电力线载波通信概述

合集下载

电力线载波通信

电力线载波通信
17
发展现状:
• 在以数字微波通信、卫星通信为主干线的 覆盖全国的电力通信网络已初步形成、多 种通信手段竟相发展的今天,电力线载波 通信仍然是地区网、省网乃至网局网的主 ห้องสมุดไป่ตู้通信手段之一,仍是电力系统应用区域 最广泛的通信方式,仍是电力通信网的重 要的基本通信手段;从理论研究,到运行 实践,我们都取得了可喜的成效。
10
• 它是通过阻波器(一种通直流隔高频信号的设备)和耦合 电容,几结合设备,就可以把载波机连接到高压电网上进 行通信。现在的电力线通信网就是在电力线上大量的接入 载波机来实现的。
11
• 电力线载波机、远程控制抄表、电梯实现远程呼梯、智能 家居。。。。。
• 电力线载波可分为输电线载波(Transmission Line Carrier,TLC)、配电线载波(Distribution Line Carrier,DLC) 和低压配电线载波(Low Voltage Distribu-tion Line Carrier, LDLC)三类。 • 输电线载波指110KV以上高压载波,不适用于自动抄表 系统。
12
13
与光纤的差距
传输速率相对光纤慢很多,电力线载波通信其实也是电 力线通信技术中的一种,发展到现在已经是数字式载波通 信了,目前仍是电力通信的重要手段(辅助光纤通信)。 • 载波线路状况极差,主要传输电线上网、用户抄表及 家庭自动化的信息和数据。 • 光纤通信:包含NGN技术,即下一代网络技术。也包含 PDH/SDH/MSTP/WDM/PON等技术。传输数据容量大,传 输距离长,网络健壮(自愈环网),抗干扰能力强。 •
18
发展方向:
• (1)进一步研究PLC通信理论,改进信号处理技术和编码技 术,优化通信网络结构以适应PLC特殊的环境。 • (2)针对应用领域和通信环境,选取合理的电力载波通信芯 片和MCU,设计有效的耦合电路,采用科学的通信协议, 降低通信误码率,提高模块通信稳定可靠性。

电力线载波通信概述(ppt 75页)

电力线载波通信概述(ppt 75页)
12
载波通信基本原理
双向通信的实现 载波通信的基本过程可归纳为:“一变二分三还原”。
“变”是用调制器把话音频带变换到高频频带,“分” 就是频率分割,在收信端用滤波器把各路信号从群信 号中分割出来,“还原”就是利用解调器把高频频带 还原成话音频带。 按照频率搬移、频率分割原理实现传输线路频分多路 复用的设备叫做载波机载波机。
30

电力线载波通信系统的组成
31
电力线载波机
差分/汇接系统 压缩扩展器 调制器 载供系统 呼叫系统 自动电平调节系统
32
电力线载波机
差分/汇接系统
定义:把一个传输通路分成两个及以上的传输通路称 为差分,而把两个及以上的传输通路合并为一个传输 通路称为汇接。在各种类型的载波机中,凡是多个通 道(或多个信号)需要分开或汇接的地方,均广泛使 用差分网络或汇接网络。有的电路网络能同时实现差 分和汇接作用,故称为差分汇接网络,简称差接网络。
14
载波通信基本原理
双带二线制
15
载波通信基本原理
单带四线制 所谓单带四线制指的是在线路上收、发两个传输方向
上采用相同的传输频带,而用两对导线(四根导线) 来各自传输一个方向的信号,防止“自发自收”,实 现双向通信。 应用:这种方法主要用在对称电缆和同轴电缆载波通 信系统。
16
载波通信基本原理
过高效、安全的耦合设备才能与电力线路相联。这些 耦合设备既要使载波信号有效传送,又要不影响工频 电流的传输,还要能方便地分离载波信号与工频电流。 此外,耦合设备还必须防止工频高压、大电流对载波 通信设备的损坏,确保安全。
21
电力线载波通信的特点
线路频谱安排的特殊性 电力线载波通信能使用的频谱,是由3个因素决定的: 1)电力线路本身的高频特性; 2)避免50Hz工频谐波的干扰; 3)考虑载波信号的辐射对无线电广播及无线通信的

第3章__电力线载波通信..

第3章__电力线载波通信..

第二节 电力线载波通信系统
一、电力线载波通信系统构成
电力线载波通信系统主要由电力线载波机、电力线路和耦合设 备构成,如图3-1 。其中耦合装置包括线路阻波器GZ、耦合电容 器C、结合滤波器JL(又称结合设备)和高频电缆HFC,与电力线 路一起组成电力线高频通道。
耦合装置 电力线路 耦合装置
G
发电机 变压器 GZ C JL HFC 载 波 机 A JL HFC GZ 变压器
一、电力线载波通信的特点(续)
2. 线路频谱安排的特殊性 电力线载波通信能使用的频谱由三个因素决定: (1)电力线路本身的高频特性。 (2)避免50Hz工频的干扰。 (3)考虑载波信号的辐射对无线电广播及无线 通信的影响。 我国统一规定电力线载波通信使用的频率范围为 40—500KHz。
一、电力线载波通信的特点(续)
图3-9
(二)电力线载波通信的转接方式

电力线载波通信中,为了组成以调度所为中心 的通信网,经常需要进行电路转接。常用的转 接方式有两种:话音、远动通路同时转接和话 音通路单独转接方式。当话音、远动同时转接 时,可采用中频转接或低频转接;当话音通路 单独转接时,应采用音频转接。各种转接的原 理及特点如下。
1.定频通信方式

定频通信方式如图3-7 所示,这种方式应用最普遍。一 对一的定频通信方式又是定点通信,传输稳定,电路 工作比较可靠。
图3-7
2.中央通信方式

为实现图3-7中A站与B、C两站通话需要,也可采用中 央通信方式(见图3-8)。采用这种方式,在A、B、C三 站或更多站间通信可只使用一对频率,节约了载波频 谱也节约了设备数量。但这种方式只限A站与B、C两 站或更多外围站分别通话。各外围站之间不能通话。 因此,这种方式只宜在通话量少的简单通信网中使用, 如集中控制站对无人值守变电所的通信。

电力线载波通信详解..

电力线载波通信详解..



1、电力线载波通信系统的构成
高压电力线、阻波器、耦合电容器、结合滤波器、载波机 和高频电缆组成
变电站 A
阻波器
变电站 B 高压线
阻波器
CC/CVT
结合滤波器 电力线载波机 结合滤波器
CC/CVT
电力线载波机
传输数据、电话和护信号
耦合设备
2、电力载波机 载波机发送功率较大(1-100W) 为集中利用发送功率,一般使用单路载波机 具备有较好的自动电平调节系统,接收信号电平 变化在30dB变化范围内时,音频信号输出电平 变化<1dB 主要传输调度电话、自动化信息、电力线路保护 信号
结合滤波器与耦合电容器一起组成结合设备,在电力线和 高频电缆之间传输载波信号,实现线路侧和载波侧的阻抗匹配
结合滤波器样例: MCD80
结合滤波器原理图
设计耦合系统采用的线路阻抗值一般是: 单根导线:相地耦合为400Ω。相相耦合为600Ω; 分裂导线:相地耦合为300Ω,相相耦合为500Ω。 电缆侧(载波侧)一般为75Ω。
允许传送和判别的时间很短,发送信号的次数极少(每年 仅数次),没有预定的发送时间,而且要求保护装置正确 动作的概率很高(安全性很高)和丢失命令的概很低(可依 靠性很高) 与话音交替复用 (AMP)
二、电力线载波机的体系结构
(一)电力线载波机的特点与技术要求




(1)电力线高频通道杂音大,线路直通距离长,衰减大,为保证收 信端有足够的信噪比,要求电力线载波机的发信功率较大。 (2)电力线载波机确保在电力线路故障或系统操作,造成高频通道 衰减突然增大很多时,仍能维持通畅。因此,要求电力线载波机 要有较快调节速度和较大调节范围的自动电平调节系统 (3)为便于灵活组织通信和频率分配,并避免因发信功率太大引起 制造困难,电力线载波机大多是单路机。 (4)现代电力线载波机大多为多功能、标准化、系列化、通用化的 载波通信设备,能适应在110-500kV各种不同电压等级的电力线 上传送电话与非电话业务的需要。 (5)为了提高电力线高频通道和载波设备的利用率,国产电力线载 波机本身常带有自动交换系统,并可为重要用户提供优先权。

电力线载波通信-第2篇

电力线载波通信-第2篇

▪ 解调技术
1.解调技术是将接收到的载波信号还原为原始数据信号的过程 。解调方式需要与调制方式相对应,以确保数据的准确还原。 2.在电力线载波通信中,解调技术需要考虑到电力线上的噪声 和干扰情况,采用合适的算法和技术来提高解调精度和稳定性 。 3.解调技术的性能评估需要根据实际测试和应用情况进行评估 ,包括误码率、解调成功率等指标。
电力线载波通信发展趋势
1.随着物联网和人工智能技术的不断发展,电力线载波通信将会发挥更加重要的作用。 2.未来,电力线载波通信将会向更高速率、更远距离、更低功耗的方向发展。 3.同时,电力线载波通信也需要加强安全性和隐私保护,确保数据传输的安全性和可靠性。
电力线载波通信面临的挑战
1.电力线载波通信面临着电力线信道质量不稳定、噪声干扰等问题,需要采取有效的措施进行干预 和处理。 2.同时,电力线载波通信设备也需要进一步提高性能和稳定性,以满足不断增长的应用需求。 3.未来,需要加强技术研发和创新,推动电力线载波通信技术的不断发展和进步。
电力线载波通信在智能家居中的应用
1.电力线载波通信可以实现智能家居系统中的设备互联互通, 提高家居生活的便利性和舒适度。 2.通过电力线载波通信,可以实现智能家居系统中的远程控制 和监控,提高家居生活的智能化水平。 3.电力线载波通信的应用,可以提高智能家居系统的安全性和 可靠性,保护家庭隐私。
电力线载波通信在智能交通中的应用
调制与解调技术
▪ 调制与解调技术的发展趋势
1.随着电力线载波通信技术的不断发展,调制与解调技术也在不断进步。未来的发展趋势是向 着更高的数据传输速率、更低的误码率、更强的抗干扰能力方向发展。 2.新兴的调制与解调技术,如多载波调制、非正交多址技术等,也在不断被研究和应用于电力 线载波通信中,以提高系统的性能和稳定性。 3.未来调制与解调技术的发展还需要考虑到与其他通信技术的融合和协同,以满足更为复杂和 多样化的通信需求。

电力线载波通信原理

电力线载波通信原理

电力线载波通信原理
电力线载波通信是一种利用电力线传输数据的通信技术,它基于载波通信原理。

载波通信是指在传送高频信号的载波上叠加低频信号进行通信的一种方式。

在电力线载波通信中,采用电力线作为传输媒介,将数据信号转化为高频载波信号,通过改变载波信号的某些属性来传输数据。

电力线载波通信一般采用频分多址技术,即将不同用户的数据信号编码成不同的频带,并将其叠加在电力线上传输。

接收端通过解调和解码将载波信号转换成原始的数据信号。

电力线载波通信的优点在于利用现有的电力线进行通信,无需额外的布线,降低了成本。

同时,电力线覆盖范围广泛,能够在室内和室外实现通信。

然而,电力线作为传输媒介也存在一些问题,如传输距离受限、传输速率较低、干扰较多等。

因此,电力线载波通信一般用于短距离的低速数据传输,如智能家居、智能电网等领域。

电力线载波通信1

电力线载波通信1
元音幅度较大,有准周期性;清辅音幅度小,和噪声特 性相似。
在长时间的语音信号中有相当多的无信号区间,即所谓 的语音寂静区间。
2024/3/28
7
频率特性:
带宽有限 一般为20~3400Hz ,有限的带宽特性决定了可以用有限 的奈奎斯特取样速率,把语音信号离散化
功率谱密度
语音中不同频谱分量的平均概率可以用长时平均谱密度来表 示。
频带平移 : 上边带话音三角形与调制器输入调制信号
的话音三角形方向一致 频带倒置 :
下边带的话音三角形的方向与输入调制信 号话音三角形的方向相反
2024/3/28
19
频谱三角形
变频器(三)
2024/3/28
20
载波通信传输方式
双边带调幅传输方式:载频F和上、下边带F 士ƒ一起送到线路上传送
8
3 传输媒质
明线:由电杆支持架于地面上的裸导线通信 线路
2024/3/28
9
架空地线:对导线屏蔽,与之有藕合作用,从而 可以减少雷电直接击于导线的机会
2024/3/28
10
裂相导线:将每相导线由几根直径较小的分导线组 成,各分导线间隔一定距离并按对称多角形排列
2024/3/28
11
线路传输频带
语音波形高频分量对语音总能量的贡献很小,但是高频分量 带有重要的语音信息,平均功率谱约在250-500Hz处最大, 而高于此频率的功率谱约以每倍频呈6~10dB下降。
语音信号的短时频谱并不总是低通特性。辅音有较高的频谱 分量,显噪声特性;元音从总体上看是低通的,显示明显的 局部特性。
2024/3/28
各路话音信号分别调制后,经各路带通滤波器取 下边带,即分别选出4.6~7.7kHz, 8.6~11.7kHz和 12.6~15.7kHz。变频后的频谱三角形被倒置,并在三 个带通滤波器并联输出端上合并成4.6~15.7kHz的三路 群信号,再经过一个公用的线路放大器放大后送到传输 线路上。由于各路信号在线路上所占用的频带不同,因 此可沿同一线路互不干扰地传送到收信端。

电力载波通信原理

电力载波通信原理

电力载波通信原理
电力载波通信是一种利用电力线传输信号的通信技术,将一定的数据信息以一定的电压、频率或时间编码方式加载在普通交流电力线中,从而在距离较远的线路起传输信号的技术。

电力载波通信利用频谱技术将数字信号编码加载到电力线中,从而把电力线的特性变成一个特定频率的载波,可以用来传输信息。

电力载波传输系统包括以下三个部分:载波发射机、载波接收机和载波线路。

载波发射机的功能是将有一定的数据信息编码为一定的电压、频率或时间,然后将其加载到普通交流电力线中,形成载波信号。

这种载波信号传播到接收机,接收机将这种载波信号提取出来,进行处理、编码或解码,以获取信号中所传送的有用数据信息。

电力载波传输是一种高效稳定的通信方式,具有以下特点:
1、传输距离长:电力载波可以经由电力线形成联通网,从而可以实现距离比较远的信号传输;
2、传输效率高:电力载波的传输技术可以提高网络的传输效率;
3、无需管理:电力载波的传输技术不会引起电磁干扰,无需进行现场管理;
4、可靠性高:由于电力载波技术的特殊性,它的可靠性很高;
5、隐秘性强:电力载波的传输质量及其隐秘性比传统的无线通信要好。

电力载波传输系统从数据采集、实时控制到智能网络,非常适用于实际应用条件的复杂性,是一种高效的、灵活的数据传输途径。


来,电力载波传输系统将在矿山、港口、冶金、石油化工、电力、机械制造等各种工业生产中得到广泛应用。

综上所述,电力载波通信技术是一种新型的、高效的、灵活的数据传输方式,不仅可以实现距离较远的信号传输,而且具有良好的可靠性和隐秘性,并且适用于实际应用条件的复杂性。

因此,电力载波通信技术正在得到越来越广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档