用迭代法解线性方程组的实例

合集下载

实验三 迭代法解线性方程组

实验三   迭代法解线性方程组

实验三 迭代法解线性方程组实验目的学会用Jacobi 迭代法、Gauss-Seidel 迭代法和超松驰迭代法求线性方程组解。

学会对迭代法做收敛性分析,研究求方程组解的最优迭代方法。

学会用共轭梯度法求线性方程组的解,研究共轭梯度法的计算效率。

实验要求按照题目要求完成实验内容。

写出相应的Matlab 程序。

给出实验结果。

对实验结果进行分析讨论。

写出相应的实验报告。

实验步骤1、研究Jacobi 迭代法求解线性方程组的方法和相应的收敛性。

(1)用Jacobi 迭代法(Jacobi.m )求解线性方程组⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=--71912263532311321321321x x x x x x x x x (4.31) 取初始点()()Tx 0,0,00=,精度要求为105-=ε。

请给出满足精度要求的迭代次数和相应的计算结果。

function [x,k]=jc(a,b,x0,ep,max)n=length(a);k=0;if nargin<5max=500;endif nargin<4ep=1e-5;endif nargin<3x0=zeros(n,1);y=zeros(n,1);endx=x0;x0=x+2*ep;while norm(x0-x,inf)>ep&&k<maxk=k+1;x0=x;for i=1:ny(i)=b(i);for j=1:nif j~=iy(i)=y(i)-a(i,j)*x0(j);endendif abs(a(i,i))<1e-10||k==maxwarning('a(i,i) ̫С');return ;endy(i)=y(i)/a(i,i);endx=y;endend>> a=[11 -3 -2;-1 5 -3;-2 -12 19];>> b=[3 6 -7]';>> [x,k]=jc(a,b)x =0.9999859531466561.9999778590069020.999978180649185k = 33研究相应迭代矩阵的谱半径和Jacobi 迭代的渐近收敛速度。

gauss-seidel迭代法例题matlab代码

gauss-seidel迭代法例题matlab代码

【题目】:Gauss-Seidel迭代法及Matlab代码实例【内容】:1. Gauss-Seidel迭代法介绍Gauss-Seidel迭代法是一种用于解线性方程组的数值方法,基于逐次逼近的思想,通过不断迭代逼近线性方程组的解。

该方法通常用于求解大型稀疏线性方程组,其收敛速度相对较快。

2. 迭代公式推导假设有如下线性方程组:$$Ax=b$$其中A为系数矩阵,b为常数向量,x为未知向量。

Gauss-Seidel迭代法的迭代公式为:$$x^{(k+1)}=(D+L)^{-1}(b- Ux^{(k)})$$其中,D为A的对角矩阵,L为A的严格下三角矩阵,U为A的严格上三角矩阵,k为迭代次数。

3. Matlab代码实现下面给出Gauss-Seidel迭代法的Matlab代码实例:```matlabfunction [x, k] = gaussSeidel(A, b, x0, tol, maxIter)A: 系数矩阵b: 常数向量x0: 初始解向量tol: 容差maxIter: 最大迭代次数x: 解向量k: 迭代次数n = length(b);x = x0;k = 0;while k < maxIterx_old = x;for i = 1:nx(i) = (b(i) - A(i,1:i-1)*x(1:i-1) - A(i,i+1:n)*x_old(i+1:n)) / A(i,i); endif norm(x - x_old, inf) < tolreturnendk = k + 1;enddisp('迭代次数达到最大值,未达到容差要求'); end```4. 应用实例假设有如下线性方程组:$$\begin{cases}2x_1 - x_2 + x_3 = 5\\-x_1 + 2x_2 - x_3 = -2\\x_1 - x_2 + 2x_3 = 6\end{cases}$$系数矩阵A为:$$\begin{bmatrix}2 -1 1\\-1 2 -1\\1 -1 2\end{bmatrix}$$常数向量b为:$$\begin{bmatrix}5\\-2\\6\end{bmatrix}$$取初始解向量x0为:$$\begin{bmatrix}0\\0\\\end{bmatrix}$$容差tol为1e-6,最大迭代次数maxIter为100。

分别用 jacobi 迭代法和 gauss-seidel 迭代法,求解方程组

分别用 jacobi 迭代法和 gauss-seidel 迭代法,求解方程组

分别用 jacobi 迭代法和 gauss-seidel 迭代法,求解方程组【jacobi 迭代法和 gauss-seidel 迭代法分别应用于方程组的求解】1. 引言在数学领域中,方程组的求解一直是一个重要的课题。

为了解决复杂的线性方程组,人们提出了各种迭代方法,其中 jacobi 迭代法和gauss-seidel 迭代法是两种常见的方法。

本文将探讨这两种迭代方法在求解方程组中的应用。

2. jacobi 迭代法的原理和应用jacobi 迭代法是一种基于逐次逼近的迭代方法。

对于线性方程组AX=B,其中 A 是系数矩阵,X 是未知数向量,B 是已知向量。

我们可以通过以下公式进行逐次逼近:X(k+1) = D^(-1)*(B - (L+U)X(k))其中,D、L、U 分别是 A 的对角线、下三角和上三角矩阵。

jacobi 迭代法的优点在于易于理解和实现,但在收敛速度上较慢,需要进行多次迭代才能得到精确解。

在实际应用中,需要根据实际情况选择合适的迭代次数。

3. gauss-seidel 迭代法的原理和应用与 jacobi 迭代法类似,gauss-seidel 迭代法也是一种基于逐次逼近的迭代方法。

不同之处在于,gauss-seidel 迭代法在计算 X(k+1) 时利用了已经得到的 X(k) 的信息,即:X(k+1)_i = (B_i - Σ(A_ij*X(k+1)_j,j≠i))/A_ii这种方式使得 gauss-seidel 迭代法的收敛速度较快,通常比 jacobi 迭代法更快,尤其是对于对角占优的方程组。

4. 分别用 jacobi 迭代法和 gauss-seidel 迭代法求解方程组为了更具体地说明 jacobi 迭代法和 gauss-seidel 迭代法的应用,我们分别用这两种方法来求解以下方程组:2x1 + x2 = 9x1 + 3x2 = 11我们将该方程组写成矩阵形式 AX=B:|2 1| |x1| |9||1 3| * |x2| = |11|我们根据 jacobi 迭代法和 gauss-seidel 迭代法的原理,依次进行迭代计算,直到满足收敛条件。

解线性方程组的迭代法

解线性方程组的迭代法
算程序,得到一向量序列和一般的计算公式(迭代公式)
(0) (1) (k ) x1 x1 x1 (0) (1) (k ) (0) (1) (k ) x x2 , x x2 ,, x x2 , x (0) x (1) x(k ) 3 3 3
或写为 x B0 x f , 其中
0 4 B0 11 6 12 3 8 0 3 12 2 8 1 , 11 0 20 8 33 f . 11 36 12
5
( k 1) (k ) (k ) x1 (3 x2 2 x3 20) / 8, x ( k 1) (4 x ( k ) x ( k ) 33) /11, 1 3 2 ( k 1) (k ) (k ) x3 (6 x1 3x2 36) /12.
7
构造迭代法
x1( k 1) 2 x2 ( k ) 5, ( k 1) (k ) x 3 x 5. 1 2
则对任何的初始向量,得到的序列都不收敛.
对于给定方程组 x Bx f, 设有唯一解 x * ,则
x* Bx * f .
(1.5)
又设 x ( 0 ) 为任取的初始向量,按下述公式构造向量序列
4
任取初始值,例如取 x ( 0) (0, 0, 0)T .
将这些值代入(1.3) 式右边 (若(1.3)式为等式即求得
方程组的解,但一般不满足). 得到新的值
(1) (1) (1) T x (1) ( x1 , x2 , x3 ) (2.5, 3, 3)T ,
再将 x (1) 分量代入(1.3)式右边得到 x ( 2 ),反复利用这个计

实验3 线性方程组的数值解—迭代法1

实验3 线性方程组的数值解—迭代法1

实验3 线性方程组数值解-迭代法一、实验目的:掌握Jaccobi 迭代法、Guass-Sidel 迭代法、松弛法求解线性方程组的数值解。

二、实验内容:1.1题目分别用雅格比法与高斯-赛德尔迭代法解下列方程组Ax =b ,研究其收敛性,上机验证理论分析是否正确,比较它们的收敛速度,观察右端项对迭代收敛有无影响。

(1)A 行分别为A 1=[6,2,-1],A 2=[1,4,-2],A 3=[-3,1,4]; b 1=[-3,2,4]T , b 2=[100,-200,345]T , (2) A 行分别为A 1=[1,0.8,0.8],A 2 [0.8,1,0.8],A 3=[0.8,0.8,1];b 1=[3,2,1] T , b 2=[5,0,-10]T , (3)A 行分别为A 1=[1,3],A 2=[-7,1];b =[4,6]T , 1.2原理和思路1.2.1 基本原理(1)Jacobi 迭代法设有n 阶方程组A x=b ,若系数矩阵非奇异,且0≠ii a (i = 1, 2,…, n ),将方程组改写成同解方程组:()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧----=----=----=--11,221112323122221213132121111111n n n n n n nn n n n n n x ax a x a b a x x a x a x a b a x x a x a x a b a x然后写成迭代格式:()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧----=----=----=--+++)(11,)(22)(11)1()(2)(323)(121122)1(2)(1)(313)(212111)1(1111k n n n k n k n n nn k n k n n k k k k n n k k k x a x a x a b a x x a x a x a b a x x a x a x a b a x上式也可以简单地写为:),,2,1(1)(1)1(n i x a b a x k j n i j j ij i iik i =⎪⎪⎪⎭⎫ ⎝⎛-=∑≠=+对以上两式给定一组任意初值(0)(0)(0)(0)12(,,)Tn x x x x =后,经反复迭代可得到一向量序列()()()1(,)k k k Tn x x x =,如果x (k )收敛于****12(,,)T n x x x x =,则),,2,1(*n i x i =就是方程组A x=b 的解,该方法称为雅克比(Jacobi)迭代法。

数值分析--第三章--迭代法

数值分析--第三章--迭代法

数值分析--第三章--迭代法迭代⼀般⽅程:本⽂实例⽅程组:⼀.jacobi迭代法从第i个⽅程组解出xi。

线性⽅程组Ax=b,先给定⼀组x的初始值,如[0,0,0],第⼀次迭代,⽤x2=0,x3=0带⼊第⼀个式⼦得到x1的第⼀次迭代结果,⽤x1=0,x3=0,带⼊第⼆个式⼦得到x2的第⼀次迭代结果,⽤x1=0,x2=0带⼊第三个式⼦得到x3的第⼀次迭代结果。

得到第⼀次的x后,重复第⼀次的运算。

转化成⼀般的形式:(其中L是A的下三⾓部分,D是A的对⾓元素部分,U 是上三⾓部分)得到迭代公式:其中的矩阵B和向量f如何求得呢?其实,矩阵B的计算也很简单,就是每⾏的元素/该⾏上的对⾓元素⼆.Gauss-Seidel迭代法【收敛速度更快】这个可以和jacobi法对⽐进⾏理解,我们以第⼆次迭代为例(这⾥的第⼀次迭代结果都⽤⼀样的,懒得去换)从上表对⽐结果可以看出,Jacobi⽅法的第⼆次迭代的时候,都是从第⼀次迭代结果中,获取输⼊值。

上⼀次迭代结果[2.5,3.0,3.0],将这个结果带⼊上⾯式⼦1,得到x1=2.88,;将[2.5,3.0,3.0]替换成[2.88,3.0,3.0]带⼊第⼆个式⼦的运算,这⾥得到x2=1.95,所以把[2.88,3.0,3.0]替换成[2.88,1.95,3.0]输⼊第三个式⼦计算X3=1.0.这就完成了这⼀次的迭代,得到迭代结果[2.88,1.95,1.0],基于这个结果,开始下⼀次迭代。

特点:jacobi迭代法,需要存储,上⼀次的迭代结果,也要存储这⼀次的迭代结果,所以需要两组存储单元。

⽽Gauss-Seidel迭代法,每⼀次迭代得到的每⼀个式⼦得到的值,替换上⼀次迭代结果中的值即可。

所以只需要⼀组存储单元。

转化成⼀般式:注意:第⼆个式⼦中的是k+1次迭代的第⼀个式⼦的值,不是第k次迭代得值。

计算过程同jacobi迭代法的类似三.逐次超松弛法SOR法上⾯仅仅通过实例说明,Jacobi和Seidel迭代的运算过程。

迭代法举例

迭代法举例

迭代法举例
迭代法是指通过反复迭代,逐步逼近求解方程的一种方法。

下面我们来举几个例子。

1.牛顿迭代法求解方程根
牛顿迭代法是一种求解方程根的迭代方法,假设需要求解的方程为f(x)=0,初始点为
x0,则可以通过以下迭代公式求解:
xn+1=xn-f(xn)/f'(xn)
其中f'(xn)表示f(x)在点xn处的导数。

通过不断的迭代求解,当f(xn+1)足够小的时候,就可以认为xn+1是方程f(x)=0的解。

这可以用来求解很多实际问题,例如求解非线
性方程、求解微积分中的最大值和最小值等。

2.雅可比迭代法求解线性方程组
x(k+1)=D^{-1}(b-(L+U)x(k))
其中D是A的对角线元素构成的对角矩阵,L和U分别是A的下三角和上三角部分矩阵。

这个迭代公式是通过将原方程组的系数矩阵A分解为D-(L+U)的形式而得到的。

使用雅可比迭代法求解线性方程组时,需要保证矩阵A是对称正定的,否则该方法可
能会失效。

此外,这个方法的收敛速度通常较慢。

3.梯度下降法求解函数最小值
其中α为步长,∇f(xn)表示f(x)在点xn处的梯度。

通过不断的迭代求解,可以逐步逼近函数f(x)的最小值。

但是需要注意的是,当该函数的梯度存在很大的方向差异时,梯度下降法的收敛速度
可能较慢,因此需要改进方法,例如Adagrad和Adam等算法,使得每个变量的更新步长可以根据过去的梯度值自适应地调整。

Jacobi迭代法求解线性方程组实验报告

Jacobi迭代法求解线性方程组实验报告

仿真平台与工具应用实践Jacobi迭代法求解线性方程组实验报告院系:专业班级:姓名:学号:指导老师:一、实验目的熟悉Jacobi迭代法原理;学习使用Jacobi迭代法求解线性方程组;编程实现该方法;二、实验内容应用Jacobi迭代法解如下线性方程组:, 要求计算精度为三、实验过程(1)、算法理论迭代格式的引出是依据迭代法的基本思想: 构造一个向量系列, 使其收敛至某个极限, 则就是要求的方程组的准确解。

Jacobi迭代将方程组:在假设, 改写成如果引用系数矩阵, 及向量, , ,方程组(1)和(2)分别可写为: 及, 这样就得到了迭代格式用迭代解方程组时, 就可任意取初值带入迭代可知式, 然后求。

但是, 比较大的时候, 写方程组和是很麻烦的, 如果直接由, 能直接得到, 就是矩阵与向量的运算了, 那么如何得到, 呢?实际上, 如果引进非奇异对角矩阵将分解成:要求的解, 实质上就有而是非奇异的, 所以存在, 从而有我们在这里不妨令就得到迭代格式:(2)算法框图(3)、算法程序m 文件:function x=jacobi(A,b,P,delta,n)N=length(b); %返回矩阵b的最大长度for k=1:nfor j=1:Nx(j)=(b(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);enderr=abs(norm(x'-P)); %求(x'-P)模的绝对值P=x';if(err<delta) %判断是否符合精度要求break;endendE=eye(N,N); %产生N行N列矩阵D=diag(diag(A));f=A*inv(D); %f是A乘D的逆矩阵B=E-f;Px=x';k,errBMATLAB代码:>> clear allA=[4, -1, 1;4, -8, 1;-2, 1, 5];b=[7, -21, 15]';P=[0,0,0]';x=jacobi(A,b,P,1e-7,20)(4)、算法实现用迭代法求解方程组:正常计算结果是2, 3, 4 , 下面是程序输出结果:P =2.00004.00003.0000k =17err =9.3859e-008B =0 -0.1250 -0.2000-1.0000 0 -0.20000.5000 0.1250 0x =2.00004.00003.0000四、实验体会五、MATLAB是非常实用的软件, 能够避免大量计算, 简化我们的工作, 带来便捷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档