得m 的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.三、解答题21.(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析. 【分析】(1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=.(3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠, 90COD ∠=︒, ()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 22.(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC ,CE=12BC ,根据线段的和差关系可得DE=12AB ,进而可得答案;(2)根据中点定义可得AC=BC ,CE=BE ,AD=CD ,根据线段的和差关系即可得答案.【详解】(1)∵D 是AC 的中点,E 是BC 的中点.∴CD=12AC ,CE=12BC , ∵DE=CD+CE=9, ∴12AC+12BC=12(AC+BC)=9, ∵AC+BC=AB ,∴AB=18. (2)∵C 是AB 的中点,D 是AC 的中点,E 是BC 的中点,∴AC=BC ,CE=BE=12BC ,,AD=CD=12AC , ∴AD=CD=CE=BE ,∴DB=CD+CE+BE=3CE ,∵CE=5,∴DB=15.【点睛】 本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.23.(1)-5;(2)2;(3)k=0,-1,-2,-3.【分析】(1)原式利用规定的运算方法计算即可求出值;(2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可.【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9,整理得:5x =10,解得:x =2,故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数,∴(2x−1)k−(−3)(x +k )=3+2k ,∴(2k +3)x =3, ∴323x k =+, ∵k 是整数, ∴2k +3=±1或±3,∴k =0,−1,−2,−3.【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键.24.10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.25.(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.26.(1)4;(2)13;(3)14-;(4)26. 【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13|38|44⎛⎫--+- ⎪⎝⎭ =13544-- =5-1=4; (2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ =11269-+⨯⨯ =-1+43 =13; (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ =2111()1369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
浙教版七年级上册数学期末考试试卷有答案

浙教版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.有理数5,-2,0,-4中最小的一个数是()A .5B .-2C .0D .-43.我国第七次人口普查显示,全国总人口约为1411000000人,将这个总人口数用科学记数法表示为()A .14.11×107B .1.411×108C .1.411×109D .0.1411×10104.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是()A .B .C .D .5.下列各组中的两个代数式属于同类项的是()A .3xy 与212x y-B . 2.1-与34C .32a b 与32ab D .23ab 与20.001ba 6.若3x =是关于x 的方程24x a +=的解,则a 的值为()A .10-B .2-C .12-D .127.某商品因换季准备打折销售,如果按定价的七五折出售,将亏本35元,而按定价的九五折出售,将赚25元.设这种商品的定价为x 元,可列方程为()A .75%x-35=95%x+25B .75%x+35=95%x+25C .75%x-35=95%x-25D .75%x+35=95%x-258.下列说法中错误的是()A .单项式6abc 的次数为3B .单项式23vt-的系数是-2C是无理数D.xy-2x+4是二次三项式9.解方程1.5 1.50.50.62x x--=,以下变形正确的是()A.5 1.5522x x--=B.51510522x x--=C.51515220x x--=D.5320.524x x--=10.已知某点阵的第①②③个图如图所示,按此规律第()个点阵图中,点的个数为2022个.A.1009B.2018C.2022D.2048二、填空题11.4的平方根是.12.计算:35°49'+44°26'=__________.13.用代数式表示:x的2倍与y的平方的差___________.14.若一个角是53 ,则它的补角是_________.15.已知4x-y=0,用含x的代数式来表示y为___________.16__________个.17.如图,OA的方向是北偏东15 ,OB的方向是西北方向,若AOC AOB∠=∠,则OC的方向是__________.18.已知线段AB=8cm,C是直线AB上的一点AC=3.2cm,M、N分别是AB、AC的中点,则MN的长等于______cm.19.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买一只羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设羊价为x 钱,所列方程是_______.20.张师傅晚上出门散步,出门时6点多一点,他看到手表上的分针与时针的夹角恰好为120°,回来时接近7点,他又看了一下手表,发现此时分针与时针再次成120°,则张师傅此次散步的时间是_____分钟.三、解答题21.计算:(1)-3+12-15(2)251()(18)369-+⨯-22.解方程:(1)8x-3(2x+1)=1(2)3157146x x ---=23.画图并度量,已知点A 是直线l 上一点,点M 、N 是直线l 外两点.(1)画线段MA ,并用刻度尺找出它的中点B ;(2)画直线MN ,交直线l 于点C ,并画出射线CB ;(3)画出点M 到直线l 的垂线段MH ,并量出点M 到直线l 的距离为多少cm ?(精确到0.1cm )24.先化简,再求值:-(a 2+6ab +9)+2(a 2+4ab-4.5),其中a =-2,b =6.25.如图,直线AE 与CD 相交于点B ,∠DBE =65°,BF ⊥AE ,求∠FBD 和∠CBF 的度数.26.已知M 、N 两点在数轴上所表示的数分别为m ,n ,且满足211(4)0m n -++=.(1)m=,n=;(2)若点P 从N 点出发,以每秒1个单位长度的速度向右运动,同时点Q 从M 点出发,以每秒2个单位长度的速度向左运动,经过多长时间后P、Q两点相距6个单位长度?(3)若点A、B为线段M、N上的两点,且NA=AB=BM,点P从N点出发,以每秒3个单位长度的速度向左运动,点Q从M点出发,以每秒4个单位长度的速度向右运动,点R 从B点出发,以每秒5个单位长度的速度向右运动,P、Q、R同时出发,是否存在常数k,的值与它们的运动时间无关,为定值?若存在,请求出k和这个定值;若不使得PQ kAR存在,请说明理由.27.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二三四五六下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?28.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.参考答案:【分析】根据相反数的定义直接求解.-,【详解】解:实数2022的相反数是2022故选:B.【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据正数>0>负数,以及负数比较时,绝对值较大的反而更小的原则判断即可.【详解】显然,5>0,-<-,∵24∴24->-,>>->-,∴5024故选:D.【点睛】本题考查有理数大小比较,熟练掌握常见的有理数大小比较的方法是解题关键.3.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:1411000000=1.411×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【分析】根据角的表示方法求解即可.【详解】解:A、∠1、∠AOB表示同一个角,不符合题意;B、三种方法表示同一个角,符合题意;C、∠O、∠AOB表示同一个角,不符合题意;D、∠1、∠AOB、∠O不一定表示同一个角,不符合题意;故选B【点睛】本题考查角的表示,熟练掌握角的表示方法是解答的关键.【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的项,逐一判断即可.【详解】解:A .3xy 与212x y -相同字母的指数不相同,不是同类项,故A 不符合题意;B .-2.1与34是同类项,故B 符合题意;C .32a b 与32ab 相同字母的指数不相同,不是同类项,故C 不符合题意;D .23ab 与20.001ba 相同字母的指数不相同,不是同类项,故D 不符合题意;故选:B .【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.6.B【分析】将3x =代入原方程即可求出a 的值.【详解】解:将3x =,代入24x a +=,得:64a +=,解得:2a =-,故选:B .【点睛】本题考查一元一次方程,解题的关键是正确理解一元一次方程的解的定义.7.D【分析】设这种商品的定价是x 元.根据定价的7.5折出售将赔35元和定价的9.5折出售将赚25元,分别表示出进价,从而列方程求解.【详解】解:设这种商品的定价是x 元.根据题意,得75%x+35=95%x-25.故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是根据题意找到等量关系,这是列方程的关键.8.B【分析】根据同类项“同类项是所含字母相同,并且相同字母的指数也相同的项.”单项式“由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.”多项式“若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.”的概念逐项判断A,B,D 选项即可,根据无理数的定义判断C 选项,即可求解.【详解】解:A.单项式6abc 的次数为3,故该选项正确,不符合题意;B.单项式23vt -的系数是23-,故该选项不正确,符合题意;C.是无理数,故该选项正确,不符合题意;D.xy-2x +4是二次三项式,故该选项正确,不符合题意;故选B【点睛】本题考查了单项式与多项式的定义,无理数的概念,掌握以上知识是解题的关键.9.D【分析】把方程中的分子与分母同时乘以10,使分母变为整数即可.【详解】把1.50.6x的分子分母同时乘以10,1.52x -的分子分母同时乘以2得15320.564x x--=,即5320.524x x--=.故选:D .【点睛】本题考查的是解一元一次方程,在解答此类题目时要注意把方程中分母化为整数再求解.10.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n=2022,解得n=1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.11.±2【详解】解:∵2(2)4±=,∴4的平方根是±2.故答案为±2.12.8015'︒【分析】把单位相同的量分别相加,再根据60进位制进位即可.【详解】解:35°49'+44°26'=79758015ⅱ°=°.故答案为:8015'︒.【点睛】本题主要考查了角的计算以及度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.13.22x y -【分析】根据“x 的2倍即2x ,再表示与y 的平方的差”可列出代数式.【详解】解:根据题意得;2x-y 2.故答案为:22x y -.【点睛】本题考查列代数式,关键根据语句的描述理解代数式中的运算顺序,从而得到代数式.14.127【分析】根据补角的定义求解即可.【详解】根据补角的定义:和为180 的两个角互为补角,得:18053127-=故答案为:127 .【点睛】本题考查补角的定义,解决本题的关键是熟练应用补角的定义.15.4y x=【分析】根据等式的性质移项即可.【详解】解:方程4x-y=0,解得:y=4x .故答案为:y=4x .【点睛】此题考查了等式的性质,解题的关键是熟练掌握等式的性质.16.13.【详解】∵67±6,±5,±4,±3,±2,±1,0,共13个故填:13.【点睛】此题主要考查实数的估算,解题的关键是熟知实数的估算方法.17.北偏东75°.【分析】已知OA的方向是北偏东15°,OB的方向是西北方向,可得∠AOB=60°,根据∠AOC=∠AOB,可得∠AOC=60°,然后求得OC与正北方向的夹角,再根据方位角的表达即可得出答案.【详解】∵OA的方向是北偏东15°,OB的方向是西北方向,∴∠AOB=15°+45°=60°.∵∠AOC=∠AOB,∴∠AOC=60°,∴OC的方向是北偏东15°+60°=75°.故答案为北偏东75°.【点睛】本题考查方位角,掌握方位角的相关知识是解题的关键.18.2.4或5.6【分析】先求出AN、AM的长度,然后根据点C的位置进行讨论即可求出答案.【详解】解:∵M、N分别是AB、AC的中点,AB=8cm,AC=3.2cm,∴AN=12AC=1.6cm,AM=12AB=4cm,当点C与B位于点A的异侧时,此时MN=AN+AM=4+1.6=5.6cm,当点C与B位于点A的同一侧时,此时MN=AM-AN=4-1.6=2.4cm,故答案为:2.4或5.6.【点睛】本题考查线段的和差运算,中点的含义,解题的关键是根据点C的位置进行讨论,本题属于基础题型.19.453 57 x x --=【分析】设羊价为x钱,根据题意可得合伙的人数为455x-或37x-,由合伙人数不变可得方程.【详解】解:设羊价为x 钱,根据题意可得方程:45357x x --=,故答案为:45357x x --=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找到等量关系,列出相应的方程.20.48011【分析】设张师傅此次散步的时间是x 分钟,根据分针比时针多走了2个120°,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:分钟每分钟走6°,时针每分钟走0.5︒.设张师傅此次散步的时间是x 分钟,依题意得:6x-0.5x=120×2,解得:x=48011,∴张师傅此次散步的时间是48011分钟.故答案为:48011.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(1)6-(2)1【分析】(1)先把同号的两个负数先加,再计算异号的两数的加法即可;(2)利用乘法的分配律把括号外的数乘以括号内的每一个数,再把所得的积相加即可.(1)解:-3+12-151812=-+6=-(2)251()(18)369-+⨯-()()()251181818369=´--´-+´-12152=-+-1=【点睛】本题考查的是加减混合运算,乘法的分配律的应用,掌握“利用乘法的分配律进行简便运算”是解本题的关键.22.(1)2x =(2)1x =-【分析】(1)先去括号,再移项,合并同类项,最后把未知数的系数化“1”即可;(2)先去分母,去括号,再移项,合并同类项,最后把未知数的系数化“1”即可.(1)解:8x-3(2x+1)=1去括号得:8631,x x --=整理得:24,x =解得: 2.x =(2)3157146x x ---=去分母得:()()33112257,x x --=-去括号得:93121014,x x --=-整理得:1,x -=解得: 1.x =-【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.23.(1)见解析(2)见解析(3)见解析,2.4cm【分析】(1)根据线段的定义即可画线段MA ,进而用刻度尺找出它的中点B 即可;(2)根据直线,射线定义即可画直线MN ,交直线l 于点C ,和射线CB ;(3)作MH ⊥L 于点H ,进而可以量出点M 到直线l 的距离.(1)如图,线段MA ,点B 即为所求;(2)如图,直线MN ,射线CB 即为所求;(3)点M 到直线l 的距离是MD 的长度为2.4cm .【点睛】本题考查了作图-复杂作图,点到直线的距离,解决本题的关键是掌握基本作图方法.24.2+218a ab -,38-【分析】先去括号、合并同类项化简,然后代入计算即可.【详解】解:-(a 2+6ab+9)+2(a 2+4ab-4.5)=-a 2-6ab-9+2a 2+8ab-9=a 2+2ab-18,当a=-2,b=6时,原式=(-2)2+2×(-2)×6-18=4-24-18=-38.【点睛】本题考查了整式的加减的化简求值,掌握去括号、合并同类项的运算法则是解题的关键.25.25,155FBD CBF ∠=︒∠=︒【分析】根据BF ⊥AE ,得到∠EBF=90°,从而得到∠FBD=∠EBF-∠DBE 的度数,根据邻补角的定义即可得到∠CBF 的度数.【详解】解:∵BF ⊥AE ,∴∠EBF=90°,∵∠DBE=65°,∴∠FBD=∠EBF-∠DBE=90°-65°=25°,∴∠CBF=180°-∠FBD=180°-25°=155°,答:∠FBD 的度数为25°,∠CBF 的度数为155°.【点睛】本题考查了垂线,邻补角,角的和差运算,掌握邻补角互补,角的和差运算是解题的关键.26.(1)11,4-(2)3s 或7s(3) 1.4k =时,定值为8;.【分析】(1)利用绝对值及偶次方的非负性,可求出m ,n 的值;(2)当运动时间为t 秒时,点P 对应的数是-4+t ,点Q 对应的数是11-2t ,根据PQ=6,即可得出关于t 的一元一次方程,解之即可得出结论;(3)由A ,B ,M ,N 四点间的关系可找出点A ,B 对应的数,当运动时间为t 秒时,点P 对应的数是-4-3t ,点Q 对应的数是11+4t ,点R 对应的数是6+5t ,利用数轴上两点间的距离公式可得出PQ ,AR 的长度,进而可得出PQ-kAR=15-5k+(7-5k )t ,再结合PQ-kAR 的值与它们的运动时间(t )无关,即可求出结论.(1)解:∵|m-11|+(n+4)2=0,∴m-11=0,n+4=0,∴m=11,n=-4.故答案为:11,-4;(2)当运动时间为t 秒时,点P 对应的数是-4+t ,点Q 对应的数是11-2t ,依题意得:|-4+t-(11-2t )|=6,解得:t=7或t=3,答:经过7秒或3秒后P ,Q 两点相距6个单位长度;(3)∵A ,B 为线段MN 上的两点,且NA=AB=BM ,()11415,MN =--=∴点A 对应的数是-4+5=1,点B 对应的数是11-5=6.当运动时间为t 秒时,点P 对应的数是-4-3t ,点Q 对应的数是11+4t ,点R 对应的数是6+5t ,∴PQ=(11+4t )-(-4-3t )=15+7t ,AR=(6+5t )-1=5+5t ,∴PQ-kAR=15+7t-k (5+5t )=15-5k+(7-5k )t ,当750k -=时,PQ-kAR 与它们的运动时间无关,解得k=1.4,此时PQ-kAR=155 1.48,-´=∴当k=1.4时,PQ-kAR 与它们的运动时间无关,为定值,该定值为8.27.(1)本趟公交车在起点站上车的人数是10人;(2)此趟公交车从起点到终点的总收入是90元.【分析】(1)根据下车的总人数减去上车的总人数得到起点站上车的人数即可;(2)从起点开始,把所有上车的人数相加,计算出和以后再乘以2即可求解.【详解】(1)(3+6+10+7+19)-(12+10+9+4+0)=45﹣35=10(人)答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.【点睛】本题考查了有理数加减运算的应用,读懂题意,正确列出算式是解决问题的关键. 28.(1)44°;(2)66°或110°;(3)33°或55°【分析】(1)设∠BOC=x,则∠AOC=2x,根据∠AOC的余角比∠BOC小42°列方程求解即可;(2)分两种情况:①当射线OD在∠AOC内部,②当射线OD在∠AOC外部,分别求出∠COD的度数即可;(3)根据(2)的结论以及角平分线的定义解答即可.【详解】解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,∠AOB=∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,如图,∵∠AOC=4∠AOD,∴∠AOD=22°,∴∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,如图,由①可知∠AOD=22°,则∠COD=∠AOC+∠AOD=110°;故∠COD的度数为66°或110°;(3)∵OE平分∠AOD,∴∠AOE=1112AOD∠=︒,当射线OD在∠AOC内部时,如图,∴∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,如图,∴∠BOE=∠AOB+∠AOE=44°+11°=55°.综上所述,∠BOE度数为33°或55°.故答案为:33°或55°。
浙教版七年级上册数学期末考试试卷含答案

浙教版七年级上册数学期末考试试题一、单选题1.下列四个数中,最小的是()A .2B .0C .πD .﹣42.下列运算正确的是()A 4B .﹣|﹣2|=2C±3D .23=63.下列各组单项式中,能合并同类项的一组是()A .3xy 和﹣2xy B .3a 和3C .x 2y 和2xy 2D .2a 和3b 4.如图,在数轴上,用①,②,③,④注明了四段的范围,若某段上有两个整数,则这段是()A .①B .②C .③D .④5.如图,直角三角尺中阴影部分的面积可以表示为()A .ab ﹣πr 2B .2ab﹣πr 2C .ab ﹣2πr D .2ab﹣2πr 26.下列方程中,以x =2为解的方程是()A .2(x+2)=0B .3(x ﹣1)=9C .4x ﹣1=3xD .3x+1=2x+37.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是()A .3x ﹣2=2x +9B .3(x ﹣2)=2x +9C .2932x x +=-D .3(x ﹣2)=2(x +9)8.如图1所示,一块瓷砖表面有四条分割线,由分割线可构成一个正方形图案.图2由两块瓷砖铺成,分割线可构成3个正方形.图3由四块瓷砖铺成,分割线可构成9个正方形.若用十二块瓷砖铺成长方形,则由分割线可构成的正方形数不可能是()A .35B .33C .28D .239.下列各数:173π,1.21221222122221......(每两个1之间依次多一个2)中,无理数有()A .2个B .3个C .4个D .5个10.如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB=50°,则∠BOD 的度数是()A .50°B .60°C .80°D .70°11(b ﹣3)2=0,则ab =()A .32B .18-C .8D .1812.将一副直角三角尺按如图所示的不同方式摆放,则图中α∠与∠β不一定...相等的是()A .B .C .D .二、填空题13.﹣(﹣2)=___.14.如图,将方程4x=3x+50进行移项,则“”处应填写的是_____.15.如图,点C在线段AB上,AC=4,BC=2AC,点M是线段AB的中点,则线段CM的长为_____.16.实验室里有一个水平放置的正方体容器,从内部量得它的棱长为15cm,容器内的水深为4cm、现往容器内放入如图所示的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,xcm(x<15).(1)容器内水的体积为_______cm3(2)当铁块的顶部高出水面1cm时,x的值为______.17.若∠β=110º,则它的补角是______,它的补角的余角是_____.18.一个实数的两个平方根分别是a+3和2a﹣9,则这个实数是_____.19.如图,点C是线段AB的中点,则线段AC与线段AB满足数量关系______.三、解答题20.计算:(1)5+(﹣6)﹣(﹣8).(2)﹣14÷(﹣7)×7 2.21.先化简,再求值:3(a2﹣ab)﹣2(a2﹣12ab),其中a=﹣2,b=3.22.解下列方程:(1)3x+2=8﹣x.(2)14x-﹣1=3x.23.某工厂第一车间有x人,第二车间比第一车间人数的45少30人,从第二车间调出y人到第一车间,那么:(1)调动后,第一车间的人数为人;第二车间的人数为人.(用x,y的代数式表示);(2)求调动后,第一车间的人数比第二车间的人数多几人(用x,y的代数式表示)?(3)如果第一车间从第二车间调入的人数,是原来调入的10倍,则第一车间人数将达到360人,求实际调动后,(2)题中的具体人数.24.如图,在同一平面内有一条直线l和三点A,B,C.按要求完成下列作图.(1)画线段AC;(2)画射线AB交直线l于点D;(3)在直线l上找一点P,使得PB PC+最短.(保留作图痕迹)25.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.26.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A、B两点之间的距离AB =|a ﹣b|.线段AB 的中点表示的数为2a b.如图,数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(t >0).(1)填空:①A 、B 两点之间的距离AB =,线段AB 的中点表示的数为.②用含t 的代数式表示:t 秒后,点P 表示的数为;点Q 表示的数为.③当t =时,P 、Q 两点相遇,相遇点所表示的数为.(2)当t 为何值时,PQ =12AB .(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.27.有总长为l 米的篱笆,利用它和一面墙围成长方形园子,园子的宽为a 米.(1)如图1,①用关于l ,a 的代数式表示园子的面积.②当l=100,a=30时,求园子的面积.(2)如图2,若在园子的长边上开了1米的门,请判断园子的面积是增大还是减小?并用关于l ,a 的代数式表示园子的面积.参考答案1.D【分析】根据有理数大小的比较方法,即可判定.【详解】解:4<0<2<π -,∴最小的是-4,故选:D .【点睛】本题考查了有理数大小的比较,熟练掌握和运用有理数大小的比较方法是解决本题的关键.2.A【分析】由算术平方根的含义可判断A ,C ,由绝对值的含义可判断B ,由立方的含义可判断D ,从而可得答案.4,故A 符合题意;22,--=-故B 不符合题意;3,=故C 不符合题意;328,=故D 不符合题意;故选:A.【点睛】本题考查的是绝对值的含义,乘方运算,算术平方根的含义,掌握“求解一个数的算术平方根”是解本题的关键.3.A【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,再逐一判断即可.【详解】解:3xy 和2xy-是同类项,能合并,故A 符合题意;3a 和3不是同类项,不能合并,故B 不符合题意;x 2y 和2xy 2不是同类项,不能合并,故C 不符合题意;2a 和3b 不是同类项,不能合并,故D 不符合题意;故选:A .【点睛】本题考查了单项式,合并同类项,熟练掌握同类项的定义是解题的关键.4.C【分析】根据数轴的意义及其表示数的性质,可确定四段中各包含的整数个数,即可确定正确答案.【详解】解:段①-0.5~0.7中有整数0;段②0.7~1.9中有整数1;段③1.9~3.1中有整数2和3;段④3.1~4.3中有整数4;∴有两个整数的是段③.故选:C .【点睛】本题考查的是数轴表示数的意义,解答本题关键是能够确定数轴上从左到右所表示的数依次增大.5.B【分析】用三角形的面积减去圆的面积即可得阴影部分的面积.【详解】解:∵S △=2ab,S 圆=πr 2,∴S 阴=S △-S 圆=2ab﹣πr 2.故选B .【点睛】本题考查了用代数式表示图形的面积,熟记基本图形的面积公式是解题的关键.6.D【分析】根据一元一次方程的解的定义,即可求解.【详解】解:A 、当x =2时,左边=2(2+2)=8≠0,故本选项不符合题意;B 、当x =2时,左边=3(2﹣1)=3≠9,故本选项不符合题意;C 、当x =2时,左边=4×2-1=7,右边=3×2=6,所以左边≠右边,故本选项不符合题意;D 、当x =2时,左边=3×2+1=7,右边=2×2+3=7,所以左边=右边,故本选项符合题意;故选:D【点睛】本题主要考查了一元一次方程的解的定义,熟练掌握能使方程左右两边同时成立的未知数的值是方程的解是解题的关键.7.B【分析】理清题意,根据乘车人数不变,即可列出关于x 的一元一次方程.【详解】解:设车x 辆,根据题意得:3(x ﹣2)=2x +9.故选:B .【点睛】本题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.C【分析】由题意可得:12块瓷砖拼成长方形,有1×12,2×6,3×4这三种情况,分类讨论即【详解】解:当瓷砖拼成1×12的长方形时,一共有2×12-1=23个正方形;当瓷砖拼成2×6的长方形时,一共有6×6-3=33个正方形;当瓷砖拼成3×4的长方形时,一共有10×4-5=35个正方形.故选:C .【点睛】本题考查图形拼接的分类讨论.解题的关键是穷举几种拼接的方式,并针对每种方式,从简单到一般找出正方形数量变化的规律.9.B【分析】根据无理数的定义对题目进行分析即可得到答案.【详解】解:173是分数,属于有理数;0.3333334,是整2π,1.21221222122221......(每两个1之间依次多一个2)共3个.故选:B .【点睛】本题考查无理数的定义,解题的关键是掌握无理数的定义.10.C【详解】解:∵OE 平分∠COB ,∴∠BOC=2∠EOB=2×50°=100°,∴∠BOD=180°-100°=80°.故选C .【点睛】本题考查1.角平分线的定义;2.余角和补角,掌握相关概念正确计算是关键.11.B【分析】根据二次根式的非负性和平方差的非负性得到2a+1=0,b ﹣3=0,计算得到a =﹣12,b =3,再代入ab 进行计算即可得到答案.【详解】解:由题意得,2a+1=0,b ﹣3=0,解得,a =﹣12,b =3,则ab =﹣18,故选:B .【点睛】本题考查代数式求值、二次根式的非负性和平方差的非负性,解题的关键是掌握二次根式的非负性和平方差的非负性.【分析】A 选项由图形即直角三角形的性质即可判断;B 选项由两角互余即可的判断;C 选项由对顶角相等即可判断;D 选项由同角的余角相等即可判断.【详解】A 选项中,90,45αβα∠+∠=︒∠=︒,45βα∴∠=∠=︒,故不符合题意;B 选项中,90αβ∠+∠=︒,则α∠与∠β不一定相等,故符合题意;C 选项中,,αβ∠∠ 是对顶角,αβ∴∠=∠,故不符合题意;D 选项如图,190,190αβ∠+∠=︒∠+∠=︒ ,αβ∴∠=∠,故不符合题意;故选:B .【点睛】本题考查了对顶角相等,余角,同角的余角相等等知识点,熟练掌握这些知识是解题的关键.13.2【分析】根据相反数的意义计算即可.【详解】∵﹣(﹣2)=+2=2,故答案为:2.【点睛】本题考查了有理数的化简,熟练掌握相反数的意义是解题的关键.14.-3x【分析】根据移项要变号,即可求得.【详解】解:由4x=3x+50移项,得4x-3x=50,故答案为:-3x.【点睛】本题考查了移项法则,熟练掌握和运用移项法则是解决本题的关键.15.2【分析】先求解BC的长度,即可算出AB的长度,再根据点M是线段AB的中点即可得出答案.【详解】解:∵BC=2AC,AC=4,∴BC=2×4=8,∴AB=AC+BC=4+8=12,∵点M是线段AB的中点,∴BM=12AB=12×12=6.∴CM=BC-BM=2,故答案为:2.【点睛】本题主要考查线段的和差运算,中点的含义,熟练掌握线段的和差关系是解决本题的关键.16.90012.5或8.2【分析】(1)利用长方体体积公式即可得到答案;(2)分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.【详解】解:(1)根据已知容器内水的体积为15×15×4=900(cm3),故答案为:900;(2)①当长方体实心铁块的棱长为10cm和xcm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为9cm,此时水位上升了5cm,铁块浸在水中的体积为10×9x=90x cm3,∴90x=15×15×5,解得x=12.5,②当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,同理可得:10×10•(x-1)=15×15•(x-1-4),解得x=8.2,故答案为:12.5cm或8.2cm.【点睛】本题主要考查了从实际问题列一次一次方程,正确找出相等关系是解本题的关键.17.70º20º【分析】本题考查的是余角、补角的定义,根据互余的两角之和为90°,互补的两角之和为180°,进行计算即可.【详解】∠β的补角=180°-∠β=180°-110º=70º,它的补角的余角=90°-70º=20º.【点睛】此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.18.25【分析】根据题意列出方程即可求出答案.【详解】解:由题意可知:a+3+2a ﹣9=0,∴a =2,∴a+3=5,∴这个是数为25,故答案为:25.【点睛】此题考查平方根,解题的关键是正确理解平方根,属于基础题型.19.12AC AB =【分析】根据线段中点的定义可得答案.【详解】解:∵点C 是线段AB 的中点,∴12AC AB =.故答案为:12AC AB =【点睛】本题主要考查线段中点的定义,熟练掌握线段的中点是线段上一点,到线段两段距离相等的点是解题的关键.20.(1)7(2)7【分析】(1)先把加减运算统一为省略加号的和的形式,再计算即可;(2)先计算除法运算,再计算乘法运算,即可得到结果.(1)解:()()568+---568=-+7=(2)()71472-¸-´722=⨯7=【点睛】本题考查的是加减混合运算,乘除混合运算,掌握按照从左至右的运算顺序进行运算是解本题的关键.21.22,a ab -16【分析】先去括号,再合并同类项,得到化简后的结果,再代入数值进行计算即可.【详解】解:3(a 2﹣ab )﹣2(a 2﹣12ab )22332a ab a ab=--+22a ab =-当a =﹣2,b =3时,原式()()22223=--´-´41216=+=【点睛】本题考查的是整式的加减运算中的化简求值,掌握“去括号,合并同类项”是解本题的关键.22.(1)32x =(2)15x =-【分析】(1)先移项,再合并同类项,最后把系数化“1”,即可得到答案;(2)先去分母,再去括号,再移项,合并同类项,把未知数的系数化“1”,即可得到答案.(1)解:3x+2=8﹣x移项及合并同类项得:46x =,解得:32x =.(2)解:14x -﹣1=3x 去分母得:()31124x x--=去括号得:33124x x--=整理得:15,x -=解得:15.x =-【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.23.(1)(x+y );(45x ﹣y ﹣30);(2)15x+2y+30;(3)即实际调动后,(2)题中的具体人数是102人.【分析】(1)由题意从第二车间调出y 人到第一车间,根据两车间原有的人数,即可表示出现在两车间的人数;(2)用调动后第一车间的人数减去第二车间的人数,即可得出第一车间的人数比第二车间多的人数.(3)根据题意第一车间从第二车间调入的人数,是原来调入的10倍,则第一车间人数将达到360人,列出方程再代入计算即可解答.【详解】解:(1)根据题意得调动后,第一车间的人数为(x+y )人;第二车间的人数为(45x ﹣y ﹣30)人.故答案是:(x+y );(45x ﹣y ﹣30);(2)根据题意,得(x+y )﹣(45x ﹣y ﹣30)=15x+2y+30(3)根据题意,得x+10y =360.则x =360﹣10y ,所以15x+2y+30=15(360﹣10y )+2y+30=102.即实际调动后,(2)题中的具体人数是102人.【点睛】此题考查了整式的加减,以及列代数式,弄清题意是解本题的关键.24.(1)见解析(2)见解析(3)见解析【分析】(1)根据线段的定义,画出对应的几何图形,即可求解;(2)根据射线的定义,画出对应的几何图形,即可求解;(3)连接BC 交直线于P 点,根据两点之间线段最短可判断P 点满足条件.(1)解∶如图,线段AC 即为所求;(2)解∶如图,射线AB ,点D 即为所求;(3)解∶连接BC 交直线l 于点P ,则点P 即为所求,如图.【点睛】本题主要考查了直线、射线、线段的定义,线段的性质,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;两点之间,线段最短是解题的关键.25.120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.26.(1)①10,3;②23t -+,82t -;③2;4;(2)当t =1或3时,12PQ AB =;(3)不发生变化,5MN =,理由见解析.【分析】(1)①根据题目所给的两点距离公式以及两点中点公式进行求解即可;②根据数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,进行求解即可得到结果;③当P 、Q 两点相遇时,P 、Q 表示的数相等,根据此及②中结论得出方程求解即可;(2)由(1)②得t 秒后,点P 表示的数23t -+,点Q 表示的数为82t -,则510PQ t =-,再由152PQ AB ==,可得5105t -=,由此求解即可;(3)根据两点中点公式,分别求出点M 表示的数,点N 表示的数,即可得出线段MN 的长度.(1)解:①由题意得:2810AB =--=,线段AB 的中点为2832-+=,故答案为:10,3;②由题意得:t 秒后,点P 表示的数为:23t -+,点Q 表示的数为:82t -;故答案为:23t -+,82t -;③∵当P 、Q 两点相遇时,P 、Q 表示的数相等,∴2382t t -+=-,解得:2t =,∴当2t =时,P 、Q 相遇,此时,23264t -+=-+=,∴相遇点表示的数为4;故答案为:2;4;(2)解:∵t 秒后,点P 表示的数23t -+,点Q 表示的数为82t -,∴(23)(82)510PQ t t t =-+--=-,又∵1110522PQ AB==⨯=,∴5105t-=,解得:t=1或3,∴当t=1或3时,12PQ AB=;(3)解:不发生变化,理由如下:∵点M为PA的中点,点N为PB的中点,∴点M表示的数为2(23)3222t t-+-+=-,点N表示的数为8(23)3322t t+-+=+,∴33(2)(3)522t tMN=--+=.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,数轴上的动点问题,数轴上两点之间的中点表示方法,解题的关键在于理解题意,能够熟练掌握数轴上两点的距离计算公式.27.(1)①(al﹣2a2)m2;②1200m2(2)(al+a﹣2a2)m2【分析】(1)①先用l和a的代数式表示出园子的长,再表示出园子的面积;②把l=100,a=30代入①中的代数式进行计算即可;(2)由园子的宽不变,长增加了,即可判断出园子的面积增大了,表示出园子的长,即可求出园子的面积.(1)解:①∵总长为l米,宽为a米,∴园子的长为:(l﹣2a),∴园子的面积为:a(l﹣2a)=(al﹣2a2)m2;②当l=100,a=30时,al﹣2a2=30×100﹣2×302=3000﹣2×900=3000﹣1800=1200(m2);(2)解:∵园子的宽不变,长增加了,∴园子的面积增大了,∵在园子的长边上开了1米的门,∴园子的长为:(l+1﹣2a),∴园子的面积为:a(l+1﹣2a)=(al+a﹣2a2)m2.【点睛】本题考查了列代数式及代数式求值,正确列出代数式是解题的关键.。
浙教版-学年度上学期七年级数学期末综合练习试题2(含解析)

2018-2019浙教版七年级上数学期末综合练习试题2姓名:__________班级:__________考号:__________题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.0.593×107 B.5.93×106 C.5.93×102 D.5.93×1072.下列实数中是无理数的是()A. B.C. D.03.下列各式中,是方程的个数为()(1)﹣4﹣3=﹣7;(2)3x﹣5=2x+1;(3)2x+6;(4)x﹣y=v;(5)a+b>3;(6)a2+a﹣6=0.A.1个B.2个 C.3个D.4个4.下列关于角的说法正确的是()A.两条射线组成的图形叫做角 B.角的大小与这个角的两边的长短无关C.延长一个角的两边 D.角的两边是射线,所以角不可度量5.下列立体图形中,都是柱体的为( )6.计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.57.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A .7B .6C .5D .48.若关于x 的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=-3D.x=2 9.已知a 和b 一正一负,则+的值为( )A .0B .2C .﹣2D .根据a 、b 的值确定10.设A ,B ,C 均为多项式,小方同学在计算“A ﹣B ”时,误将符号抄错而计算成了“A+B ”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=( ) A .x 2﹣2xB .x 2+2x C .﹣2 D .﹣2x二、填空题(本大题共6小题,每小题3分,共18分) 11.如果向东走3米记为+3米,那么向西走6米记作 .12.如果一个数的平方根为5a-1和a+7,那么这个数是_________________。
浙教版七年级上册数学期末考试试卷及答案

浙教版七年级上册数学期末考试试题一、单选题1.在0,-1,2,-3这四个数中,最小的数是()A .-3B .2C .-1D .02.计算2a a -的结果是()A .1B .2C .aD .2a3.将390000用科学记数法表示应为()A .60.3910⨯B .53.910⨯C .43910⨯D .53.94.如果2x =是关于x 的方程46x a -=的解,那么a 的值是()A .1B .2C .1-D .2-5.将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是()A .∠α=∠βB .∠α=12∠βC .∠α+∠β=90°D .∠α+∠β=180°6.下列选项中的量不能用“0.9a ”表示的是()A .边长为a ,且这条边上的高为0.9的三角形的面积B .原价为a 元/千克的商品打九折后的售价C .以0.9千米/小时的速度匀速行驶a 小时所经过的路程D .一本书共a 页,看了整本书的110后剩下的页数7.如图,点C ,D ,E 是线段AB 上的三个点,下列能表示线段CE 的式子为()A .CE CD BD =+B .CE BC CD=-C .CE AD BD AC =+-D .CE AE BC AB=+-8.若x y =,那么下列等式一定成立的式()A .11x y -=-B .3344x y =-C .1132x y =D .1122x y -=+9.有A ,B 两种卡片各4张,A 卡片正、反两面分别写着1和0,B 卡片正、反两面分别写着2和0,甲、乙两人从中各拿走4张卡片并摆放在桌上,发现各自的4张卡片向上一面的数字和相等:两人各自将所有卡片另一面朝上,则甲的4张卡片数字和减小了1,乙的4张卡片数字和增加了1,则甲拿取A 卡片的数量为()A .1张B .2张C .3张D .4张10.如图所示,该正方体的展开图为()A .B .C .D .二、填空题11.若2x y 与13m x y -是同类项,则m 的值为______.12.某检修小组从A 地出发,在东西方向的马路上检修线路,若规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:km ):7+,9-,8+,6-,5-.则收工时检修小组在A 地______边______km .13.如图,点C 是线段AB 的中点,则线段AC 与线段AB 满足数量关系______.14.若32m n +=,则621m n +-=______.15.关于x 的一元一次方程224a x m +﹣=的解为x =1,则a+m 的值为_____.16.某眼镜厂车间有28名工人,每人每天可生产镜架40个或者镜片60片,已知一个镜架配两片镜片,为使每天生产的镜架和镜片刚好配套,应安排生产镜架和镜片的工人各多少名?若安排x 名工人生产镜片,则可列方程:______.17.对于有理数a ,b ,n ,若1a n b n -+-=,则称b 是a 关于n 的“相关数”,例如,22321-+-=,则3是2关于2的“相关数”.若1x 是x 关于1的“相关数”,2x 是1x 关于2的“相关数”,…,4x 是3x 关于4的“相关数”.则123x x x ++=______.(用含x 的式子表示)18.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠AEF =23∠DEF ,则∠NEA =_____.三、解答题19.计算:(1)()24--;(2)()2122÷-.20.解方程:(1)318x -=;(2)12123x x +--=.21.先化简,再求值:()()222124x x x -+--,其中3x =.22.如图,在同一平面内有一条直线l 和三点A ,B ,C .按要求完成下列作图.(1)画线段AC ;(2)画射线AB 交直线l 于点D ;(3)在直线l 上找一点P ,使得PB PC +最短.(保留作图痕迹)23.已知图中有A、B、C、D四个点,现已画出A、B、C三个点,已知D点位于A的北偏东30°方向,位于B的北偏西45°方向上.(1)试在图中确定点D的位置;(2)连接AB,并在AB上求作一点O,使点O到C、D两点的距离之和最小;(3)第(2)小题画图的依据是.24.一家游泳馆出售会员证,每张会员证150元,只限本人使用.凭证购入场券每张10元,不凭证购入场券每张20元.请依据以上情境,提出一个问题并解决.(根据提出问题的层次,给不同的得分.)提出的问题是:___________解决过程如下:___________25.观察下面三行数:-,64,…;①2-,4,8-,16,32-,66,…;②0,6,6-,18,30-,32,…;③1-,2,4-,8,16(1)第①行第8个数为______;第②行第8个数为______;第③行第8个数为______.(2)是否存在这样一列数,使三个数的和为322?若存在,请写出这3个数;若不存在,请说明理由.26.小王和小李每天从A地到B地上班,小王坐公交车以40km/h的速度匀速行驶,小李开汽车以50km/h的速度匀速行驶.(1)若他们同时从A地出发,15分钟后,两人相距______km;(2)假设途中设有9个站点1P,2P,…,9P公交车在每个站点都停靠0.5分钟.①若两车同时从A地出发,则汽车比公交车早10.5分钟到达.求A,B两地的距离.②若每相邻两个站点间(包含起点站和终点站)的距离相等,小王4:30坐公交车从A地前往B 地,8分钟后小李开汽车也从A 地前往B 地,求小李追上小王的时刻.27.如图,已知ABP ∠与CBP ∠互余,32CBD ︒∠=,BP 平分ABD ∠.求ABP ∠的度数.参考答案1.A【分析】根据有理数的大小比较法则即可得.【详解】解:有理数的大小比较法则:正数大于0,负数小于0,负数绝对值大的反而小.则3102-<-<<,即在这四个数中,最小的数是3-,故选:A .【点睛】本题考查了有理数的大小比较,熟练掌握有理数的大小比较法则是解题关键.2.C【分析】根据合并同类项法则,即可求解.【详解】解:2a a a -=.故选:C【点睛】本题主要考查了整式的减法运算,熟练掌握合并同类项法则是解题的关键.3.B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将390000用科学记数法表示应为3.9×105,故选:B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【分析】把x=2代入方程4x-a=6得出8-a=6,再求出方程的解即可.【详解】解:把x=2代入方程4x-a=6得:8-a=6,解得:a=2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.5.C【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C.【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.6.A【分析】根据题意,列出代数式,即可求解.【详解】解:A、边长为a,且这条边上的高为0.9的三角形的面积为10.90.452a a⨯=,故本选项符合题意;B、原价为a元/千克的商品打九折后的售价为0.9a元,故本选项不符合题意;C、以0.9千米/小时的速度匀速行驶a小时所经过的路程为0.9a千米,故本选项不符合题意;D、一本书共a页,看了整本书的110后剩下的页数为110.910a a⎛⎫-=⎪⎝⎭页,故本选项不符合题意;故选:A.【点睛】本题主要考查了列代数式,明确题意,准确得到数量关系是解题的关键.7.D【分析】根据线段和差的计算方法逐项进行计算,即可得出答案.【详解】解:A 、CE CD DE =+,故本选项错误,不符合题意;B 、CE BC BE =-,故本选项错误,不符合题意;C 、CE AD BD AC BE =+--,故本选项错误,不符合题意;D 、AE BC AB AE BE CE AB AB CE AB CE +-=++-=+-=,故本选项正确,符合题意;故选:D【点睛】本题主要考查了线段的和差,熟练掌握线段的和差算的方法进行计算是解决本题的关键.8.A【分析】根据等式的基本性质,逐项判断即可求解.【详解】解:A 、若x y =,则x y -=-,所以11x y -=-,故本选项正确,符合题意;B 、若x y =,则3344x y =,故本选项错误,不符合题意;C 、若x y =,则1133x y =,故本选项错误,不符合题意;D 、若x y =,则1122x y -=-,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了等式的基本性质,熟练掌握等式的基本性质是解题的关键.9.C【分析】设开始时甲向上一面的数字之和为a ,根据题意有4a=12,即a=3,再根据数字确定满足条件的甲朝上的数字的可能情况,即可作答.【详解】解:设开始时甲向上一面的数字之和为a ,∵甲、乙正面朝上的数字之和相等,∴此时乙向上一面的数字之和也为a ,∵翻面之后,朝上一面的数字之和甲减小1,乙增加1,∴此时甲向上一面的数字之和为a-1,乙向上一面的数字之和为a+1,则总的面上数之和为:a+a+a-1+a+1=4a ,根据A 、B 两种卡片可知8中卡片的两面数字之和为:1+1+1+1+2+2+2+2=12,即4a=12,即a=3,∴甲一面朝上的数字之和为3,∴甲朝上的可能是1,1,1,0或者2,1,0,0,则甲朝下的可能是0,0,0,2或者0,0,1,1,综上可知,甲拿取A卡片的数量为3张.故选:C.【点睛】本题考查了有理数的运算,通过将12进行拆分来进行分配是解答本题的关键.10.D【分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【详解】解:根据正方体表面展开图的“相对的面”的判断方法可知,选项B中面“v”与“=”是对面,因此选项B不符合题意;再根据上面“v”符号开口,可以判断选项D符合题意;选项A、C不符合题意;故选:D.【点睛】本题考查几何体的展开图,掌握正方体展开图的特征是正确判断的前提.11.3【分析】根据同类项的定义解决此题.【详解】解:由题意得,2=m−1.∴m=3.故答案为:3.【点睛】本题主要考查同类项,如果两个单项式所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.熟练掌握同类项的定义是解决本题的关键.12.西5【分析】将五次行驶的记录数据相加即可得到答案.【详解】∵798655-+--=-,∴在A地西边5千米处.故答案为:西;5.【点睛】本题考查了有理数的加减法,能够将实际问题和有理数的加减相结合,并且能够准确计算出结果是解决本题的关键.13.12 AC AB=【分析】根据线段中点的定义可得答案.【详解】解:∵点C是线段AB的中点,∴12AC AB=.故答案为:12AC AB =【点睛】本题主要考查线段中点的定义,熟练掌握线段的中点是线段上一点,到线段两段距离相等的点是解题的关键.14.3【分析】根据32m n +=,可得624m n +=,再代入,即可求解.【详解】解:∵32m n +=,∴()23624m n m n +=+=,∴621413m n +-=-=.故答案为:3【点睛】本题主要考查了求代数式的值,利用整体代入思想解答是解题的关键.15.5.【分析】先根据一元一次方程的定义得出a ﹣2=1,求出a ,再把x =1代入方程2x+m =4得出2+m =4,求出方程的解即可.【详解】∵方程224a x m +﹣=是关于x 的一元一次方程,∴a ﹣2=1,解得:a =3,把x =1代入一元一次方程2x+m =4得:2+m =4,解得:m =2,∴a+m =3+2=5,故答案为:5.【点睛】本题考查了一元一次方程的定义,解一元一次方程和一元一次方程的解,能求出a 、m 的值是解此题的关键.16.60x=2×40(28-x )【分析】设安排x 名工人生产镜片,则(28-x )人生产镜架,根据2个镜片和1个镜架恰好配一套,列方程即可.【详解】解:设安排x 名工人生产镜片,则安排(28-x )名工人生产镜架,根据题意得:由题意得,60x=2×40(28-x ).故答案为:60x=2×40(28-x )【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系列方程.17.9﹣3|x﹣1|【分析】先读懂“相关数”的定义,列出对应等式,再根据等式分析各个数的取值范围,去绝对值,进而求出结果.【详解】解:依题意有:|x1﹣1|+|x﹣1|=1,①|x2﹣2|+|x1﹣2|=1,②|x3﹣3|+|x2﹣3|=1,③|x4﹣4|+|x3﹣4|=1,④由①可知0≤x,x1≤2,若否,则①不成立,由②可知1≤x1,x2≤3,若否,则②不成立,同理可知2≤x2,x3≤4,3≤x3,x4≤5,∴x1﹣1+|x﹣1|=1,⑤x2﹣2+2﹣x1=1,⑥x3﹣3+3﹣x2=1,⑦3×⑤+2×⑥+⑦,得x1+x2+x3﹣3+3|x﹣1|=6,∴x1+x2+x3=9﹣3|x﹣1|.故答案为:9﹣3|x﹣1|.【点睛】本题考查绝对值和新定义问题.解题的关键在于读懂题意,列出等式,根据等式判断出五个数的取值范围,进而去绝对值符号,最后得出结果.注意可以取特殊值,如x=1或x=2,来验证计算的结果是否正确.18.36°.【分析】由于∠AEF=23∠DEF,根据平角的定义,可求∠DEF,由折叠的性质可得∠FEN=∠DEF,再根据角的和差,即可求得答案.【详解】∵∠AEF=23∠DEF,∠AEF+∠DEF=180°,∴∠DEF=108°,由折叠可得∠FEN=∠DEF=108°,∴∠NEA=108°+108°﹣180°=36°.故答案为:36°.【点睛】此题考查了折叠的性质、矩形的性质及平角的定义,解题的关键是注意数形结合思想的应用,难度一般.19.(1)6(2)3【分析】(1)将有理数的减法转化为有理数的加法再计算;(2)先算乘方,再算有理数的除法.(1)解:()24246--=+=;(2)解:()21221243÷-=÷=.【点睛】本题考查了有理数的加法与除法运算,熟练掌握运算法则是解本题的关键.20.(1)x=3(2)x=-1【分析】(1)按解一元一次方程的一般步骤求解即可;(2)按解一元一次方程的一般步骤求解即可.(1)解:由原方程移项、合并同类项,得3x=9,解得x=3,所以,原方程的解为x=3;(2)解:去分母,得3(x+1)-6=2(x-2),去括号,得3x+3-6=2x-4,移项、合并同类项,得x=-1,所以,原方程的解为x=-1.【点睛】本题考查了一元一次方程解法.解一元一次方程的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.21.2x 2;18【分析】先把整式去括号、合并同类项化简后,再把x =3代入计算即可.【详解】解:2(x 2﹣2x+1)﹣(2﹣4x )=2x 2﹣4x+2﹣2+4x=2x2,当x=3时,2x2=2×32=18.【点睛】本题考查了整式的加减—化简求值,掌握去括号、合并同类项的运算法则是解题的关键.22.(1)见解析(2)见解析(3)见解析【分析】(1)根据线段的定义,画出对应的几何图形,即可求解;(2)根据射线的定义,画出对应的几何图形,即可求解;(3)连接BC交直线于P点,根据两点之间线段最短可判断P点满足条件.(1)解∶如图,线段AC即为所求;(2)解∶如图,射线AB,点D即为所求;(3)解∶连接BC交直线l于点P,则点P即为所求,如图.【点睛】本题主要考查了直线、射线、线段的定义,线段的性质,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;两点之间,线段最短是解题的关键.23.(1)见解析;(2)见解析;(3)两点之间线段最短【分析】(1)根据方向角的定义解决问题即可.(2)连接CD交AB于点O,点O即为所求.(3)根据两点之间线段最短解决问题.【详解】(1)如图,点D即为所求.(2)如图,点O即为所求.(3)第(2)小题画图的依据是两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查作图-应用与设计,方向角等知识,解题的关键是灵活运用所学知识解决问题.24.见解析;【分析】可提出问题:游泳多少次,购会员证与不购证付一样的钱?根据提出的问题解答即可.【详解】解:提出的问题是:游泳多少次,购会员证与不购证付一样的钱?(答案不唯一),解决过程如下:设游泳x次,购会员证与不购证付一样的钱,根据题意得:150+10x=20x,解得:x=15.答:游泳15次,购会员证与不购证付一样的钱.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.25.(1)256,258,128;(2)不存在,理由见解析【分析】(1)①后一个数是前一个数的−2倍,②的数的规律是在①每个对应数加2,③后一个数是前一个数的−2倍,由此可求解;(2)通过观察可得规律:①的第n个数是(−2)n,②的第n个数是(−2)n+2,③的第n 个数是(−1)n2n−1,再由(−2)n+(−2)n+2+(−1)n×2n−1=322,求n即可.(1)解:(1)−2,4,−8,16,−32,64,…,第n个数为(-2)n,当n=8时,(-2)8=256,∴第8个数是256,②的数的规律是在①每个对应数加2∴②的第8个数是256+2=258,③的第n个数为(−1)n2n−1,当n=8时,(−1)8×27=27=128,∴③的第8个数是128,故答案为:256,258,128;(2)不存在一列数,使三个数的和为322,理由如下:①的第n个数是(−2)n,②的第n个数是(−2)n+2,③的第n个数是(−1)n2n−1,由题意得,(−2)n+(−2)n+2+(−1)n×2n−1=322,设n为偶数,∴4×2n−1+2n−1=5×2n−1=320,∴2n−1=64,∴n=7,与n为偶数互相矛盾,设n为奇数,∴-4×2n−1-2n−1=-5×2n−1=320,此方程无解,∴不存在一列数,使三个数的和为322.【点睛】本题考查数字的变化规律,通过观察所给的式子,找到式子中各数间的规律是解题的关键.26.(1)2.5km(2)①20km;②小李追上小王的时刻为4:48.【分析】(1)先求出小王和小李在15分钟内的路程,然后求得两个间的距离;(2)①先设A、B两地相距x千米,然后分别用含有x的式子表示两人从A地到B地的时间,再结合“汽车比公交车早10.5分钟到达”列出方程求解,即可得到A、B两地间的距离;②先由①得到每两个站点间的距离,然后计算得到公交车在每两个站点间的时间,进而初步判断8分钟后公交车的位置,然后设时间为m分钟,再分段进行讨论即可.(1)解:15分钟=0.25小时,∴小王的路程为40×0.25=10(km),小李的路程为50×0.25=12.5(km ),∴两人间的距离为12.5﹣10=2.5(km ),故答案为:2.5.(2)解:①设两地距离为x 千米,则小李的从A 地到B 地的时间为x 50小时,小王的时间为0.594060x ⎛⎫+⨯ ⎪⎝⎭小时,∵汽车比公交车早10.5分钟到达,∴0.510.5940605060x x ⎛⎫+⨯-= ⎪⎝⎭,解得:x =20,∴A 、B 两地相距20千米.②由①得,A 、B 两地相距20千米,∵每两个站点间的距离相等,∴每两个站点间的距离为20÷10=2(千米),∴小王经过两个站点间的时间为2÷40=0.05小时=3分钟,∵3+0.5+3+0.5=7<8,∴8分钟时,公交车在P 2与P 3之间,设小李经过m 分钟追上小王,当小李在P 2与P 3之间追上小王,即m≤2时,8150406060mm +-⨯=⨯,解得:m =28(舍);当小李在P 3与P 4之间追上小王,即2.5<m≤5.5时,8 1.550406060mm +-⨯=⨯,解得:m =26(舍);当小李在P 4与P 5之间追上小王,即6<m≤9时,8250406060m m +-⨯=⨯,解得:m =24(舍);当小李在P 5与P 6之间追上小王,即9.5<m≤12.5时,8 2.550406060m m +-⨯=⨯,解得:m =22(舍);当小李在P 6与P 7之间追上小王,即13<m≤16时,8350406060m m +-⨯=⨯,解得:m =20(舍);当小李在P 7与P 8之间追上小王,即16.5<m≤19.5时,8 3.550406060m m +-⨯=⨯,解得:m =18;∴经过18分钟,小李追上小王,此时的时刻为4:48.【点睛】本题考查了一元一次方程的应用,解题的关键是会利用“路程=速度×时间”进行相关时间和路程的表示和会将时间单位进行转化.27.61︒【分析】设ABP x ∠=,根据已知条件,列出方程求解即可.【详解】设ABP x∠=因为ABP ∠与CBP ∠互余,所以90CBP x∠=︒-因为BP 平分ABD ∠,且32CBD ︒∠=,所以CBD CBP ABP∠+∠=∠即:3290x x︒+︒-=解得:61x =︒。
浙教版七年级上册数学期末考试试卷附答案

浙教版七年级上册数学期末考试试题一、单选题1.计算52-+的结果等于()A .3B .3-C .7-D .72.数据393000用科学记数法表示为()A .393×103B .39.3×104C .3.93×105D .0.393×1063.数17,π,0,-0.3中,属于无理数的是()A .17B .πC .0D .-0.34.下列合并同类项正确的是()A .3x +2x =5x 2B .3x -2x =1C .-3x +2x =-x D .-3x -2x =5x5.解方程()221x x -+=,以下去括号正确的是()A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x--=6.如图,已知∠AOB :∠BOC =2:3,∠AOC =75°,那么∠AOB =()A .20°B .30°C .35°D .45°7.有一个数值转换器,原理如下:当输入81时,输出()A .9B .3C D .8.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是()A .3x ﹣2=2x +9B .3(x ﹣2)=2x +9C .2932x x +=-D .3(x ﹣2)=2(x +9)9.按图示方法,搭1个正方形需要四根火柴,搭3个正方形需要10根火柴,搭6个正方形需要18根火柴棒,则能搭成符合规律图形的火柴棒的数目可以是()A .52根B .66根C .72根D .88根10.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点,下列结论:①若AD=BM ,则AB=3BD ;②若AC=BD ,则AM=BN ;③AC-BD=2(MC-DN );④2MN=AB-CD .其中正确的结论是()A .①②③B .③④C .①②④D .①②③④二、填空题11.﹣3的相反数是__________.12.计算:()192-÷=_____.13.单项式25ab -的系数是_____.14.若x =2是关于x 的方程5x+a =3(x+3)的解,则a 的值是_____.15.一副三角板如图叠放,已知∠OAB =∠OCD =90°,∠AOB =45°,∠COD =60°,OB 平分∠COD ,则∠AOC =_____度.16.纸片上有一数轴,折叠纸片,当表示-1的点与表示5的点重合时,表示3的点与表示数_____的点重合.17.如图,一个瓶子的容积为1升,瓶内装着一些溶液,当瓶子正放时,瓶内溶液的高度为20cm ,倒放时,空余部分的高度为5cm .(1)瓶内溶液的体积为______升;(2)现把溶液全部倒在一个底面为60cm2的圆柱形杯子里,再把瓶子倒放,此时瓶内溶液的高度是圆柱形杯子内溶液高度的6倍.已知瓶子的高度是33cm,则倒入圆柱形杯子内的溶液体积为______.三、解答题18.计算:(1)4×(-2)+|-8|;(2)12×3142⎛⎫-⎪⎝⎭+(-3)2.19.解方程:1143 x x --=.20.先化简再求值:2(a2-ab)-3(23a2-ab),其中a=2,b=-5.21.如图,直线AB,CD交于点O,OM⊥AB,ON⊥CD.(1)写出图中所有与∠AOC互余的角.(2)当∠MON=120°时,求∠BOD的度数.22.如图,线段AB =10,C 为AB 延长线上的一点,D 是线段AC 中点,且点D 不与点B 重合.(1)当BC =6时,求线段BD 的长.(2)若线段BD =4,求线段BC 的长.23.阅读材料:数轴上A 、B 两点分别对应的实数a 、b ,则a b -表示A 、B 两点之间的距离,若a b ≥,则=a b a b --;若a b <,则a b b a -=-.(1)若数轴上A 点对应的实数1a =-,且=3a b -,则数轴上B 点对应的实数b =__.(2)若数轴上A 、B 两点对应的数分别对应代数式2231x x --,23+24x x -+,且点A 在B 的右边,求A 、B 两点之间的距离.(3)若数轴上A 、B 两点对应的数分别为关于x 的代数式2231x x --,2+24mx x +,且求得,A B 两点之间的距离所得结果不含字母2x ,求m 的值.24.如图,已知线段AB .(1)利用刻度尺画图:延长线段AB 至C ,使BC =12AB ,取线段AC 的中点D .(2)若CD =6,求线段BD 的长.25.如图,直线AB 与直线CD 相交于点O ,OE ⊥OF ,且OA 平分∠COE .(1)若∠DOE =50°,求∠BOF 的度数.(2)设∠DOE =α,∠BOF =β,请探究α与β的数量关系(要求写出过程).26.【阅读理解】甲、乙两人分别从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶,出发后经过0.4小时相遇,已知在相遇时乙比甲多行驶了14.4千米,相遇后经0.1小时乙到达A地.问甲、乙两人的速度分别是多少?分析可以用示意图来分析本题中的数量关系.从图中可得如下的相等关系,甲行驶0.4小时的路程=乙行驶0.1小时路程,甲行驶0.4小时的路程+14.4=乙行驶0.4小时的路程.根据这两个相等关系,可得到甲、乙速度的关系,设元列出方程.【问题解决】请你列方程解答【阅读理解】中的问题.【能力提升】对于上题,若乙出发0.2小时后行驶速度减少10千米/小时,问甲出发后经多少小时两人相距2千米?参考答案1.B【分析】根据有理数的加法计算即可.【详解】解:()523--=-,故选:B .【点睛】本题考查了有理数的加法,解题的关键是掌握有理数的加法法则.2.C【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数.当确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数绝对值1≤时,n 是负整数.【详解】5393000=3.9310⨯故选:C【点睛】本题考查科学记数法的表示方法,解题关键是要正确确定a 的值以及n 的值.3.B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A 、17是分数,属于有理数,故此选项不符合题意;B 、π是无理数,故此选项符合题意;C 、0是整数,属于有理数,故此选项不符合题意;D 、-0.3是有限小数,属于有理数,故此选项不符合题意.故选:B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.C【分析】根据合并同类项法则:系数相加,字母及其指数不变.逐项判断即可.【详解】A 、325x x x +=,故选项错误,不符合题意;B 、32x x x -=,故选项错误,不符合题意;C 、32x x x -+=-,故选项正确,符合题意;D 、325x x x --=-,故选项错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则,解题的关键是掌握合并同类项的法则.【分析】去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号.【详解】解:()221x x-+=42x x --=,故选:D .【点睛】此题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.去括号注意几点:①不要漏乘括号里的每一项;②括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号.6.B【分析】由∠AOB :∠BOC=2:3,可得∠AOB=25∠AOC 进而求出答案,作出选择.【详解】解:∵∠AOB :∠BOC =2:3,∠AOC =75°,∴∠AOB =223+∠AOC =25×75°=30°,故选:B .【点睛】本题考查角的有关计算,按比例分配转化为∠AOB=25∠AOC 是解答的关键.7.C【分析】直接利用算术平方根的定义分析得出答案.【详解】解:由题意可得:81的算术平方根是9,9的算术平方根是3,则3y 故选:C .【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键.8.B【分析】理清题意,根据乘车人数不变,即可列出关于x 的一元一次方程.【详解】解:设车x 辆,根据题意得:3(x ﹣2)=2x +9.故选:B .【点睛】本题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.【分析】仔细观察图形,找到图形变化的规律为:当有n层时,需要2n+2(1+2+3+•••n)=n2+3n根火柴,从而验证选项即可确定答案.【详解】解:1个正方形,一层,需要2×1+2×1=4根火柴;3个正方形,两层,需要2×2+2×(1+2)=10根火柴;6个正方形,三层,需要2×3+2×(1+2+3)=18根火柴;因此当有n层时,需要2n+2(1+2+3+•••n)=n2+3n根火柴,当n=8时,82+3×8=64+24=88根火柴,故选:D.【点睛】本题考查了图形的变化类问题,解题的关键是找到图形变化的规律:当有n层时,需要2n+2(1+2+3+…+n)=n2+3n根火柴,难度中等.10.D【分析】根据M、N分别是线段AD、BC的中点,可得AM=MD,CN=BN.由①知,当AD=BM,可得AM=BD,故而得到AM=MD=DB,即AB=3BD;由②知,当AC=BD时,可得到MC=DN,又AM=MD,CN=BN,可解得AM=BN;由③知,AC-BD=AM+MC-BN-DN=(MC-DN)+(AM-BN)=(MC-DN)+(MD-CN)=2(MC-DN);由④知,AB-CD=AC+BD=AM+MC+DN+NB=MD+MC+DN+CN=MD+DN+MC+CN=2MN逐一分析,继而得到最终选项.【详解】解:∵M,N分别是线段AD,BC的中点,∴AM=MD,CN=NB.①∵AD=BM,∴AM+MD=MD+BD,∴AM=BD.∵AM=MD,AB=AM+MD+DB,∴AB=3BD.②∵AC=BD,∴AM+MC=BN+DN.∵AM=MD,CN=NB,∴MD+MC=CN+DN,∴MC+CD+MC=CD+DN+DN,∴MC=DN ,∴AM=BN.③AC-BD=AM+MC-BN-DN=(MC-DN)+(AM-BN)=(MC-DN)+(MD-CN)=2(MC-DN);④AB-CD=AC+BD=AM+MC+DN+NB=MD+MC+DN+CN=MD+DN+MC+CN=2MN.综上可知,①②③④均正确故答案为:D【点睛】本题主要考查线段长短比较与计算,以及线段中点的应用.11.3【详解】解:一个数的相反数就是在这个数前面添上“﹣”号.所以﹣(﹣3)=3,故答案为:3.12.-18【分析】根据有理数的除法法则进行运算即可.【详解】解:1(9)2-÷=(9)2-⨯=18.【点睛】本题考查了有理数的除法法则即:除以一个不为零的数等于乘以这个数的倒数;解题的关键是掌握有理数的除法法则.13.5-【分析】单项式的系数:单项式中的数字因数叫做这个单项式的系数.【详解】根据单项式系数的定义,可知:25ab -的系数为5-.故答案为5-【点睛】本题考察的知识点为:单项式的定义、单项式系数的定义;单项式中数字因数包括负号这个知识点是解答本题的关键.14.5【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.15【分析】先根据OB 平分∠COD 求出∠BOC ,即可根据∠AOC =∠AOB-∠BOC 求解【详解】∵OB 平分∠COD ,∠COD =60°,∴∠BOC =30°,∵∠AOB =45°,∴∠AOC =∠AOB-∠BOC =45°-30°=15°,故答案为:15.【点睛】本题考查三角板中的角度计算,准确的找到角度之间的关系是解题的关键.16.1【分析】先求出折痕和数轴交点表示的数,再由所求数表示的点与表示3的点关于折痕和数轴交点对称,即可求出.【详解】解:由题意可知,折痕与数轴交点表示的数字为(15)22-+÷=,表示3的点与折痕和数轴的交点的距离为321-=,表示3的点与表示数211-=的点重合,故答案为:1.【点睛】本题考查了数轴的知识,解题的关键是求出折痕表示的数字.17.0.83224cm 【分析】(1)设瓶内溶液的体积为x 升,则空余部分的体积为520x 升,根据瓶子的容积为1升,即可得出关于x 的一元一次方程,解之即可得出结论;(2)可设倒入圆柱形杯子内的溶液体积为y 3cm ,瓶内剩余体积为3(800)y cm -,瓶子的底面积为28002040cm ÷=,以高为等量关系,列出方程计算即可求解.【详解】解:(1)设瓶内溶液的体积为x 升,则空余部分的体积为520x 升,依题意得:5120x x +=,解得:0.8x =.答:瓶内溶液的体积为0.8升.故答案为:0.8;(2)设倒入圆柱形杯子内的溶液体积为y 3cm ,瓶内剩余体积为3(800)y cm -,瓶子的底面积为28002040()cm ÷=,方法1:33564060y y --=⨯,解得224y =.方法2:依题意有800(1000800)(3320)64060y y ---+-=⨯,解得224y =.故倒入圆柱形杯子内的溶液体积为3224cm .故答案为:3224cm .【点睛】本题考查了一元一次方程的应用以及认识立体图形,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)以高为等量关系求解.18.(1)-3(2)12【分析】(1)先利用立方根、绝对值的性质化简,再合并,即可求解;(2)先利用乘法分配律计算,再合并,即可求解.(1)解:()428⨯-+-883=-+-3=-(2)解:()23112342⎛⎫⨯-+- ⎪⎝⎭311212942=⨯-⨯+969=-+12=.【点睛】本题主要考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则.19.15x =-【分析】方程去分母,去括号,移项合并同类项,把x 的系数化为1,即可求解.【详解】解:去分母,得()31124x x--=去括号,得33124x x --=,移项合并同类项,得15x -=系数化为1,得15x =-【点睛】本题主要考查了一元一次方程的解法,解题难点是在解方程的过程中,去分母时各项都要乘以各分母的最小公倍数.20.ab ,-10【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】原式222223a ab a ab ab=--+=当2a =,=5b -时,原式()2510=⨯-=-.【点睛】此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.21.(1)COM ∠,AON∠(2)60°【分析】(1)根据OM ⊥AB ,ON ⊥CD ,可得∠AOC+∠COM=∠AOC+∠AON=90°,即可求解;(2)根据OM ⊥AB ,ON ⊥CD ,可得90AOM ∠=︒,90DON ∠=︒.再由120MON ∠=︒,可得30AON MON AOM ∠=∠-∠=︒,然后180BOD AON DON ∠=︒-∠-∠,即可求解.(1)解:∵OM ⊥AB ,ON ⊥CD ,∴∠AOM=∠CON=90°,∴∠AOC+∠COM=∠AOC+∠AON=90°,∴∠AOC 互余的角为COM ∠,AON ∠;(2)解:∵OM AB ⊥,∴90AOM ∠=︒,∵ON CD ⊥,∴90DON ∠=︒.∵120MON ∠=︒,∴1209030AON MON AOM ∠=∠-∠=︒-︒=︒.∴180180903060BOD AON DON ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题主要考查了垂线,余角和补角,根据题目的已知条件并结合图形分析是解题的关键.22.(1)2(2)线段BC 的长为18或2【分析】(1)如图1,根据线段的和差得到AC=AB+BC=16,根据线段中点的定义即可得到结论;(2)当点D 在B 的右侧时,如图2,AD=AB+BD=10+4=14,当点D 在B 的左侧时,如图3,AD=AB-BD=10-4=6,根据线段中点的定义即可得到结论.(1)解:如图1,∵AB=10,BC=6,∴AC=AB+BC=16,∵D 是线段AC 中点,∴AD=12AC=8,∴BD=AB-AD=10-8=2;(2)解:当点D 在B 的右侧时,如图2,AD=AB+BD=10+4=14,∵D 是线段AC 中点,∴AD=CD=14,∴BC=BD+CD=4+14=18;当点D 在B 的左侧时,如图3,AD=AB-BD=10-4=6,∵D 是线段AC 中点,∴AD=CD=6,∴BC=CD-BD=6-4=2,综上所述,线段BC 的长为18或2.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,解题的关键是掌握分类讨论的思想,以防遗漏.23.(1)2或-4;(2)2555x x --;(3)2m =【分析】(1)根据题意易得3a b -=±,然后问题可求解;(2)根据题意可得A 、B 两点之间的距离为22231324x x x x --+--,然后化简即可得出答案;(3)由题意得()22223124255x x mx x m x x -----=---,然后根据结果不含字母2x 可求解.【详解】解:(1)∵=3a b -,∴3a b -=±,∵1a =-,∴2b =或4b =-;故答案为2或-4;(2)由题意得:A 、B 两点之间的距离为()22222231324231324555x x x x x x x x x x ----++=--+--=--;(3)由题意得:A 、B 两点之间的距离为()22223124255x x mx x m x x -----=---,∵结果不含字母2x ,∴20m -=,∴2m =.【点睛】本题主要考查数轴上的两点距离及整式的加减,熟练掌握数轴上的两点距离及整式的加减是解题的关键.24.(1)见解析;(2)2【分析】(1)根据要求作出图形即可.(2)利用线段的中点的定义求出AC ,再求出BC ,可得结论.【详解】解:(1)如图,线段BC ,中点D 即为所求作.(2)∵D 是AC 的中点,∴AD=CD=6,∴AC=12,∴BC=12AB ,∴BC=13AC=4,∴BD=CD-CB=6-4=2.【点睛】本题考查了线段的和差定义和线段的中点等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)25°;(2)α=2β【分析】(1)先根据平角的定义得:∠COE=130°,由角平分线的定义和垂线的定义可得∠BOF 的度数;(2)根据(1)中的过程可得结论.【详解】解:(1)∵∠DOE=50°,∴∠COE=180°-∠DOE=180°-50°=130°,∵OA平分∠COE,∴∠AOE=12∠COE=12×130°=65°,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=180°-∠AOE-∠EOF=180°-65°-90°=25°;(2)∵∠DOE=α,∴∠COE=180°-∠DOE=180°-α,∵OA平分∠COE,∴∠AOE=12∠COE=12(180°-α)=90°-12α,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=β=180°-∠AOE-∠EOF=180°-(90°-12α)-90°=12α,即α=2β.【点睛】本题考查了角平分线的定义,以及邻补角的定义,垂线的定义,理解角平分线的定义是关键.26.[问题解决]12千米/小时,48千米/小时;[能力提升]0.4或0.48小时【分析】[问题解决]设甲的速度是x千米/小时,则乙的速度是4x千米/小时,根据在相遇时乙比甲多行驶了14.4千米,列出方程计算即可求解;[能力提升]设甲出发后经t小时两人相距2千米,分两种情况讨论:(1)甲、乙两人相遇前相距2千米,(2)甲、乙两人相遇后相距2千米,列出方程计算即可求解.【详解】解:[问题解决]设甲的速度是x千米/小时,则乙的速度是4x千米/小时,依题意有0.4x+14.4=0.4×4x,解得x=12,则4x=4×12=48.故甲的速度是12千米/小时,乙的速度是48千米/小时;[能力提升]设甲出发后经t小时相距2千米,(1)甲、乙两人相遇前两人相距2千米,依题意有12t+48×0.2+38(t-0.2)+2=24,解得t=0.4;(2)甲、乙两人相遇后相距2千米,依题意有12t+48×0.2+38(t-0.2)-2=24,解得t=0.48.故甲出发后经0.4或0.48小时两人相距2千米.。
浙教版七年级上册数学期末考试试卷带答案

浙教版七年级上册数学期末考试试题一、单选题1.下列各组数中,互为相反数的是()A.6和6-B.6-和16C.6-和16-D.16和62.(﹣2)4是(﹣2)2的()倍.A.1B.2C.3D.43.下列式子:①(﹣3)+5;②(﹣6)×2;③(﹣3)×(﹣2);④(﹣3)÷(﹣6),计算结果是负数的是()A.①B.②C.③D.④4.如图,三条直线相交于点O,则∠1+∠2+∠3的度数等于()A.210°B.180°C.150°D.120°5.下列各组中的两项是同类项的是()A.2a与2ab B.3xy与﹣12yx C.2a2b与2ab2D.x2y与﹣16.正方形面积为10,其边长是x,以下说法正确的是()A.x是有理数B.2<x<3C.3<x<4D.在数轴上找不到表示实数x的点7.请仔细分析下列赋予4a实际意义的例子,其中错误的是()A.若葡萄的价格是4元/千克,则4a表示买a千克该种葡萄的金额B.若a表示一个正方形的边长,则4a表示这个正方形的周长C.一辆汽车以a千米/小时的速度行驶,从A城到B城需4小时,则4a表示A,B两城之间的路程D.若4和a分别表示一个两位数中的十位数字和个位数字,则4a表示这个两位数8.已知a=﹣3400,b=7300,c=﹣11200,则下列各式结果最大的是()A.|a+b+c|B.|a+b﹣c|C.|a﹣b+c|D.|a﹣b﹣c| 9.根据等式的性质,若等式m=n可以变为m+a=n﹣b,则()A.a,b互为相反数B.a,b互为倒数C.a=b D.a=0,b=010.若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3-∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3=∠1=2∠2;④∠3<∠1+∠2.其中正确的是()A.①B.①②C.①②③D.①②③④二、填空题11.3x﹣7x=_____.12.数据36000用科学记数法表示为___________.13.若2a﹣b﹣2=0,则4a﹣2b﹣5=_____.14.汽车队运送一批货物,若每辆车装4吨,还剩下6吨未装;若每辆车装4.5吨,恰好装完,则这个车队共有车_______辆.15.如图,每个小正方形的边长为1,可通过“剪一剪”,“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是_____.16.某企业有A、B两类经营收入.今年A类年收入为a元,B类年收入是A类年收入的2倍,预计明年A类年收入将增加10%,B类年收入将减少10%.则明年该企业的年总收入为_____元.(用含a的代数式表示)三、解答题17.计算:(1)(﹣24)×111 () 834-+;2(2)-.18.解方程:(1)5x+3(2﹣x)=8;(2)3141136x x--=-.19.已知甲、乙两个油桶中各装有a升油.(1)把甲油桶的油倒出一半给乙桶,用含a的代数式表示现在乙桶中所装油的体积.(2)在(1)的前提下,再把乙桶的油倒出13给甲桶,最后甲、乙两个桶中的油一样多吗?请说明理由.20.(1)如图①,点C ,D ,E 在线段AB 上,AB =12,AC =4,D ,E 分别为AB ,CB 的中点,求DE 的长.(2)如图②,已知OC 平分∠AOD ,∠BOC =30°,且∠BOC 与∠AOD 互补,求∠AOD ,∠BOD 的度数.21.已知A =a 2﹣2ab+b 2,B =a 2+2ab+b 2.(1)求A+B .(2)求14(A ﹣B ),(3)若2A ﹣2B+9C =0,当a ,b 互为倒数时,求C 的值.22.已知点A ,B ,C ,D 是同一数轴上的不同四点,且点M 为线段AB 的中点,点N 为线段CD 的中点.如图,设数轴上点O 表示的数为0,点D 表示的数为1.(1)若数轴上点A ,B 表示的数分别是﹣5,﹣1,①若点C 表示的数是3,求线段MN 的长.②若CD =1,请结合数轴,求线段MN 的长.(2)若点A ,B ,C 均在点O 的右侧,且始终满足MN =2OA OB OC ++,求点M 在数轴上所表示的数.23.已知O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图①,若∠AOC=30°,求∠COE,∠DOB的度数.(2)如图①,若∠AOC=α,求∠DOE的度数(用含α的代数式表示).(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,探究∠AOC与∠DOE的度数之间的数量关系,并说明理由.参考答案1.A【分析】根据相反数的定义:互为相反数的两个数是符号不同、绝对值相等的两个数.逐个判断即可.【详解】解:A、6和6-是互为相反数,故本选项符合题意;B、6-和16不是互为相反数,故本选项不符合题意;C、6-和16-不是互为相反数,故本选项不符合题意;D、16和6不是互为相反数,故本选项不符合题意;故选:A【点睛】本题考查了相反数的定义,牢记相反数的定义是解题的关键.2.D【分析】根据幂的法则计算即可.【详解】解:(-2)4÷(-2)2=(-2)2=4,故选:D.【点睛】本题考查了有理数的乘方,掌握an表示n个a相乘是解题的关键.3.B【分析】先计算各个小问的结果,即可得到哪个选项是正确的.【详解】解:(-3)+5=2,故①不符合题意;(-6)×2=-12,故②符合题意;(-3)×(-2)=6,故③不符合题意;(-3)÷(-6)=12,故④不符合题意;故选:B.【点睛】本题考查有理数的混合运算、正数和负数,熟练掌握运算法则是解答本题的关键.4.B【分析】如图,根据对顶角相等求出∠3=∠4,再根据平角的定义解答.【详解】解:如图,∵∠4=∠3,∴∠1+∠2+∠3=∠1+∠2+∠4=180°.故选:B.【点睛】本题考查了对顶角相等的性质,根据对顶角相等,把三个角转化为一个平角是解题的关键.5.B【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:A.2a与2ab,所含字母不尽相同,不是同类项,不符合题意;B.3xy与12 yx,所含字母相同,并且相同字母的指数也相同,是同类项,符合题意;C.2a2b与2ab2,所含相同字母的指数不相同,不是同类项,不符合题意;D.x2y与-1,所含字母不同,不是同类项,不符合题意;故选:B.【点睛】本题考查了同类项,掌握同类项的定义是解答本题的关键.6.C【分析】根据正方形的面积公式可得的意义逐项进行判断即可.【详解】解:由题意得,,是无理数,因此选项A不符合题意;由于3<4,因此选项B不符合题意;选项C符合题意;的点,所以选项D不符合题意;故选:C.【点睛】本题考查估算无理数的大小,数轴与实数,理解算术平方根的定义以及数轴表示数的方法是解决问题的关键.7.D【分析】根据代数式表示实际意义的方法分别判断每个选项即可得.【详解】解:A.若葡萄的价格是4元/千克,则4a表示买a千克葡萄的金额,原说法正确,故此选项不符合题意;B.若a表示一个正方形的边长,则4a表示这个正方形的周长,原说法正确,故此选项不符合题意;C.一辆汽车以a千米/小时的速度行驶,从A城到B城需4小时,则4a表示A,B两城之间的路程,原说法正确,故此选项不符合题意;D.若4和a分别表示一个两位数中的十位数字和个位数字,则40+a表示这个两位数,原说法错误,故此选项符合题意;故选:D.【点睛】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.8.C【分析】根据有理数的加减法法以及绝对值的性质求出各个选项的值,再比较大小即可.【详解】解:|a+b+c|=92866 120012001200-+-=471200,|a+b-c|=92866120012001200-++=851200,|a-b+c|=92866120012001200---=1031200,|a-b-c|=92866120012001200--+=291200,∵1038547291200120012001200>>>,∴结果最大的是|a-b+c|.故选:C .【点睛】此题主要考查了有理数大小比较的方法,有理数的加减法以及绝对值,掌握有理数的加减法法则是解答本题的关键.9.A【分析】根据等式的基本性质得到a=-b ,再根据相反数的定义解决此题.【详解】解:由题意得:a=-b .∴a+b=0.∴a 与b 互为相反数.故选:A .【点睛】本题主要考查等式的基本性质、相反数、倒数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.10.C【分析】根据题意得:①(1)∠1+∠2=90°,(2)∠1+∠3=180°,(2)-(1)得出结果进行判断;②(1)+(2)得出结果进行判断;③(2)-(1)×2得出结果进行判断;④先把(1)等式两边乘2得2(∠1+∠2)=180°,把(2)变形后代入2(∠1+∠2)=180°,得出结果进行判断.【详解】解:根据题意得:(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴(2)-(1)得,∠3-∠2=90°,∴①正确;(1)+(2)得,∠1+∠2+∠1+∠3=270°,∴∠3+∠2=270°-2∠1,∴②正确;(2)-(1)×2得,∠3-∠1=2∠2,∴③正确;∵(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴2(∠1+∠2)=180°,∴∠3=180°-∠1=2(∠1+∠2)-∠1=∠1+2∠2,∴∠3>∠1+∠2,∴④错误;故选:C .【点睛】本题考查余角和补角,掌握余角和补角的定义,根据题目的要求对两个等式进行不同的计算是解题关键.11.-4x【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此计算即可.【详解】解:3x-7x=(3-7)x=-4x ,故答案为:-4x .【点睛】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.12.43.610⨯【分析】根据科学记数法可直接进行求解.【详解】解:由36000用科学记数法表示为43.610⨯;故答案为43.610⨯.【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.13.-1【分析】将4a-2b-5变形为2(2a-b )-5,然后整体代入数值进行计算即可.【详解】解:∵2a-b-2=0,∴2a-b=2∴4a-2b-5=2(2a-b )-5=4-5=-1.故答案为:-1.【点睛】本题主要考查代数式求值,将2a-b=2整体代入是解题的关键.14.12【分析】设这个车队共有车x辆,根据题意列方程,解方程即可求解.【详解】解:设这个车队共有车x辆,根据题意得4x+6=4.5x,解得x=12,答:这个车队共有车12辆.故答案为:12【点睛】本题考查了一元一次方程的应用,根据题意设出未知数,列出方程是解题关键.15【分析】由图可知每个小正方形的边长为1,面积为1,得出拼成的小方形的面积为5,进一步开方得出拼成的正方形的边长.【详解】解:分割图形如下:【点睛】本题考查图形的剪拼和算术平方根,熟知“如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根”是解答此题的关键.16.2.9a【分析】根据题意,可以用相应的代数式表示出今年和明年的总收入.【详解】解:今年A类年收入为a元,则B类收入为2a元,明年的总收入为:a(1+10%)+2a(1-10%)=2.9a(元),故答案为:2.9a.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.17.(1)-1(2)18【分析】(1)直接利用乘法分配律化简,再利用有理数的加法计算得出答案;(2)直接利用立方根以及二次根式的性质分别化简进而得出答案.(1)解:原式=()()()111242424834-⨯--⨯+-⨯=386-+-=-1;(2)原式=-2+5×4=-2+20=18.【点睛】此题主要考查了乘法分配律、立方根以及算术平方根等知识,正确化简各数是解题关键.18.(1)x=1(2)x=0.9【分析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.(1)解:去括号得:5x+6-3x=8,移项得:5x-3x=8-6,合并得:2x=2,解得:x=1;(2)去分母得:2(3x-1)=6-(4x-1),去括号得:6x-2=6-4x+1,移项得:6x+4x=6+1+2,合并得:10x=9,解得:x=0.9.【点睛】此题主要考查了一元一次方程的解法,正确掌握解方程的方法是解题关键.19.(1)32a(2)最后甲、乙两个桶中的油一样多.理由见解析【分析】(1)根据题意列出代数式即可;(2)根据题意分别求出甲乙两桶中现有油的体积即可.(1)解:现在乙桶中所装油的体积为:1322a a a +=;(2)最后甲、乙两个桶中的油一样多.理由如下:由(1)知:甲桶现有12a升油,乙桶现有32a升油,再把乙桶的油倒出13给甲桶后,甲桶现在所装油的体积为:113232a a a+⨯=,乙桶现在所装油的体积为:31123a a⎛⎫-=⎪⎝⎭,∴最后甲、乙两个桶中的油一样多.【点睛】本题考查了整式的加减,用含a的代数式分别表示两次倒出后两个桶中的油量是解题的关键.20.(1)2(2)∠AOD=150°,∠BOD=105°【分析】(1)先求出BC的长度,根据线段中点定义得出BD=12AB=6,BE=CE=12BC=4,再求出答案即可;(2)先根据补角的定义求出∠AOD,根据角平分线的定义得出∠DOC=12∠AOD=75°,再求出∠BOD即可.(1)解:∵AB=12,AC=4,∴BC=AB-AC=12-4=8,∵D,E分别为AB,CB的中点,∴BD=12AB=12×12=6,BE=CE=12BC=12×8=4,∴DE=BD-BE=6-4=2;(2)∵∠BOC与∠AOD互补,∴∠BOC+∠AOD=180°,∵∠BOC=30°,∴∠AOD=150°,∵OC平分∠AOD,∴∠DOC=12∠AOD=12×150°=75°,∴∠BOD=∠DOC+∠BOC=75°+30°=105°,即∠AOD=150°,∠BOD=105°.【点睛】本题考查了线段的和差计算,两点之间的距离,线段的中点定义,角的和差计算,角平分线的定义等知识点,能熟记线段中点的定义和角的平分线定义是解此题的关键.`21.(1)2a2+2b2(2)-ab(3)8 9【分析】(1)根据A=a2-2ab+b2,B=a2+2ab+b2,可以计算出A+B;(2)根据A=a2-2ab+b2,B=a2+2ab+b2,可以计算出14(A-B);(3)根据2A-2B+9C=0和(2)中的结果,可以得到C,然后根据a,b互为倒数,可以得到ab=1,再代入化简后的C,计算即可.(1)解:∵A=a2-2ab+b2,B=a2+2ab+b2,∴A+B=(a2-2ab+b2)+(a2+2ab+b2)=a2-2ab+b2+a2+2ab+b2=2a2+2b2;(2)∵A=a2-2ab+b2,B=a2+2ab+b2,∴14(A-B)=14[(a2-2ab+b2)-(a2+2ab+b2)]=14(a2-2ab+b2-a2-2ab-b2)=14×(-4ab)=-ab;(3)∵2A-2B+9C=0,∴C=29-(A-B),由(2)知14(A-B)=-ab,则A-B=-4ab,∴C=29-×(-4ab)=89ab,∵a,b互为倒数,∴ab=1,∴C=89×1=89.【点睛】本题考查整式的加减、倒数,熟练掌握运算法则是解答本题的关键.22.(1)①5;②线段MN的长为72或92(2)1 4【分析】(1)①先根据数轴上两点的距离可得AB的长,由线段中点的定义可得AM的长,同理得CN的长,由线段的和差关系可得MN的长;②存在两种情况:C在D的左边或右边,同理根据线段的和差关系可得MN的长;(2)设点A表示的数为a,点B表示的数为b,点C表示的数为c,结合数轴上两点间的距离公式,中点坐标公式和线段的和差关系列方程求解.(1)解:①如图1,点A ,B 表示的数分别是5-,1-,1(5)4AB ∴=---=,M 是AB 的中点,122AM AB ∴==,同理得:312CD =-=,112CN CD ==,3(5)215MN AC AM CN ∴=--=----=;②若1CD =,存在两种情况:)i 如图2,点C 在D 的左边时,C 与原点重合,表示的数为0,171(5)222MN AD AM DN ∴=--=----=;)ii 如图3,点C 在D 的右边时,C 表示的数为2,192(5)222MN AC AM CN ∴=--=----=;综上,线段MN 的长为72或92;(2)设点A 表示的数为a ,点B 表示的数为b ,点C 表示的数为c ,点A 、B 、C 、D 、M 、N 是数轴上的点,且点M 是线段AB 的中点,点N 是线段CD 的中点,∴点M 在数轴上表示的数为2a b +,点N 在数轴上表示12c +,1||22a b c MN ++∴=-, 点A ,B ,C 均在点O 的右侧,且始终满足2OA OB OC MN ++=,12||22a b c a b c ++∴-=++,整理,得|1|a b c a b c +--=++,当1a b c a b c +--=++时,解得12c =-(不符合题意,舍去),当1a b c a b c --++=++时,解得:12a b +=,∴点M 在数轴上表示的数为124a b +=,综上,点M 在数轴上所对应的数为14.【点睛】本题主要考查了数轴,数轴上的点的几何意义,绝对值的意义等知识的应用.掌握数轴上两点的距离公式是解题的关键.23.(1)75COE ∠=︒,60DOB ∠=︒(2)12DOE α∠=(3)12DOE AOC ∠=∠【分析】(1)由30AOC ∠=︒,COD ∠是直角,可知150BOC ∠=︒,60BOD ∠=︒,因为OE 平分BOC ∠,所以1752COE BOC ∠=∠=︒;(2)因为AOC α∠=,COD ∠是直角,所以180BOC α∠=︒-,90COD ∠=︒,所以18090BOD AOC COD α∠=︒-∠-∠=︒-,因为OE 平分BOC ∠,所以119022BOE BOC ∠=∠=︒-;所以1190(90)22DOE BOE BOD ααα∠=∠-∠=︒--︒-=.(3)设AOC α∠=,因为COD ∠是直角,所以180180BOC AOC α∠=︒-∠=︒-,90COD ∠=︒,因为OE 平分BOC ∠,所以119022COE BOC α∠=∠=︒-;所以119090(90)22DOE COE αα∠=︒-∠=︒-︒-=.(1)解:30AOC ∠=︒ ,COD ∠是直角,180150BOC AOC ∴∠=︒-∠=︒,90COD ∠=︒,18060BOD AOC COD ∴∠=︒-∠-∠=︒,OE 平分BOC ∠,1752COE BOC ∴∠==︒;(2)AOC α∠= ,COD ∠是直角,180180B AO OC C α∠∴==︒-︒-∠,90COD ∠=︒,18090BOD AOC COD α∴∠=︒-∠-∠=︒-,OE 平分BOC ∠,119022BOE BOC α∴∠=∠=︒-;1190(90)22DOE BOE BOD ααα∴∠=∠-∠=︒--︒-=.(3)12DOE AOC ∠=∠.理由如下:设AOC α∠=,COD ∠ 是直角,180180B AO OC C α∠∴==︒-︒-∠,90COD ∠=︒,OE 平分BOC ∠,119022COE BOC α∴∠=∠=︒-;119090(90)22DOE COE αα∴∠=︒-∠=︒-︒-=.即12DOE AOC ∠=∠.【点睛】本题主要考查角度的和差计算,角平分线的定义等知识,关键是由图形得到角度之间的关系.。
浙教版七年级上册数学期末考试试题带答案

浙教版七年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下面四个数中,最大的数是()A .4-B .1-C .0D .52.计算:41-的结果是()A .1B .1-C .4D .4-3.单项式32xy -的系数是()A .3B .4C .2-D .24.在17,π-,0,3.14,,0.3133,0.1010010001...,...(两个"1"之间依次多一个"0")中,无理数的个数是()A .1个B .2个C .3个D .4个5.用四舍五入法将5109500精确到万位,可表示为()A .510B .65.1010⨯C .511D .65.1110⨯6.下列说法正确的是()A .一个数的平方等于他本身,则这个数是0或1B .一个数的立方等于它本身,则这个数是0或1C .一个数的平方根等于他本身,则这个数是0或1D .一个数的立方根等于它本身,则这个数是0或17.上午9:30,时钟上分针与时针之间的夹角为()A .90B .105C .120D .1358.如图,点A ,B ,C 都在数轴上,点A 为线段BC 的中点,数轴上A ,B 两点表示的数分别为和1-C 所表示的数为()A .1-B .1-C .2-D .2-9.如图,一个瓶子的容积是1L (其中311000L cm =),瓶内装着一些溶液,当瓶子正放时,瓶内的溶液高度为20cm ,倒放时,空余部分的高度为5cm ,则瓶子的底面积是()A .225cm B .240cm C .250cm D .2200cm 10.若2560x x --=,则324112020x x x --+代数式的值是()A .2026B .2026-C .2025D .2025-二、填空题11.|2|-=_________12.已知60α∠= ,则α∠的补角的度数是__________.13.写出一个根为3x =的一元一次方程__________.14.a -b ,b -c ,c -a 三个多项式的和是____________15.把无限循环小数化为分数的形式:设0.7x = ,由0.70.777...= ,可知107.777...x =,107x x -=,解方程,得79x =,于是,得70.79= ,把0.57 化为分数形式是__________.16.将一根绳子对折1次后从中间剪一刀(如图),绳子变成3段,将一根绳子对折3次后从中间剪一刀,绳子变成__________段,将一根绳子对折(21)n -次后从中间剪一刀,绳子变成__________段.三、解答题17.计算:(1)75(1)-+--(231392()24⨯-18.先化简,再求值:2222()3()3a ab a ab ---,其中3a =-,4b =19.解方程:(1)4133x x -=+(2)4353146x x x -+-=-20.2019年11月18日,第二届华侨进口商品博览会在青田落下帷幕,本届博览会成果丰硕,意向成交额为25.3亿元,是第一届博览会意向成交额的2倍少5.9亿(1)求第一届华侨进口商品博览会的意向成交额(2)以这样的增长速度,预计下届华侨进口商品博览会意向成交额(精确到亿元)21.七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问只参加文学社的有多少人?22.如图,直线AB ,CD 相交于点O ,OE 平分BOC ∠,OF OE⊥(1)写出与BOF ∠互余的角(2)若57BOF ∠= ,求AOD ∠的度数23.小聪同学记得,在作业本中曾介绍了奥地利数学家皮克发现的一个计算点阵中多边形面积的公式:1S a kb =+-,其中a 表示多边形内部的点数,b 表示多边形边界上的点数,不过,他忘了系数的值,请你运用下面的图形解决问题,下列图形中有四个相邻点围城的正方形面积是1个单位面积(1)计算图①中正方形的面积,并求系数k 的值(2)利用面积公式,求出图②、图③的多边形的面积24.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =参考答案1.D【分析】根据正数都大于0,负数都小于0,两个负数比较大小,绝对值大的反而小进行求解即可.【详解】∵-4<-1<0<5,∴最大的数是5,故选D .【点睛】本题考查了有理数大小的比较,熟练掌握有理数大小比较的方法是解题的关键.2.B【分析】原式表示1的四次幂的相反数,求出即可.【详解】﹣14=﹣1,故选B .【点睛】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.3.C【分析】根据单项式的系数定义“是指单项式中的数字因数”进行求解即可得.【详解】单项式32xy -的数字因数是-2,所以单项式32xy -的系数是-2,故选C .【点睛】本题考查的是单项式的系数,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.4.C【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【详解】,∴在17,π-,0,3.14,,0.3133,0.1010010001...,...(两个"1"之间依次多一个"0")中,无理数有π-,,0.1010010001...,...(两个"1"之间依次多一个"0")共3个,故选C .【点睛】此题主要考查了无理数的定义,解题要注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.5.D【分析】先利用科学记数法表示,然后把千位上的数字9进行四舍五入即可.【详解】解:5109500≈5.11×106(精确到万位).故选:D.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.A【分析】根据平方、立方、平方根、立方根的概念判断即可.【详解】解:A、一个数的平方等于它本身,这个数是0,1,故选项正确;B、一个数的立方等于它本身,这个数是0,1,-1,故选项错误;C、一个数的平方根等于它本身,这个数是0,故选项错误;D、一个数的立方根等于它本身,这个数是0,1,-1,故选项错误;故选A.【点睛】本题是对平方,平方根,算术平方根,立方根的考查,熟记一些特殊数的性质是解题的关键.7.B【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:B.本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.8.D【分析】根据A 、B 表示的数求出AB ,再由点A 是BC 中点即可求出结果.【详解】解:∵数轴上A ,B 两点表示的数分别为和1-∴-(-1),∵点A 是BC 中点,∴,∴点C 表示的数为-1-)=2-故选D .【点睛】本题考查了实数与数轴,数轴上两点之间的距离,解题的关键是掌握数轴表示数,结合图形解决问题.9.B【分析】设瓶子的底面积为xcm 2,根据题意列出方程,求出方程的解即可求出所求.【详解】解:设瓶子底面积为xcm 2,根据题意得:x•(20+5)=1000,解得:x=40,故选B .【点睛】此题考查了一元一次方程的应用,弄清题意是解本题的关键.10.A【分析】将2560x x --=变形为256x x =+,再代入代数式324112020x x x --+,化简即可.解:∵2560x x --=,∴256x x =+,代入,324112020x x x --+=()()56456112020x x x x +-+-+=2562024112020x x x x +---+=25251996x x -+=()2551996x x -+=561996⨯+=2026故选A【点睛】本题考查了代数式求值,将已知等式变形代入是关键,体现了降次的方法.11.2【详解】根据绝对值的定义;数轴上一个数所对应的点与原点的距离叫做该数绝对值即,|-2|=2,12.120°【分析】根据互补即两角的和为180°,由此即可得出∠α的补角度数.【详解】∠α的补角的度数是180°﹣∠α=180°﹣60°=120°,故答案为:120°.【点睛】本题考查了补角的知识,掌握互为补角的两角之和为180°是解题的关键.13.2x+5=11(答案不唯一)【分析】根据题意,此方程必须符合以下条件:(1)含有一个未知数;(2)未知数的次数是1;(3)是整式方程;(4)解为3.根据等式性质,构造即可.解:可以这样来构造方程:例:把x=3两边同乘2得,2x=6,两边同时加5,得2x+5=11;故答案为:2x+5=11(答案不唯一).【点睛】本题考查了一元一次方程的定义,考验了同学们的逆向思维能力,属于结论开放性题目.14.0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.15.57 99【分析】仿照已知的方法计算即可.【详解】解:设0.57 =x,则100x=57.57 ,可得:100x-x=99x=57,解得:x=57 99,故答案为:57 99.【点睛】此题考查了解一元一次方程,理解题意是解本题的关键.16.922n-1+1【分析】分析可得:将一根绳子对折1次从中间剪断,绳子变成3段;有21+1=3.将一根绳子对折2次,从中间剪断,绳子变成5段;有22+1=5.依此类推,将一根绳子对折n次,从中间剪一刀全部剪断后,绳子变成2n+1段.【详解】解:∵对折1次从中间剪一刀,有21+1=3;对折2次,从中间剪一刀,有22+1=5;∴对折3次从中间剪一刀,有23+1=9;∴对折n 次,从中间剪一刀,绳子变成2n +1段.∴对折2n-1次,从中间剪一刀,绳子变成22n-1+1段.故答案为:22n-1+1.【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.17.(1)-1;(2)1.【分析】(1)根据有理数加减混合运算的顺序结合有理数加减法法则进行计算即可;(2)按顺序先进行算术平方根的运算,立方的运算,然后再按运算顺序进行计算即可.【详解】(1)75(1)-+--=-7+5+1=-1;(23132()24⨯-=1338(24+⨯-=346+-=1.【点睛】本题考查了实数的混合运算,熟练掌握实数混合运算的运算顺序以及运算法则是解题的关键.18.ab ,-12.【分析】先去括号,然后合并同类项,最后把a 、b 的数值代入进行计算即可得.【详解】2222()3()3a ab a ab ---=222322a ab a ab--+=ab ,当3a =-,4b =时,原式=-3×4=-12.【点睛】本题考查了整式的加减——化简求值,熟练掌握去括号法则与合并同类项法则是解此类问题的关键.19.(1)x=4;(2)x=611.【分析】(1)本题按移项、合并同类项的步骤进行求解即可得答案;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得答案.【详解】(1)4133x x -=+,移项,得4x-3x=3+1,合并同类项,得x=4;(2)4353146x x x -+-=-,去分母,得12-3(4-3x )=2(5x+3)-12x ,去括号,得12-12+9x=10x+6-12x ,移项,得9x-10x+12x=6+12-12,合并同类项,得11x=6,系数化为1,得x=611.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.20.(1)15.6亿元;(2)41亿元【分析】(1)设第一届华侨进口商品博览会的意向成交额为x 亿元,根据题意列出方程,求解即可;(2)设第二届的意向成交额比第一届的增长率为y ,根据增长率的意义计算即可.【详解】解:(1)设第一届华侨进口商品博览会的意向成交额为x 亿元,则:2x-5.9=25.3,解得:x=15.6,∴第一届华侨进口商品博览会的意向成交额为15.6亿元;(2)设第二届的意向成交额比第一届的增长率为y,则15.6(1+y)=25.3,则1+y=25.3÷15.6,∴下一届华侨进口商品博览会意向成交额为:25.3×(1+y)=25.3×(25.3÷15.6)≈41(亿元).【点睛】本题考查了一元一次方程的应用,有理数的混合运算,解题的关键是理解题意,掌握增长率的意义.21.只参加文学社的有15人.【分析】设参加文学社的人数为x人,先根据题意知只参加文学社的人数为(x﹣20)人,只参加书画社的人数为(x-5-20)人,再分别相加可得总人数,从而列出方程,进一步求解可得.【详解】设参加文学社的人数为x人,根据题意知只参加文学社的人数为(x﹣20)人,只参加书画社的人数为(x-5-20)人,则有x﹣20+x-5-20+20=45,解得:x=35,35-20=15(人),答:只参加文学社的有15人.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)∠BOE,∠COE;(2)66°【分析】(1)根据垂线的定义可得∠BOF+∠BOE=90°,再由OE平分∠BOC可得∠BOE=∠COE,从而可得结果;(2)由∠BOF的度数计算出∠BOE,从而得到∠BOC的度数,即∠AOD.【详解】解:(1)∵OF⊥OE,∴∠BOF+∠BOE=90°,∵OE 平分∠BOC ,∴∠BOE=∠COE ,∴∠BOF+∠COE=90°,∴与∠BOF 互余的角有:∠BOE ,∠COE ;(2)∵∠BOF=57°,∴∠BOE=90°-57°=33°=∠COE ,∴∠AOD=∠BOC=2∠BOE=66°.【点睛】此题主要考查了余角的定义,角平分线的性质以及垂线的定义,正确得出∠BOE 的度数是解题关键.23.(1)S=9,k=12;(2)图②:14,图③:9.5【分析】(1)根据图像可直接计算出正方形面积,再数出a 和b 的值,代入公式即可计算k 值;(2)分别得出图②和图③中a 和b 的值,再利用公式求出面积.【详解】解:(1)由图可知:图①中正方形的边长为3,∴面积为3×3=9,在1S a kb =+-中,对应a=4,b=12,∴9=4+12k-1,解得:k=12;(2)图②中,a=10,b=10,则S=10+12×10-1=14,图③中,a=5,b=11,则S=5+12×11-1=9.5.【点睛】本题考查了格点图形的面积的计算,一个单位长度的正方形网格纸中多边形面积的公式:112S a b =+-的运用.24.(1)3;(2)12或74-;(3)13秒或79秒【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可.【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1,∴线段AB 的长度为:-1-(-4)=3;(2)设点D 对应的数为x ,∵DA=3DB ,则314x x +=+,则()314x x +=+或()314x x +=--,解得:x=12或x=74-,∴点D 对应的数为12或74-;(3)设t 秒后,OA=3OB ,则有:47312t t t t -+-=-+-,则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+,解得:t=13或t=79,∴13秒或79秒后,OA=3OB .【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 2 页
浙教版七年级(上)数学期末模拟试卷(二)
一、选择题(每小题3分,共30分)
1.-6的倒数是
(A)6 (B) 61 (C) -6 (D) -61
2. 神舟六号飞船入轨后先是在近地点200千米,远地点350千米的椭圆轨道上运行5圈,然
后变轨到半径为6720千米的圆形轨道。用科学记数法表示飞船变轨后运动轨道的半径为
(A)36.7210千米 (B) 410672.0千米
(C) 10672千米 (D) 2102.67千米
3.2006年1月10日,杭州的最低气温为2ºC,哈尔滨的最低气温比杭州低27ºC,则哈尔滨的
最低气温是
(A)25ºC (B) -25ºC (C) 29ºC (D) -29ºC
4. 将手电筒发射出的光线射向天空,此时的光线给我们的形象似
(A)线段 (B)折线 (C)直线 (D)射线
5.下列各数:12、0.32、、5、227、0.01020304中无理数有
(A)1个 (B) 2个 (C) 3个 (D) 4个
7.计算20062005)1(1的结果为
(A)1 (B)-1 (C) 0 (D) 2
8. 已知代数式x+3y的值是4,则代数式2(x+3y+1)-1的值是 ( )
(A)10 (B) 9 (C) 8 (D) 不能确定
9.若现在的时间为下午2:30,那么时针与分针的夹角为
(A)120° (B)115° (C)110° (D)105°
10.小楠想将一张厚度为0.11mm的纸对折多次,使厚度超过自己的身高(1.58m),假设连
续对折始终是可能的,则至少要折
(A)12次 (B)13次 (C)14次 (D)15次
二、填空题(每小题4分,共24分)
11.用两枚钉子就能将一根木条固定在墙上,原因是 .
12.请写出一个二次三项式 .
14.若将边长为1的5个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形
拼成图2所示的正方形,那么这个正方形的边长是
15.点 A位于点B的北偏东40,那么点B位于点A的 偏 40.
16.如图,数轴的单位长度为1,若点B和点C所表示的两个数的绝对值相等,则点A表示
的数是 .
三.解答题(本题有8小题,共66分)
17.计算(共14分)
(1) 11-13+18 (2))213141(12
(3)328)6(313265
18.(4分)化简2234132xxxx
(第16题)
第 2 页 共 2 页
19.(6分)先化简,再求值: )5.44(2)96(22abaaba,其中32a ,b = 6. 20.解方程:(每小题5分,共15分) (1) 512710xx (2) 312x=42x-1 (3) 17.012.04.01xx 21.(6 分)如图,OD是∠AOB的平分线,∠AOC=2∠BOC,∠COD=∠0321,求∠AOB的度数. 23.(8 分)小王 按图(A)方式摆放餐桌和椅子(每个小半圆代表1张椅子): (A) 小杨按图(B) 的方式摆放餐桌和椅子(每个小半圆代表1张椅子),
(B)
(1)请在两个表格中的空白处分别填入椅子张数;
(2)由图表内容可知,当 n=1时,小王和小杨所摆的椅子数目相等;请问:n不等于1时,
小王和小杨所摆的椅子数目还可能相等吗?为什么?(提示:可用解方程的方法来说明。)
24.(5分)小红、小南、小芳在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对
话,小红:火车从开始进入隧道到完全开出隧道共用30秒;小南:整列火车完全在隧道里的
时间是20秒;小芳:我爸爸参与过这个隧道的修建,他告诉我隧道长500米。各位同学,请
根据他们的对话求出这列火车的长。
桌子张数
1 2 3 4 5 6 n
椅子张数 6 8 10 12 14 16 ▲
桌子张数
1 2 3 4 5 6 n
椅子张数 6 10 14 18 22 26 ▲
(第21题)