2015年上海市春季高考数学模拟试卷六

合集下载

2015上海春考数学试卷及答案

2015上海春考数学试卷及答案

2015上海春考数学试卷及答案2015年上海市春季高考数学试卷(学业水平考试)2015.1一. 填空题(本大题共12题,每题3分,共36分)1. 设全集为{1,2,3}U =,{1,2}A =,若集合则U C A =;2. 计算:1ii+= ;(其中i 为虚数单位) 3. 函数sin(2)4y x π=+的最小正周期为 ; 4. 计算:223lim 2n n n n→∞-=+ ;5. 以(2,6)为圆心,1为半径的圆的标准方程为 ; 6. 已知向量(1,3)a =,(,1)b m =-,若a b⊥,则m =;7. 函数224y xx =-+,[0,2]x ∈的值域为 ;8. 若线性方程组的增广矩阵为0201ab ⎛⎫⎪⎝⎭,解为21x y =⎧⎨=⎩,则a b += ;9. 方程lg(21)lg 1x x ++=的解集为 ;A. 3(,)4-∞ B.2(,)3-∞ C.2(,)(1,)3-∞+∞D.2(,1)316. 下列函数中,是奇函数且在(0,)+∞上单调递增的为( )A. 2y x= B.13y x= C.1y x -=D.12y x-=17. 直线3450x y --=的倾斜角为( )A. 3arctan 4B. 3arctan 4π- C. 4arctan3D.4arctan3π-18. 底面半径为1,母线长为2的圆锥的体积为( )A.2π B. C. 23πD.19. 以(3,0)-和(3,0)为焦点,长轴长为8的椭圆方程为( ) A. 2211625x y += B.221167x y += C.2212516x y +=D.221716x y +=20. 在复平面上,满足|1|||z z i -=+(i 为虚数单位)的复数z 对应的点的轨迹为( )A. 椭圆B. 圆C. 线段D. 直线 21. 若无穷等差数列{}na 的首项1a>,公差0d <,{}na 的前n 项和为nS ,则( )A. nS 单调递减 B.nS 单调递增C. nS 有最大值 D.nS 有最小值22. 已知0a >,0b >,若4a b +=,则( ) A.22a b +有最小值 B.有最小值C. 11a b+有最大值 D.有最大值 23. 组合数122mm m nn n CC C --++*(2,,)n m m n N ≥≥∈恒等于( )A. 2m n C + B.12m n C ++ C. 1m n C +D.11m n C ++24. 设集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,21{|0}Q x x x b =++>,22{|20}Q x x x b =++>,其中,a b R ∈,下列说法正确的是( )A.对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B. 对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C. 存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D. 存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集三. 解答题(本大题共5题,共8+8+8+12+12=48分)25. 如图,在正四棱柱中1111ABCD A B C D -,1AB =,1D B 和平面ABCD 所成的角的大小为,求该四棱柱的表面积;26. 已知a 为实数,函数24()x ax f x x++=是奇函数,求()f x 在(0,)+∞上的最小值及取到最小值时所对应的x 的值;27. 某船在海平面A 处测得灯塔B 在北偏东30︒方向,与A 相距6.0海里,船由A 向正北方向航行8.1海里到达C 处,这时灯塔B 与船相距多少海里(精确到0.1海里)?B 在船的什么方向(精确到1︒)?28. 已知点1F 、2F 依次为双曲线2222:1x y C a b-=(,0)a b >的左右焦点,126F F=,1(0,)B b -,2(0,)B b ;(1)若a =以(3,4)d =-为方向向量的直线l 经过1B ,求2F 到l 的距离;(2)若双曲线C 上存在点P ,使得122PB PB⋅=-,求实数b 的取值范围;29. 已知函数2()|22|x f x -=-(R)x ∈;(1)解不等式()2f x <; (2)数列{}na 满足()naf n =*(N )n ∈,nS 为{}na 的前n 项和,对任意的4n ≥,不等式 12nnS ka +≥恒成立,求实数k 的取值范围;附加题一. 选择题(本大题共3题,每题3分,共9分) 1. 对于集合A 、B ,“A B ≠”是“A B A B⊂≠”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件2. 对于任意实数a 、b ,2()a b kab-≥均成立,则实数k 的取值范围是( ) A. {4,0}- B. [4,0]- C.(,0]-∞D.(,4][0,)-∞-+∞3. 已知数列{}na 满足413nn n n a a a a ++++=+()n N *∈,那么( ) A.{}n a 是等差数列 B.21{}n a -是等差数列C.2{}n a 是等差数列 D.3{}n a 是等差数列二. 填空题(本大题共3题,每题3分,共9分) 4. 关于x 的实系数一元二次方程220x px ++=的两个虚数根为1z 、2z ,若1z 、2z 在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为 ;5. 已知圆心为O ,半径为1的圆上有三点A 、B 、C,若7580OA OB OC ++=,则||BC =;6. 函数()f x 与()g x 的图像拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A ,(1,1)B ,(0,0)O ,(1,1)C --,(0,1)D -五个点,若()f x 的图像关于原点对称的图形即为()g x 的图像,则其中一个函数的解析式可以为 ;三. 解答题(本大题12分)7. 对于函数()f x 、()g x ,若存在函数()h x ,使得()()()f xg xh x =⋅,则称()f x 是()g x 的“()h x 关联函数”(1)已知()sin f x x =,()cos g x x =,是否存在定义域为R 的函数()h x ,使得()f x 是()g x 的“()h x 关联函数”?若存在,写出()h x 的解析式;若不存在,说明理由; (2)已知函数()f x 、()g x 的定义域为[1,)+∞,当[,1)x n n ∈+()n *∈N 时,()f x =12sin 1n xn--,若存在函数1()h x 及2()h x ,使得()f x 是()g x 的“1()h x 关联函数”,且()g x 是()f x 的“2()h x 关联函数”,求方程()0g x =的解;参考答案一. 填空题1. {3};2. 1i-;3. π;4.0.5;5. 22-+-=; 6. 3;7. [3,4];(2)(6)1x y8. 2;9. {2};10. 84;11. 320;12. 221=-;y x二. 选择题13. D;14. A;15. D;16. B;17. A;18. D;19. B;20. D;21. C;22. A;23. A;24. A;三. 解答题25. 8;26. 0f x=;x=,min()4a=,227.4.2BC ≈海里,南偏东46︒;28.(1) 3.6d =;(2)b ≥29.(1)4x <;(2)2514k ≤;附加题1. C ;2. B ;3. D ;4.; 5.; 6.,10()1,01x x f x x -<<⎧=⎨<<⎩;7.(1)不存在,定义域不为R ;(2)2x π=;。

2015年上海市十二校联考高考数学模拟试卷(文科)(3月份)解析

2015年上海市十二校联考高考数学模拟试卷(文科)(3月份)解析

2015年上海市十二校联考高考数学模拟试卷(文科)(3月份)(扫描二维码可查看试题解析)一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海模拟)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=.2.(4分)(2015•上海模拟)函数的定义域是.3.(4分)(2006•上海)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.4.(4分)(2015•上海模拟)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=.5.(4分)(2015•上海模拟)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=.6.(4分)(2015•上海模拟)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是.7.(4分)(2015•上海模拟)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为.8.(4分)(2015•上海模拟)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?.(只需写出一个答案即可)9.(4分)(2015•上海模拟)若(x≥0,y≥0),则目标函数k=6x+8y取最大值时点的坐标为.10.(4分)(2015•上海模拟)设口袋中有黑球、白球共7 个,从中任取2个球,已知取到至少1个白球的概率为,则口袋中白球的个数为.11.(4分)(2015•上海模拟)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为.12.(4分)(2015•上海模拟)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有个.13.(4分)(2015•上海模拟)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+a5+…+a2011+a2013+a2015=.14.(4分)(2015•上海模拟)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)(2015•上海模拟)若非空集合A中的元素具有命题α的性质,集合B16.(5分)(2015•上海模拟)用反证法证明命题:“已知a 、b ∈N *,如果ab 可被 5 整17.(5分)(2015•上海模拟)实数x 、y 满足x 2+2xy+y 2+x 2y 2=1,则x ﹣y 的最大值18.(5分)(2015•上海模拟)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围[﹣+2[+2三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤.19.(12分)(2015•上海模拟)已知正四棱柱ABCD ﹣A 1B 1C 1D 1,底面边长为,点P 、Q 、R 分别在棱AA 1、BB 1、BC 上,Q 是BB 1中点,且PQ ∥AB ,C 1Q ⊥QR (1)求证:C 1Q ⊥平面PQR ;(2)若C 1Q=,求四面体C 1PQR 的体积.20.(14分)(2015•上海模拟)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n} 的前n项和S n=2n2+2n,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.21.(14分)(2015•上海模拟)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A类波“中有一个是f1(x)=sinx,从A类波中再找出两个不同的波(每两个波的初相φ都不同)使得这三个不同的波叠加之后是“平波”,即叠加后y=0,并说明理由.22.(16分)(2015•上海模拟)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)当a2+b2=1时,函数y=f(x)存在零点x0,求x0的取值范围.23.(18分)(2015•上海模拟)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f(x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上,求正方形ABCD的面积;(2)设曲线C与x轴的交点是M、N,抛物线E:y=x2+1与y 轴的交点是G,直线MG与曲线E交于点P,直线NG 与曲线E交于Q,求证:直线PQ过定点(0,3).(3)设曲线C与x轴的交点是M(u,0)、N(v,0),可知动点R(u,v)在某确定的曲线上运动,曲线与上述曲线C在a≠0时共有4个交点,其分别是:A(x1,|x2)、B(x3,x4)、C(x5,x6)、D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i=1,2,…,255),将Y i中的所有元素相加(若Y i中只有一个元素,则和是其自身)得到255个数y1、y2、…、y255,求y13+y23+…+y2553的值.2015年上海市十二校联考高考数学模拟试卷(文科)(3月份)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分. 1.(4分)(2015•上海模拟)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=0.2.(4分)(2015•上海模拟)函数的定义域是(0,1].3.(4分)(2006•上海)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.•×=故答案为:4.(4分)(2015•上海模拟)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=1.5.(4分)(2015•上海模拟)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=4或8.6.(4分)(2015•上海模拟)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是4π.=27.(4分)(2015•上海模拟)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a 的取值范围为﹣3≤a≤9.﹣﹣﹣﹣8.(4分)(2015•上海模拟)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?23,或105k+23(k为正整数)..(只需写出一个答案即可)9.(4分)(2015•上海模拟)若(x≥0,y≥0),则目标函数k=6x+8y取最大值时点的坐标为(0,5).10.(4分)(2015•上海模拟)设口袋中有黑球、白球共7 个,从中任取2个球,已知取到至少1个白球的概率为,则口袋中白球的个数为3.﹣,由此能求出口袋,11.(4分)(2015•上海模拟)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为x>y>z.x==AB••12.(4分)(2015•上海模拟)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有1395个.sinx=x=x=,,,+C)()即可.,sinx=x=x=,,,+C)()13.(4分)(2015•上海模拟)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+a5+…+a2011+a2013+a2015=0.14.(4分)(2015•上海模拟)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为2.,﹣+)与(﹣,)和(﹣a+,)和(﹣)的距离,即..二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)(2015•上海模拟)若非空集合A中的元素具有命题α的性质,集合B中的元素16.(5分)(2015•上海模拟)用反证法证明命题:“已知a 、b ∈N *,如果ab 可被 5 整除,222218.(5分)(2015•上海模拟)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,[﹣+2[+2+2+2[22三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤. 19.(12分)(2015•上海模拟)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.,由,,BR=QR=.20.(14分)(2015•上海模拟)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n} 的前n项和S n=2n2+2n,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.,∴,因此,,时,=4n21.(14分)(2015•上海模拟)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A类波“中有一个是f1(x)=sinx,从A类波中再找出两个不同的波(每两个波的初相φ都不同)使得这三个不同的波叠加之后是“平波”,即叠加后y=0,并说明理由.则:即:所以:则:即:得到:=此时:,+22.(16分)(2015•上海模拟)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)当a2+b2=1时,函数y=f(x)存在零点x0,求x0的取值范围.[,)≥≥[23.(18分)(2015•上海模拟)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f(x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上,求正方形ABCD的面积;(2)设曲线C与x轴的交点是M、N,抛物线E:y=x2+1与y 轴的交点是G,直线MG与曲线E交于点P,直线NG 与曲线E交于Q,求证:直线PQ过定点(0,3).(3)设曲线C与x轴的交点是M(u,0)、N(v,0),可知动点R(u,v)在某确定的曲线上运动,曲线与上述曲线C在a≠0时共有4个交点,其分别是:A(x1,|x2)、B(x3,x4)、C(x5,x6)、D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i=1,2,…,255),将Y i中的所有元素相加(若Y i中只有一个元素,则和是其自身)得到255个数y1、y2、…、y255,求y13+y23+…+y2553的值.1P的方程为:,y=,=0,因此1x+1,(﹣,x++=+n=3y=,如图所示,=0参与本试卷答题和审题的老师有:双曲线;若尘;wsj1012;qiss;刘长柏;1619495736;zlzhan;1457446928;sdpyqzh;wkl197822;孙佑中;sxs123;chenzhenji(排名不分先后)菁优网2015年4月16日。

2015年上海市春季高考数学模拟试卷6套

2015年上海市春季高考数学模拟试卷6套

目录2015年上海市春季高考模拟试卷一 ........................................................... 1 2015年上海市春季高考模拟试卷二 ......................................................... 10 2015年上海市春季高考模拟试卷三 ......................................................... 19 2015年上海市春季高考模拟试卷四 ......................................................... 29 2015年上海市春季高考模拟试卷五 ......................................................... 38 2015年上海市春季高考模拟试卷六 (49)2015年上海市春季高考模拟试卷一一、填空题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.) 1、函数1()x f x x+=的定义域是 . 2、已知全集{}21,0,1,2U =--,集合2|1A x x x n Z n ⎧⎫==∈⎨⎬-⎩⎭,、,则U C A = . 3、已知函数1()y fx -=是函数1()2(1)x f x x -=≥的反函数,则1()f x -= (要求写明自变量的取值范围).4、双曲线22231x y -=的渐近线方程是 . 5、若函数()2cos(4)17f x x π=+-与函数()5tan(1)2g x ax =-+的最小正周期相同,则实数a = .6、已知数列{}n a 是首项为1,公差为2的等差数列,*()n S n N ∈是数列的前n 项和,则2l i m 1n n Sn →∞-= . 7、直线1310l x y -+=:,250l x +=:,则直线1l 与2l 的夹角为= .8、已知01()m m R <<∈,α是方程210x mx ++=的根,则||α= .9、2151()x x-的二项展开式中的常数项是 (用数值作答) .10、已知12e e 、是平面上两个不共线的向量,向量122a e e =-,123b me e =+.若a b ,则实数m = .11、已知圆柱M 的底面圆的半径与球O 的半径相同,若圆柱M 与球O 的表面积相等,则它们的体积之比V V 圆柱球:= (用数值作答).12、已知角αβ、的顶点在坐标原点,始边与x 轴的正半轴重合,(0)αβπ∈、,,角β的终边与单位圆交点的横坐标是13-,角αβ+的终边与单位圆交点的纵坐标是45,则cos α= .二、选择题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)13、已知x a α≥:,1|1x β-<:|.若α是β的必要非充分条件,则实数a 的取值范围是( ) A .0a ≥B .0a ≤C .2a ≥D .2a ≤.14、已知直线1l ax by +=:,点()P a b ,在圆C :221x y +=外,则直线l 与圆C 的位置关系是 ( )A .相交 B.相切 C.相离 D.不能确定 15、现给出如下命题:①若直线l 与平面α内无穷多条直线都垂直,则直线l α⊥平面;②空间三点确定一个平面;③先后抛两枚硬币,用事件A 表示“第一次抛出现正面向上”,用事件B 表示“第二次抛出现反面向上”,则事件A 和B 相互独立且()P AB =111()()224P A P B =⨯=; ④样本数据11011--,,,,的标准差是1. 则其中正确命题的序号是 ( ) A .①④ B .①③ C .②③④D .③④16、在关于x 的方程240x ax -+=,()21160x a x +-+=,223100x ax a +++=中,已知至少有一个方程有实数根,则实数a 的取值范围为( ) A. 44a -≤≤ B. 9a ≥或7a ≤- C. 2a ≤-或4a ≥ D. 24a -<<17、不等式1|2|≤-x 的解集是( )A .[3,1]--B .[1,3]C .[3,1]-D .[1,3]- 18、已知α,β表示两个不同的平面,m 为平面α内的一条直线,则""βα⊥是""β⊥m 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19、已知21,F F 是椭圆192522=+y x 的两个焦点,P 是椭圆上的任意一点,则||||21PF PF ⋅的最大值是( )A.、9B.16C.25D.225 20、函数||y m x =与21y x =+在同一坐标系的图像有公共点的充要条件是( )A.2m >B.2m ≥C.1m ≥D.1m > 21、设函数)12(l 2)(-=x g x f ,则)0(1-f 的值为( )A .0B .1C .10D .不存在22、已知m x =-)6cos(π,则=-+)3cos(cos πx x ( )A .m2B .m 2±C .m 3D .m 3±23、将正三棱柱截去三个角(如图1所示A 、B 、C 分别是GHI ∆三边的中点)得到的几何体如图2,则按图2所示方向侧视该几何体所呈现的平面图形为( )24、已知方程)0(0)]([222222>>=---a b b a b x k a x b 的根大于a ,则实数k 满足( ) A .abk >|| B .a b k <|| C .ba k >|| D .bak <||三、解答题 25、(本题满分7分)在ABC ∆中,记BAC x ∠=(角的单位是弧度制),ABC ∆的面积为S ,且8AB AC ⋅=,443S ≤≤.求函数22()23sin ()2cos 34f x x x π=++-的最大值、最小值.A DC 1D 1 A 1B 1BC26、(本题满分7分)已知正方体1111ABCD A B C D -的棱长为a .求点1C 到平面11AB D 的距离. 27、(本题满分8分)用行列式讨论关于,x y 的二元一次方程组42mx y m x my m+=+⎧⎨+=⎩的解的情况,并说明各自的几何意义. 28、(本题满分13分) 已知函数21()log (01)1am mxf x a a x --=>≠+,是奇函数,定义域为区间D (使表达式有意义的实数x 的集合).(1)求实数m 的值,并写出区间D ;(2)若底数1a >,试判断函数()y f x =在定义域D 内的单调性,并说明理由;(3)当[)x A a b ∈=,(A D ⊂≠,a 是底数)时,函数值组成的集合为[1)+∞,,求实数a b 、的值.29、(本题满分13分)已知双曲线C :22221(0,0)x y a b a b-=>>的一个焦点是2(2,0)F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线l 的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于BA ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上. (3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.附加题30、(本题满分8分)某公司生产某种消防安全产品,年产量x 台(0100,)x x N ≤≤∈时,销售收入函数2()300020R x x x =-(单位:百元),其成本函数满足()500C x x b =+(单位:百元).已知该公司不生产任何产品时,其成本为4000(百元).(1)问该公司生产多少台产品时,利润最大,最大利润是多少?(2)在经济学中,对于函数()f x ,我们把函数(1)()f x f x +-称为函数()f x 的边际函数,记作()Mf x .对于(1)求得的利润函数()P x ,求边际函数()MP x ;并利用边际函数()MP x 的性质解释公司生产利润情况.(本题所指的函数性质主要包括:函数的单调性、最值、零点等) 31、(本题满分8分)已知数列{}n a 的前n 项和为n S ,满足223()n n S a n N *+=∈.数列1112n n n b a n n -=⎧⎪=⎨≥⎪⎩.(1)求证:数列{}n a 为等比数列;(2)若对于任意n N *∈,不等式(1)n b n λ≥+恒成立,求实数λ的最大值.31、(本题满分14分)已知点P 是直角坐标平面内的动点,点P 到直线12l x =-:的距离为1d ,到点(10)F -,的距离为2d ,且2122d d =.(1)求动点P 所在曲线C 的方程;(2)直线l 过点F 且与曲线C 交于不同两点A 、B (点A 或B 不在x 轴上),分别过A 、B 点作直线1:2l x =-的垂线,对应的垂足分别为M N 、,试判断点F 与以线段MN 为直径的圆的位置关系(指在圆内、圆上、圆外等情况);(3)记1FAM S S ∆=,2FMN S S ∆=,3FBN S S ∆=(A 、B 、M N 、是(2)中的点),问是否存在实数λ,使2213S S S =λ成立.若存在,求出λ的值;若不存在,请说明理由.进一步思考问题:若上述问题中直线21:a l x c=-、点(0)F c -,、曲线C :2222221(0)x y a b c a b a b +=>>=-,,则使等式2213S S S =λ成立的λ的值仍保持不变.请给出你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).2015年春季高考模拟 一参考答案1、[10)(0),,-? ;2、{}0;3、21log (1)y x x =+ ;4、63y x =;5、2a = ;6、1;7、6p ;8、1;9、3003;10、6-;11、34;12、38215+;13-16BADC ;17-20BBCD ;21-24BCAA25、∵8BAC x AC AB ∠=⋅=,,443S ≤≤,又1s i n 2S b c x =,∴cos 8bc x =,4tan S x =即 1tan 3x ≤≤∴所求的x 的取值范围是43x ππ≤≤.∵43x ππ≤≤,22()23sin ()2cos 34f x x x π=++-3sin 2cos 212sin(2)16x x x π=++=++,∴252366x πππ≤+≤,13sin(2)262x π≤+≤. ∴min max ()()2()()3134f x f f x f ππ====+,.26、建立空间直角坐标系,可得有关点的坐标为(000)A ,,、1(0,,)D a a 、1(,0,)B a a 、1(,,)C a a a ,向量1()C A a a a =---,,,1(0)AD a a =,,,1(,0,)AB a a =.设()n x y z =,,是平面11AB D 的法向量,于是,有1100n AD n AB ⎧⋅=⎪⎨⋅=⎪⎩,即00ay az ax az +=⎧⎨+=⎩.令1z =-,得11x y ==,.于是平面11AB D 的一个法向量是(1)n =,1,-1.因此,1C 到平面11AB D 的距离1||33||C A n d a n ⋅==.(也可用等积法求得) 27、()()4221m D m m m ==-+,()242x m D m m m m +==-,()()2211y m m D m m m+==-+(1)当2m ≠±时,0D ≠方程组有唯一解,此时xy D x DD y D⎧=⎪⎨⎪=⎩,即212m x m m y m ⎧=⎪+⎨+⎪=⎩+; (2)当2m =时,0x y D D D ===,方程组有无穷多组解,通解可表示为()2R 2x t tt y =⎧⎪-∈⎨=⎪⎩; (3)当2m =-时,0D =,0x D ≠,0y D ≠,此时方程组无解. 几何意义:设1:42l mx y m +=+,2:l x my m += 当2m ≠±时,方程组唯一解,则直线1l 与2l 相交; 当2m =-时,方程组无解,则直线1l 与2l 平行; 当2m =时,方程组无穷多解,则直线1l 与2l 重合.28、(1)∵()y f x =是奇函数,∴对任意x D ∈,有()()0f x f x +-=,即2121l o g l o g 011aam mx m mxx x---++=+-. 化简此式,得222(1)(21)10m x m ---+=.又此方程有无穷多解(D 是区间),必有2210(21)10m m ⎧-=⎪⎨--=⎪⎩,解得1m =.∴1()log (11)1a x f x D x -==-+,,. (2)当1a >时,函数1()log (11)1a xf x D x-==-+在,上是单调减函数. 理由:令12111x t x x-==-+++. 易知1x +在(11)D =-,上是随x 增大而增大,21x+在(11)D =-,上是随x 增大而减小, 故12111x t x x-==-+++在(11)D =-,上是随x 增大而减小. 于是,当1a >时,函数1()log (11)1axf x D x-==-+在,上是单调减函数 (3) ∵[)A a b D ⊂=≠,,∴011a a b <<<≤,. ∴依据(2)的道理,当01a <<时,函数1()log 1axf x A x-=+在上是增函数, 即1()1log 11a af a a-==+,,解得21(21)a a =-=--舍去.若1b <,则()f x 在A 上的函数值组成的集合为1[1log )1a bb-+,,不满足函数值组成的集合是[1)+∞,的要求.(也可利用函数的变化趋势分析,得出b=1)∴必有1b =.因此,所求实数a b 、的值是211a b =-=、. 29、(1)2=c 222b ac +=2234a a +=∴ 3,122==∴b a 1322=-∴y x 双曲线为. (2):l 0)2(=+-y x m 由⎪⎩⎪⎨⎧=-+-=13222y x m m x y 得0344)3(2222=--+-m x m x m由0>∆,得0)34)(3(4224>+-+m m m ,0391222>-+m m ,恒成立即012>+m121200x x x x +>⎧⎨⋅>⎩又 ,03340342222>-+>-m m m m ,32>∴m (,3)3,)m ∴∈-∞-+∞ 设),(),,(2211y x B y x A ,则3222221-=+m m x x 36232222321--=+--=+m mm m m y y )36,32(222---∴m mm m M AB 中点3)3(12963)3(36)3()3(3)3(36)132(3222242222222222222=--++⋅=---+⨯=----m m m m m m m m m m m m 上在曲线3)1(322=--∴y x M .(3)),(),,(2211y x B y x A , 为锐角使设存在实数AOB m ∠,,0>⋅OB OA 则 02121>+∴y y x x因为221221221214)(2)2)(2(m x x m x x m m mx m mx y y ++-=+-+-=04)(2)1(2212212>++-+∴m x x m x x m0)3(48)34)(1(22422>-+-++∴m m m m m 即0123722>-+m m532<∴m , 矛盾与32>m ,不存在∴ 30、(1)由题意,0,4000x b ==,所以()5004000C x x =+22()()()30002050040002025004000,0100P x R x C x x x x x x x =-=---=-+-≤≤2125()20()741252P x x =--+(0100x ≤≤,x N ∈),所以62x =或63x = max ()(62)63)74120P x P P ===(百元)(2)()(1)()402480MP x P x P x x =+-=-+(099x ≤≤,x N ∈)边际函数为减函数,说明随着产量的增加,每生产一台的利润与生产前一台利润相比在减少;当0x =时,边际函数取得最大值为2480,说明生产第一台的利润差最大;当62x =时,边际函数为零,说明生产62台时,利润达到最大31、(1)12a =,223n n S a += 11223n n S a +++=()n N *∈ 所以11233n n n a a a ++=- 即:13()n na n N a *+=∈恒成立 所以,{}n a 为以2为首项,公比为3的等比数列。

2015年上海市高考数学试卷模拟卷

2015年上海市高考数学试卷模拟卷

2015年上海市高考数学试卷模拟卷(理科)一.填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零1.已知全集R U =,集合{}0542>--=x x x M ,{}1≥=x x N ,则)(N C M U ⋂= .2、如果αcos =51,且α是第四象限的角,那么αsin = . 3.不等式120010321x x x +-≥的解为 . 4.在二项式52)1(xx -的展开式中,x 的一次项系数为 .(用数字表示) 5.已知i z -=1(i 是虚数单位),计算=++i z zi||231_____(其中z 是z 的共轭复数). 6.若函数2()log f x x =,则方程112()2x f x --=的解x = .7.从一堆苹果中任取5只,称得它们的质量如下(单位:克):125,124,121,123,127.则该样本的标准差=s8.在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程是 .9.执行右面的程序框图,如果输入的n 是4,则输出的P=____.10.某圆锥体的侧面展开图是半圆,当侧面积是32π时,则该圆锥体的体积是 .11.已知等差数列{}n a 中,,101=a 当且仅当5=n 时,前n 项和n S 取得最大值,则公差d 的范围是.___________12.在平面直角坐标系中,若O 为坐标原点,则A 、B 、C 三点在同一直线上的充要条件为存在惟一的实数λ,使得(1)OC OA OB λλ=⋅+-⋅成立,此时称实数λ为“向量OC 关于OA 和OB 的终点共线分解系数”.若已知1(3,1)P 、2(1,3)P -,且向量3OP 是直线:100l x y -+=的法向量,则“向量3OP 关于1OP 2OP 和的终点共线分解系数”为 .13.已知抛物线y x 32=上的两点A 、B 的横坐标恰是方程02=++q px x (,p q 是实数)的两个实根,则直线AB 的方程是 .14. 已知函数()f x 满足:①对任意(0,)x ∈+∞,恒有(2)2()f x f x =成立;②当(1,2]x ∈时,()2f x x =-.若()f a =)2020(f ,则满足条件的最小的正实数a 是二.选择题(本大题满分20分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.15.已知x a α≥:,1|1x β-<:|.若α是β的必要非充分条件,则实数a 的取值范围是 ( ) A .0a ≥. B .0a ≤. C .2a ≥. D .2a ≤.16.观察下列式子: ,474131211,3531211,23211222222<+++<++<+,可以猜想结论为( ) .(A)2221112n 1123n n ++++⋅⋅⋅+< (n N*)∈ (B) 2221112n 1123(n 1)n -+++⋅⋅⋅+<+(n N*)∈(C) 2221112n 1123(n 1)n 1++++⋅⋅⋅+<++(n N*)∈ (D) 2221112n 1123n n 1++++⋅⋅⋅+<+(n N*)∈17.已知数列{}n a ,对于任意的正整数n ,⎪⎩⎪⎨⎧≥⋅-≤≤=-)2010(.)31(2)20091(12009n n a n n ,,设n S 表 示数列{}n a 的前n 项和.下列关于n n S +∞→lim 的结论,正确的是( ).A .1lim -=+∞→n n SB .2008lim =+∞→n n SC .⎩⎨⎧≥-≤≤=+∞→)2010(.1)20091(2009lim n n S n n ,(*N n ∈) D .以上结论都不对18设函数2()()1||xf x x R x =∈+,区间[,]M a b =,()a b <,集合{|(),}N y y f x x M ==∈,则使M N =成立的实数对(),a b 有( ).(A)3对; (B)5对; (C)1对; (D)无数对.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图所示的几何体111ABCD AC D -,且这个几何体的体积为10.(1)求棱1A A 的长;(2)求点D 到平面11A BC 的距离.20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知向量(sin ,cos )a x x =, (sin ,sin )b x x =, (1,0)c =-. (1)若3x π=,求向量a 、c 的夹角θ;(2)若3,84x ππ⎡⎤∈-⎢⎥⎣⎦,函数x f ⋅=λ)(的最大值为21,求实数λ的值.21.(本小题满分14分,第1小题满分7分,第2小题满分7分)一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每x 小时通过管道向所管辖区域供水x 8千吨.(1)多少小时后,蓄水池存水量最少?(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分.设椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为21,F F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且2221=+F F F .若过A 、Q 、2F 三点的圆恰好与直线033:=--y x l 相切. (1)求椭圆C 的方程;(2)设椭圆的右顶点为B ,过椭圆右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N两点.ABCD1A 1C 1D①(理)当MBN ∆的面积为726时,求直线l(文)当1=k 时,求MBN ∆的面积;②(理)在x 轴上的点)0,(m P 与点N M ,构成以MN 取值范围.(文)试问:MBN ∆能否为锐角三角形?若能,请求出k 的范围;若不能,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 .从数列{}n a 中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{}n a 的一个子数列.设数列{}n a 是一个首项为1a 、公差为d (0)d ≠的无穷等差数列.(1)若1a ,2a ,5a 成等比数列,求其公比q .(2)若17a d =,从数列{}n a 中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{}n a 的无穷等比子数列,请说明理由.(3)若11a =,从数列{}n a 中取出第1项、第m (2)m ≥项(设m a t =)作为一个等比数列的第1项、第2项,试问当且仅当t 为何值时,该数列为{}n a 的无穷等比子数列,请说明理由.。

2015年徐汇区一模(春考模拟)试卷

2015年徐汇区一模(春考模拟)试卷

2014学年徐汇区学业水平考(春考)模拟考试高三数学学科(考试时间:90分钟,满分120分) 2014.12一、填空题(本大题满分36分)本大题共有12题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得0分.1、设全集{}{}1,2,3,4,5,6,7=2,4,6U A =,,则=U A ð__________.2、已知i 是虚数单位,则复数1i -的虚部是___________.3、函数()()3log 1f x x =-的定义域为___________.4、函数()f x =的反函数()1f x -=_________.5、已知双曲线2216x y m-=的焦距为14,则实数m =_________.6、函数2sin 34y x π⎛⎫=- ⎪⎝⎭的图像中两条相邻对称轴之间的距离是_________.7、若等差数列{}n a 的公差为2,且124,,a a a 成等比数列,则1a =_________.8、直线3x =30y -+=的夹角是________.9、已知圆锥的母线长为2_________. 10、若1sin cos ,,82παααπ⎛⎫=-∈ ⎪⎝⎭,则sin cos αα-=_________.11、点(),P x y 是直线20x y +-=上任意一点,则22x y +的取值范围是__________.12、已知ABC ∆得顶点()()4,0,4,0A C -,顶点B 在椭圆221259x y +=上,且B 点不在长轴上,则sin sin sin A C B+=__________.二、选择题(本大题满分36分)本大题共有12题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得0分. 13.分别在两个平面内的两条直线的位置关系是( )A.异面B.相交C.平行D.以上都有可能14.在数列{}n a 中,若2*(1)()n n a n N =-∈,则数列{}n a 的极限值是( )A.1-B.1C.1或1-D.不存在 15.抛物线24y x =的准线方程是( )A. 2x =B. 1x =C. 2x =-D. 1x =-16.“ a b a c ⋅=⋅”是“b c =”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件 17.函数()2x f x x =+的零点所在的区间是( ) A. 1(1,)2-- B. 1(,0)2- C. 1(0,)2 D. 1(,1)218.从装有3个红球,2个白球的袋中任取3个球,所取的3个球中至少有一个白球的取法种数是( )A.10B.3C.6D.919、已知方程()20x x m m R ++=∈有两个虚根,αβ,若3αβ-=,则m 的值是( ) A. 2-或52B. 2-C.52D. 52-20、设ABC ∆的内角A B C 、、所对的边分别为a b c 、、,若cos cos sin b C c B a A +=,则ABC ∆的形状为( )A.直角三角形B. 锐角三角形C. 钝角三角形D. 不确定 21、某算法如右图所示,若输入27,12A B ==,则输出的结果是( )A.27B. 3C. 0D. 1222、若1nx x ⎛⎫+ ⎪⎝⎭的二项式展开式中二项式系数之和为64,则展开式中的常数项为( )A.10B. 20C. 30D. 3523、若长方体的一个顶点上三条棱的长度分别为3,4,5,且它的八个顶点都在同一个球面上,则这个球的表面积是( )A. B.C. 50πD.200π24、已知函数()()=1xf x x R x∈+,则下列结论中不正确...的是( ) A.对任意x R ∈,等式()()0f x f x -+=恒成立 B. 函数()f x 的值域为()1,1-C. 对任意12,x x R ∈,若12x x ≠,则一定有()()12f x f x ≠D. 方程()0f x x -=在R 上有三个根三、解答题(本大题满分48分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 25、(本题满分6分) 已知集合{{}{}2230,12A x xx B x x =+-<=-≥,求AB .26、(本题满分7分)如图:在长方体1111ABCD A B C D -中,11AC 的中点为1O ,12,3AB BC AA ===,求异面直线1BO 与11A D 所成角的余弦值.27、(本题满分9分)已知函数()f x 和()g x 的图像关于原点对称,且()22f x x x =+.若函数()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.A 128、(本题满分13分)本题共有2个小题,第1小题满分4分,第2小题满分9分 已知椭圆221123x y +=的左、右焦点分别为12,F F ,过点1F 做垂直于x 轴的直线与椭圆相交,一个交点为P .(1)求2PF ;(2)过右焦点2F 的直线l ,它的一个方向向量()1,1d =,与椭圆相交于A B 、两点,求1F AB 的面积 29、(本题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分 已知数列{}n a 的前n 项和为n S ,向量()()()2*,,1,1N n n AB S p a CD p n =-=-∈,满足//AB CD ,(其中p 为正常数,且1p ≠)(1)求数列{}n a 的通项公式 (2)若87p =,数列{}n b 对任意*N n ∈,都有 ()12121321718n n n n n b a b a b a b a n n +--⎛⎫++++=-+⋅ ⎪⎝⎭成立,问数列{}n b 中是否存在最大项?若存在,最大项是第几项;若不存在,说明理由.2014学年徐汇区学业水平(春考)模拟卷高三数学学科(附加卷)(考试时间:40分钟,满分30分) 2014.12本大题共有3题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 1. (本题满分8分)本题共有2个小题,第1小题满分4分,第2小题满分4分.已知函数()()121,02x x f x a R a a+-+=∈>+.(1)判断函数()f x 的奇偶性,并说明理由; (2)当2a =时,求函数()f x 的值域.2. (本题满分8分)本题共有2个小题,第1小题满分4分,第2小题满分4分.如图,某游乐园的摩天轮最高点距离地面108米,直径是98米,匀速旋转一圈需要18分钟,如果某人从摩天轮的最低处登上摩天轮并开始计时.(1)当此人第四次距离地面692米时用了多少分钟?(2)当此人距离地面不低于59米时可以看到乐园的全貌,求摩天轮旋转一圈中有多少分钟可以看到乐园的全貌?3.(本题满分14分)本题共有3个小题,第2小题满分4分,第2小题6分,第3小题满分4分.已知数列1234,,,n A x x x x x ⋅⋅⋅:,满足{}()0,11,2,3,i x i n ∈=⋅⋅⋅.定义变换():T A T 将数列A 中原有的每个“1”都变成“0,1”,原有的每个“0”都变成“1,0”,顺序保持不变.若数列()()01:1,0,0,1,2,k k A A T A k +==⋅⋅⋅,规定k A 中连续两项都是1的数列(1,1)的个数为k a ,连续两项是1,0的有序数对()1,0的个数为k b . (1)求数列12,A A ;(2)分别写出1k a +与k b ,1k b +与k a 满足的关系式(只须写出结果); (3)求k a 的表达式.。

2015年上海春季高考数学试卷

2015年上海春季高考数学试卷

2015年上海市普通高等学校春季招生统一考试(暨上海市普通高中学业水平考试)数学试卷考生注意:1.本试卷两考合一,春季高考=学业水平考+附加题;春季高考,共36道试题,满分150分.考试时间130分钟(学业水平考,共29题,满分120分.考试时间90分钟;附加题共7题,满分30分.考试时间40分钟).2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚的填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.第I 卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.设全集{1,2,3}U =.若{1,2}A =,则U A =ð . 2.计算:1i i += (i 为虚数单位).3.函数sin(2)4y x π=+的最小正周期为 .4.计算:223lim 2n n n n→∞-=+ .5.以点(2,6)为圆心、1为半径的圆的标准方程为 .6.已知向量(1,3)a =r ,(,1)b m =-r.若a b ⊥r r ,则m = . 7.函数[]224,0,2y x x x =-+∈的值域是 .8.若线性方程组的增广矩阵为0201a b ⎛⎫ ⎪⎝⎭、解为21x y =⎧⎨=⎩,则a b += . 9.方程lg(21)lg 1x x ++=的解为 .10.在921x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项的值为 . 11.用数字1、2、3、4、5组成无重复数字的三位数,其中奇数的个数为 (结果用数值表示).12.已知点(1,0)A ,直线:1l x =-,两个动圆均过A 且与l 相切,其圆心分别为1C 、2C .若动点M满足22122C M C C C A =+uuuu r uuuu r uuu r,则M 的轨迹方程为 .二、选择题(本大题共有12题,满分36分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分. 13.若0a b <<,则下列不等式恒成立的是( ) (A )11a b>(B )a b ->(C )22a b > (D )33a b <14.函数()21y x x =≥的反函数为( )(A ))1y x =≥ (B ))1y x =≤- (C ))0y x =≥ (D ))0y x =≤ 15.不等式2301x x ->-的解集为( )(A )3,4⎛⎫-∞ ⎪⎝⎭(B )2,3⎛⎫-∞ ⎪⎝⎭ (C )()2,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭ (D )2,13⎛⎫ ⎪⎝⎭16.下列函数中,是奇函数且在()0,+∞单调递增的为 ( ) (A )2y x =(B )13y x =(C )1y x -= (D )12y x-=17.直线3450x y --=的倾斜角为 ( )(A )3arctan 4 (B )3arctan 4π- (C )4arctan 3 (D )4arctan 3π-18.底面半径为1、母线长为2的圆锥的体积是 ( )(A )2π(B (C )23π (D )319.以点()3,0-和()3,0为焦点、长轴长为8的椭圆方程为( )(A )2211625x y += (B )221167x y += (C )2212516x y += (D )221716x y +=20.在复平面上,满足1z z i -=+(i 为虚数单位)的复数z 所对应的点的轨迹为( ) (A )椭圆 (B )圆 (C )线段 (D )直线 21.若无穷等差数列{}n a 的首项10a >,公差0d <,{}n a 的前n 项和为n S ,则( ) (A )n S 单调递减 (B )n S 单调递增 (C )n S 有最大值 (D )n S 有最小值22.已知0a >,0b >.若4a b +=,则( ) (A )22a b +有最小值 (B(C )11a b+有最大值(D23.组合数()12**22,,m m m n n n C C C n m m N n N --++≥≥∈∈恒等于( )(A )2m n C + (B )12m n C ++ (C )1m n C + (D )11m n C ++ 24.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x x x b =++>,其中,a b R ∈.下列说法正确的是( )(A )对任意a ,1P 是2P 的子集;对任意b ,1Q 不是2Q 的子集 (B )对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 (C )存在a ,使得1P 不是2P 的子集;对任意b ,1Q 不是2Q 的子集 (D )存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集三、解答题(本大题共有8题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 25.(本题满分8分)如图,在正四棱柱1111ABCD A B C D -中,1AB =,1D B 和平面ABCD所成角的大小为1A26.(本题满分8分)已知a是实数,函数24()x axf xx++=是奇函数,求()f x在()0,+∞上的最小值及取到最小是时x的值.27.(本题满分8分)某船在海平面A处测得灯塔B在北偏东30︒方向,与A相距6.0海里.船由A向正北方向航行8.1海里达到C处,这时灯塔B与船相距多少海里(精确到0.1海里)?B在船的什么方向(精确到1︒)?28.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.已知点1F 、2F 依次为双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,126F F =,()10,B b -, ()20,B b .(1)若a =(3,4)d =-u r为方向向量的直线l 经过1B ,求2F 到l 的距离; (2)若在双曲线C 上存在点P ,使得122PB PB ⋅=-uuu r uuu r,求b 的取值范围.第II 卷一、选择题(本大题满分9分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得0分. 1.对于集合A B 、,“A B ≠”是“A B A B ⊂≠I U ”的( )(A)充分非必要条件 (B )必要非充分条件 (C)充要条件 (D )既非充分又非必要条件2.对于任意实数a 、b ,2()a b kab -≥均成立,则实数k 的取值范围是( ) (A) {}4,0- (B )[]4,0- (C) ](0-∞, (D )][(40-∞-∞U ,,+)3.已知数列{}n a 满足413n n n n a a a a ++++=+(n N *∈),那么( )(A) {}n a 是等差数列 (B ){}21n a -是等差数列 (C) {}2n a 是等差数列 (D ){}3n a 是等差数列二、填空题(本大题满分9分)本大题共有3小题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得0分.4.关于x 的实系数一元二次方程220x px ++=的两个虚数根为1z 、2z ,若1z 、2z 在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为 .5.已知圆心为O ,半径为1的圆上有三点A 、B 、C ,若7580OA OB OC ++=u u u r u u u r u u u r r,则BC =u u u r.6.函数()f x 与()g x 的图像拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A ,(1,1)B ,(0,0)O ,(1,1)C --,(0,1)D -五个点,若()f x 的图像关于原点对称的图形即为()g x 的图像,则其中一个函数的解析式可以为 .三、解答题(本大题满分12分)解答本题必须在答题纸相应编号的规定区域内写出必要的步骤. 7. 对于函数()f x 、()g x ,若存在函数()h x ,使得()()()f x g x h x =⋅,则称()f x 是()g x 的 “()h x 关联函数”。

上海市徐汇、宝山、杨浦2015年高考模拟考数学试卷(理)及答案

上海市徐汇、宝山、杨浦2015年高考模拟考数学试卷(理)及答案


y
3cos 4sin
(
为参数,


2
)的交点坐标是

8.甲、乙两人各进行一次射击,假设两人击中目标的概率分别是 0.6 和 0.7,且射击结果相互独立,则甲、乙
至多一人击中目标的概率为

B1
C1
1

2
a12 a22

a1i a2i

a1n a2n

A1
则平面 A1B1C 与平面 ABC 所成的二面角的大小为

11.执行如图所示的程序框图,输出的结果为
a
,二项式

mx2
1 4 x 的展
开式中
x3
项的系数为
a 2
,则常数
m


12.设 f (x) 是定义域为 R 的奇函数, g(x) 是定义域为 R 的偶函数,若函数
f (x) g(x) 的值域为[1,3) ,则函数 f (x) g(x) 的值域为
9.矩阵 3


a32

a3i

a3n

中每一行都构成公比为
2
的等比数列,第
n an2 ani ann
B
C
i
列各元素之和为
Si
,则
lim
n
Sn n2 2n


A
10.如图所示:在直三棱柱 ABC A1B1C1 中, AB BC , AB BC BB1 ,
点 O ,梯形的腰紧靠在抛物线上,两条腰的中点是梯形的腰、抛物线以及横梁
的焊接点 A, B ,抛物线与梯形下底的两个焊接点为 C, D .已知梯形的高是

上海市徐汇区2015届高三数学一模试题理(含解析)

上海市徐汇区2015届高三数学一模试题理(含解析)

上海市徐汇区2015届高考数学一模试卷(理科)一.填空题1.已知,则cos2θ=__________.2.若实数x,y满足xy=4,则x2+4y2的最小值为__________.3.设i是虚数单位,复数z满足(2+i)•z=5,则|z|=__________.4.函数f(x)=x2﹣2(x<0)的反函数f﹣1(x)=__________.5.若抛物线y2=2px的焦点与双曲线的右焦点重合,则该抛物线的准线方程为__________.6.如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是__________(结果用反三角函数值表示).7.设数列{a n}的前n项和为S n,若a1=1,S n﹣=0(n∈N*),则{a n}的通项公式为__________.8.若全集U=R,不等式的解集为A,则∁U A=__________.9.已知圆C:(x﹣1)2+(y﹣1)2=2,方向向量的直线l过点P(0,4),则圆C上的点到直线l的距离的最大值为__________.10.如图:在梯形ABCD中,AD∥BC且,AC与BD相交于O,设,,用,表示,则=__________.11.已知函数,将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)的图象上最高点到点(0,3)的距离的最小值为1,则φ的值为__________.12.已知函数,其中n∈N*,当n=1,2,3,…时,f n(x)的零点依次记作x1,x2,x3,…,则=__________.13.在平面直角坐标系中,对于函数y=f(x)的图象上不重合的两点A,B,若A,B关于原点对称,则称点对(A,B)是函数y=f(x)的一组“奇点对”(规定(A,B)与(B,A)是相同的“奇点对”),函数的“奇点对”的组数是__________.14.设集合A={(x1,x2,x3,…,x10)|x i∈{﹣1,0,1},i=1,2,3,…,10},则集合A 中满足条件“1≤|x1|+|x2|+|x3|+…+|x10|≤9”的元素个数为__________.二.选择题15.“”是“实系数一元二次方程x2+x+a=0有虚数根”的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件;16.已知m和n是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中,一定能推出m⊥β的是( )A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且n∥β;17.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n类(n∈N*),分别编号为1,2,…,n,买家共有m名(m∈N*,m<n),分别编号为1,2,…,m.若a ij=1≤i≤m,1≤j≤n,则同时购买第1类和第2类商品的人数是( )A.a11+a12+…+a1m+a21+a22+…+a2mB.a11+a21+…+a m1+a12+a22+…+a m2C.a11a12+a21a22+…+a m1a m2D.a11a21+a12a22+…+a1m a2m18.对于方程为的曲线C给出以下三个命题:(1)曲线C关于原点中心对称;(2)曲线C关于x轴对称,也关于y轴对称,且x轴和y轴是曲线C仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点M,N,P,Q,都在曲线C上,则四边形MNPQ 每一条边的边长都大于2;其中正确的命题是( )A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3);三.解答题19.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).20.已知函数f(x)=2x+k•2﹣x(k∈R).(1)若函数f(x)为奇函数,求k的值;(2)若函数f(x)在(﹣∞,2]上为减函数,求k的取值范围.21.如图所示,某传动装置由两个陀螺T1,T2组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且T1,T2的轴相互垂直,它们相接触的直线与T2的轴所成角θ=arctan.若陀螺T2中圆锥的底面半径为r(r>0).(1)求陀螺T2的体积;(2)当陀螺T2转动一圈时,陀螺T1中圆锥底面圆周上一点P转动到点P1,求P与P1之间的距离.22.已知椭圆γ:=1(常数a>1)的左顶点R,点A(a,1),B(﹣a,1),O为坐标原点;(1)若P是椭圆γ上任意一点,,求m2+n2的值;(2)设Q是椭圆γ上任意一点,S(3a,0),求的取值范围;(3)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足k OM•k ON=k OA•k OB,试探究△OMN 的面积是否为定值,说明理由.23.已知有穷数列{a n}各项均不相等,将{a n}的项从大到小重新排序后相应的项数构成新数列{p n},称{p n}为{a n}的“序数列”,例如数列:a1,a2,a3满足a1>a3>a2,则其序数列{p n}为1,3,2;(1)写出公差为d(d≠0)的等差数列a1,a2,…,a n的序数列{p n};(2)若项数不少于5项的有穷数列{b n}、{c n}的通项公式分别是(n∈N*),(n∈N*),且{b n}的序数列与{c n}的序数列相同,求实数t的取值范围;(3)若有穷数列{d n}满足d1=1,(n∈N*),且{d2n﹣1}的序数列单调递减,{d2n}的序数列单调递增,求数列{d n}的通项公式.上海市徐汇区2015届高考数学一模试卷(理科)一.填空题1.已知,则cos2θ=.考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式展开后代入已知即可求值.解答:解:∵,∴cos2θ=1﹣2sin2θ=1﹣2×=,故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基础题.2.若实数x,y满足xy=4,则x2+4y2的最小值为16.考点:基本不等式.专题:不等式的解法及应用.分析:由已知可得y=,代入要求的式子,由基本不等式可得.解答:解:∵xy=4,∴y=∴x2+4y2=x2+≥2=16,当且仅当x2=,即x=±2时取等号,故答案为:16点评:本题考查基本不等式,属基础题.3.设i是虚数单位,复数z满足(2+i)•z=5,则|z|=.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把已知的等式变形,然后利用复数代数形式的乘除运算化简,代入复数的模得答案.解答:解:由(2+i)•z=5,得,∴|z|=.故答案为:.点评:本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.4.函数f(x)=x2﹣2(x<0)的反函数f﹣1(x)=(x>﹣2).考点:反函数.专题:函数的性质及应用.分析:由y=x2﹣2(x<0)解得x=﹣,把x与y互换即可得出.解答:解:由y=x2﹣2(x<0)解得x=﹣,把x与y互换可得y=f﹣1(x)=﹣(x>﹣2).故答案为:(x>﹣2).点评:本题考查了反函数的求法,属于基础题.5.若抛物线y2=2px的焦点与双曲线的右焦点重合,则该抛物线的准线方程为x=﹣2.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的右焦点为F(2,0),该点也是抛物线的焦点,可得=2,即可得到结果.解答:解:∵双曲线的标准形式为:,∴c=2,双曲线的右焦点为F(2,0),∵抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,∴=2,可得p=4.故答案为:x=﹣2点评:本题给出抛物线与双曲线右焦点重合,求抛物线的焦参数的值,着重考查了双曲线的标准方程和抛物线简单几何性质等知识点,属于基础题.6.如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是arctan(结果用反三角函数值表示).考点:异面直线及其所成的角.专题:计算题.分析:先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在直角三角形中求出正切值,再用反三角函数值表示出这个角即可.解答:解:先画出图形将AD平移到BC,则∠D1BC为异面直线BD1与AD所成角,BC=2,D1C=,tan∠D1BC=,∴∠D1BC=arctan,故答案为arctan.点评:本题主要考查了异面直线及其所成的角,以及解三角形的应用,属于基础题.7.设数列{a n}的前n项和为S n,若a1=1,S n﹣=0(n∈N*),则{a n}的通项公式为a n=.考点:数列的求和.专题:等差数列与等比数列.分析:当n≥2时,a n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.解答:解:当n≥2时,a n=S n﹣S n﹣1=a n,化为a n+1=3a n.a1﹣a2=0,解得a2=2.∴当n≥2时,数列{a n}为等比数列,∴.∴{a n}的通项公式为a n=.故答案为:a n=.点评:本题考查了递推式的应用、等比数列的通项公式,属于基础题.8.若全集U=R,不等式的解集为A,则∁U A=[﹣1,0].考点:其他不等式的解法;补集及其运算.专题:不等式的解法及应用.分析:由题意可得(x+1)•﹣(﹣1)>1,即>﹣1,求得A,可得∁U A.解答:解:由不等式,可得(x+1)•﹣(﹣1)>1,即 1+>0,即>﹣1,∴x>0,或 x<﹣1,故A=(0,+∞)∪(﹣∞,﹣1),∴∁U A=[﹣1,0],故答案为:[﹣1,0].点评:本题主要考查行列式的运算,解分式不等式,集合的补集,体现了转化的数学思想,属于基础题.9.已知圆C:(x﹣1)2+(y﹣1)2=2,方向向量的直线l过点P(0,4),则圆C上的点到直线l的距离的最大值为.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:确定直线l的方程,求出圆心C到直线的距离,再加上半径,即为C上各点到l的距离的最大值.解答:解:由题意,方向向量的直线l过点P(0,4),方程为x﹣y+4=0 圆心C到直线的距离为d==2∵圆C:(x﹣1)2+(y﹣1)2=2的半径为∴C上各点到l的距离的最大值为2+=.故答案为:.点评:本题考查直线与圆的位置关系,考查学生的计算能力,属于基础题.10.如图:在梯形ABCD中,AD∥BC且,AC与BD相交于O,设,,用,表示,则=.考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:因为在梯形ABCD中,AD∥BC且,AC与BD相交于O,设,,过D作DE∥AB,得到DE是△BDC的中线,利用中线的性质可得.解答:解:因为在梯形ABCD中,AD∥BC且,AC与BD相交于O,设,,过D作DE∥AB,则E是BC的中点,,所以﹣2,所以=.故答案为:.点评:本题考查了向量的三角形法则、共线的性质以及三角形中线的向量表示,注意运算.11.已知函数,将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)的图象上最高点到点(0,3)的距离的最小值为1,则φ的值为.考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律可得g(x)=2sin(2x+2φ+),设g(x)的对称轴x=x0,由条件求得x0=0,可得g(0)=2,即2sin(2φ+)=2,从而求得φ 的值.解答:解:把函数的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)=2sin[2(x+φ)+]=2sin(2x+2φ+)的图象,再根据y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,设g(x)的对称轴x=x0,则最高点的坐标为(x0,2),它与点(0,3)的距离的最小值为1,即=1,求得x0=0,可得g(0)=2,即2sin(2φ+)=2,∴φ=,故答案为:.点评:本题主要考查向量的数量积的坐标运算,三角恒等变换,图象的平移变换,三角函数的单调性及相关的运算问题,属于中档题.12.已知函数,其中n∈N*,当n=1,2,3,…时,f n(x)的零点依次记作x1,x2,x3,…,则=﹣3.考点:极限及其运算.专题:导数的综合应用.分析:利用等比数列的前n项和公式可得:函数f n(x)=+,令f n (x)=0,解得x n=﹣1.再利用极限的运算法则即可得出.解答:解:函数=+=+,令f n(x)=0,解得x n=﹣1.∴=﹣2×1﹣1=﹣3.故答案为:﹣3.点评:本题考查了等比数列的前n项和公式、数列极限的运算法则,属于基础题.13.在平面直角坐标系中,对于函数y=f(x)的图象上不重合的两点A,B,若A,B关于原点对称,则称点对(A,B)是函数y=f(x)的一组“奇点对”(规定(A,B)与(B,A)是相同的“奇点对”),函数的“奇点对”的组数是3.考点:分段函数的应用.专题:函数的性质及应用.分析:根据“奇点对”的定义可知,只需要利用图象,作出函数f(x)=﹣x+4,x>0关于原点对称的图象,利用对称图象在x<0上两个图象的交点个数,即为“奇点对”的个数.解答:解:由题意知函数f(x)=sin x,x<0关于原点对称的图象为﹣y=﹣sin x,即y=sin x,x>0在x>0上作出两个函数的图象如图,由图象可知两个函数在x>0上的交点个数有3个,∴函数f(x)的“奇点对”有3组,故答案为:3.点评:本题主要考查新定义题目,读懂题意,利用数形结合的思想是解决本题的关键.14.设集合A={(x1,x2,x3,…,x10)|x i∈{﹣1,0,1},i=1,2,3,…,10},则集合A 中满足条件“1≤|x1|+|x2|+|x3|+…+|x10|≤9”的元素个数为310﹣210﹣1.考点:集合的表示法;元素与集合关系的判断.专题:计算题;集合;排列组合.分析:由排列组合的知识知,集合A中共有310个元素,其中|x1|+|x2|+|x3|+…+|x10|=0的只有一个元素,|x1|+|x2|+|x3|+…+|x10|=10的有210个元素;从而求得.解答:解:集合A中共有310个元素;其中|x1|+|x2|+|x3|+…+|x10|=0的只有一个元素,|x1|+|x2|+|x3|+…+|x10|=10的有210个元素;故满足条件“1≤|x1|+|x2|+|x3|+…+|x10|≤9”的元素个数为310﹣210﹣1.故答案为:310﹣210﹣1.点评:本题考查了排列组合的应用及集合中元素的特征应用,属于中档题.二.选择题15.“”是“实系数一元二次方程x2+x+a=0有虚数根”的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件;考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑;坐标系和参数方程.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:若实系数一元二次方程x2+x+a=0有虚数根,则判别式△=1﹣4a<0,解得a>,则“”是“实系数一元二次方程x2+x+a=0有虚数根”的必要不充分条件,故选:B.点评:本题主要考查充分条件和必要条件的判断,根据一元二次方程根与判别式△之间的关系是解决本题的关键.16.已知m和n是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中,一定能推出m⊥β的是( )A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且n∥β;考点:直线与平面垂直的判定.专题:阅读型;空间位置关系与距离.分析:根据A,B,C,D所给的条件,分别进行判断,能够得到正确结果.解答:解:α⊥β,且m⊂α⇒m⊂β,或m∥β,或m与β相交,故A不成立;α⊥β,且m∥α⇒m⊂β,或m∥β,或m与β相交,故B不成立;m∥n,且n⊥β⇒m⊥β,故C成立;由m⊥n,且n∥β,知m⊥β不成立,故D不正确.故选:C.点评:本题考查直线与平面的位置关系的判断,解题时要认真审题,仔细解答,属于基础题.17.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n类(n∈N*),分别编号为1,2,…,n,买家共有m名(m∈N*,m<n),分别编号为1,2,…,m.若a ij=1≤i≤m,1≤j≤n,则同时购买第1类和第2类商品的人数是( )A.a11+a12+…+a1m+a21+a22+…+a2mB.a11+a21+…+a m1+a12+a22+…+a m2C.a11a12+a21a22+…+a m1a m2D.a11a21+a12a22+…+a1m a2m考点:进行简单的合情推理.专题:推理和证明.分析:由已知中a ij=1≤i≤m,1≤j≤n,可知:a i1a i2表示第i名买家同时购买第1类和第2类商品,进而得到答案.解答:解:∵a ij=1≤i≤m,1≤j≤n,∴a i1a i2表示第i名买家同时购买第1类和第2类商品,∴同时购买第1类和第2类商品的人数是a11a12+a21a22+…+a m1a m2故选:C点评:本题考查的知识点是进行简单的合情推理,其中正确理解a ij=1≤i≤m,1≤j≤n的含义是解答的关键.18.对于方程为的曲线C给出以下三个命题:(1)曲线C关于原点中心对称;(2)曲线C关于x轴对称,也关于y轴对称,且x轴和y轴是曲线C仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点M,N,P,Q,都在曲线C上,则四边形MNPQ 每一条边的边长都大于2;其中正确的命题是( )A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3);考点:命题的真假判断与应用;曲线与方程.专题:作图题;简易逻辑.分析:分x>0,y>0,x<0,y>0,x<0,y<0,x>0,y<0四类讨论,作出的图象,再分别对选项(1)(2)(3)判断即可.解答:解:∵,∴当x>0,y>0时,⇒+=1,解得y==1+;同理可得,当x<0,y>0时,⇒﹣+=1,整理得:y=1﹣;当x<0,y<0时,⇒﹣﹣=1,整理得:y=﹣1+;x>0,y<0时,⇒﹣=1,整理得:y=﹣1﹣;作出图象如下:由图可知,曲线C关于原点成中心对称,故(1)正确;曲线C关于x轴对称,也关于y轴对称,也关于直线y=x与y=﹣x对称,故(2)错误;由于在第一、第二、第三、第四象限的点M,N,P,Q,都在曲线C上,由图可知,四边形MNPQ每一条边的边长都大于2,故(3)正确;综上所述,(1)(3)正确.故选:B.点评:本题考查命题的真假判断与应用,着重考查曲线与方程的理解与应用,考查分类讨论思想、等价转化思想与数形结合思想的综合运用,属于难题.三.解答题19.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).考点:由y=Asin(ωx+φ)的部分图象确定其解析式;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得 f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,再由θ∈(0,),求得sinθ 的值,从而求得f(﹣θ)的值.解答:解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A•=,∴A=.(2)由(1)可得 f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.点评:本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题.20.已知函数f(x)=2x+k•2﹣x(k∈R).(1)若函数f(x)为奇函数,求k的值;(2)若函数f(x)在(﹣∞,2]上为减函数,求k的取值范围.考点:函数奇偶性的性质;函数单调性的性质.专题:函数的性质及应用.分析:(1)根据奇函数的概念,f(x)+f(﹣x)=0,解答即可;(2)先讨论K的取值范围,再求取值范围解答:解:(1)f(x)+f(﹣x)=(k+1)(2x+2﹣x)=0对一切的x∈R成立,所以k=﹣1.(2)若k≤0,则函数f(x)在(﹣∞,2]单调递增(舍),当k>0时,令t=2x∈(0,4],则函数在(0,4]上单调递减,所以,即k≥16.点评:本题主要考查奇函数的性质,单调性的定义.21.如图所示,某传动装置由两个陀螺T1,T2组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且T1,T2的轴相互垂直,它们相接触的直线与T2的轴所成角θ=arctan.若陀螺T2中圆锥的底面半径为r(r>0).(1)求陀螺T2的体积;(2)当陀螺T2转动一圈时,陀螺T1中圆锥底面圆周上一点P转动到点P1,求P与P1之间的距离.考点:旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:(1)设陀螺T2圆锥的高为h,可得,进而可得陀螺T2圆柱的底面半径和高为,进而求出陀螺T2的体积;(2)设陀螺T1圆锥底面圆心为O,可得,进而利用弧长公式,求出圆心角,进而可得P与P1之间的距离.解答:解:(1)设陀螺T2圆锥的高为h,则,即’得陀螺T2圆柱的底面半径和高为,(2)设陀螺T1圆锥底面圆心为O,则,得在△POP1中,点评:本题考查的知识点是旋转体的体积公式,弧长公式,是三角函数与空间几何的综合应用,难度中档.22.已知椭圆γ:=1(常数a>1)的左顶点R,点A(a,1),B(﹣a,1),O为坐标原点;(1)若P是椭圆γ上任意一点,,求m2+n2的值;(2)设Q是椭圆γ上任意一点,S(3a,0),求的取值范围;(3)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足k OM•k ON=k OA•k OB,试探究△OMN 的面积是否为定值,说明理由.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)根据A与B坐标化简已知等式,确定出P坐标,由P在椭圆上列出关系式,求出所求式子的值即可;(2)设Q(x,y),利用平面向量数量积运算法则表示出•,配方后求出•的最大值与最小值,即可确定出•的范围;(3)根据题意,利用斜率公式得到=﹣,两边平方,整理得到x12+x22=a2,表示出三角形OMN的面积,整理后把x12+x22=a2代入得到结果为定值.解答:解:(1)∵点A(a,1),B(﹣a,1),O为坐标原点,∴=m+n=(ma﹣na,m+n),即P(ma﹣na,m+n),把P坐标代入椭圆方程得:(m﹣n)2+(m+n)2=1,即m2+n2=;(2)设Q(x,y),则•=(3a﹣x,﹣y)•(﹣a﹣x,﹣y)=(x﹣3a)(x+a)+y2=(x﹣3a)(x+a)+1﹣=x2﹣2ax+1﹣3a2=(x﹣)2﹣(﹣a≤x≤a),由a>1,得>a,∴当x=﹣a时,•的最大值为0;当x=a时,•的最小值为﹣4a2,则•的范围为[﹣4a2,0];(3)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足k OM•k ON=k OA•k OB,由条件得:=﹣,平方得:x12x22=a4y12y22=(a2﹣x12)(a2﹣x22),即x12+x22=a2,∴S△OMN=|x1y2﹣x2y1|====,则△OMN的面积为定值.点评:此题考查了椭圆的简单性质,二次函数的性质,斜率公式,以及平面向量的数量积运算,熟练掌握运算法则是解本题的关键.23.已知有穷数列{a n}各项均不相等,将{a n}的项从大到小重新排序后相应的项数构成新数列{p n},称{p n}为{a n}的“序数列”,例如数列:a1,a2,a3满足a1>a3>a2,则其序数列{p n}为1,3,2;(1)写出公差为d(d≠0)的等差数列a1,a2,…,a n的序数列{p n};(2)若项数不少于5项的有穷数列{b n}、{c n}的通项公式分别是(n∈N*),(n∈N*),且{b n}的序数列与{c n}的序数列相同,求实数t的取值范围;(3)若有穷数列{d n}满足d1=1,(n∈N*),且{d2n﹣1}的序数列单调递减,{d2n}的序数列单调递增,求数列{d n}的通项公式.考点:等差数列的性质;等比数列的性质.专题:等差数列与等比数列.分析:(1)由新定义当d<0时,序数列为1,2,3,…,n;当d>0时,序数列为n,n﹣1,n﹣2,…,3,2,1;(2)由题意可得b2>b3>b1>b4>…>b n,可得序数列为2,3,1,4,…,n,进而可得2<<,解不等式可得;(3)由{d2n﹣1}的序数列单调递减可得d2n﹣d2n﹣1==,同理可得d2n+1﹣d2n=﹣=,进而可得d n+1﹣d n=,可得d n=d1+(d2﹣d1)+(d3﹣d2)+…+(d n﹣d n﹣1)=1+﹣+…+=1+•=+•,既得答案.解答:解:(1)由题意,当d<0时,序数列为1,2,3,…,n;当d>0时,序数列为n,n﹣1,n﹣2,…,3,2,1;(2)∵,∴b n+1﹣b n=,当n=1时,易得b2>b1,当n≥2时,易得b n+1<b n,又∵b1=,b3=3•()3,b4=4•()4,b4<b1<b3,即b2>b3>b1>b4>…>b n,故数列{b n}的序数列为2,3,1,4,…,n,∴对于数列{c n}有2<<,解得4<t<5;(3)∵{d2n﹣1}的序数列单调递减,∴数列{d2n﹣1}单调递增,∴d2n+1﹣d2n﹣1>0,∴(d2n+1﹣d2n)+(d2n﹣d2n﹣1)>0,而,∴|d2n+1﹣d2n|<|d2n﹣d2n﹣1|,∴d2n﹣d2n﹣1>0,∴d2n﹣d2n﹣1==,①∵{d2n}的序数列单调递增,∴数列{d2n}单调递减,同理可得d2n+1﹣d2n<0,∴d2n+1﹣d2n=﹣=,②由①②可得d n+1﹣d n=,∴d n=d1+(d2﹣d1)+(d3﹣d2)+…+(d n﹣d n﹣1)=1+﹣+…+=1+•=+•即数列{d n}的通项公式为d n=+•点评:本题考查等差数列和等比数列的性质,涉及新定义和不等式的性质,属中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年上海市春季高考模拟试卷六一、填空题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.) 1、不等式304xx -≤+的解集是___________. 2、在ABC ∆中,角,,C A B 满足sin :sin :sin 1:2:7A B C =,则最大的角等于________. 3、若复数z 满足()2z i z =-(i 是虚数单位),则=z ____________. 4、已知全集U R =,集合{}{}0,,13,A xx a x RBx x x R =+≥∈=-≤∈,若()[]2,4U C A B =-,则实数a 的取值范围是___________. 5、从甲、乙、丙、丁四个人中任选两名志愿者,则甲被选中的概率是__________. 6、设直线1:20l ax y +=的方向向量是1d ,直线()2:140l x a y +++=的法向量是2n ,若1d 与2n 平行,则a =_________.7、若圆锥的侧面积为3π,底面积为π,则该圆锥的体积为__________. 8、若不等式101x x a>-+对任意x R ∈恒成立,则实数a 的取值范围是________.9、若抛物线22y px =的焦点与双曲线222x y -=的右焦点重合,则p =_________.10、设函数()()[)()36log 1,6,3,,6x x x f x x -⎧-+∈+∞⎪=⎨∈-∞⎪⎩的反函数为()1f x -,若119f a -⎛⎫= ⎪⎝⎭,则()4f a +=__________. 11、设()8,a Rx a ∈-的二项展开式中含5x 项的系数为7,则()2l i m nn a a a →∞+++=_________.12、已知定义域为R 的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程()()20f x bf x c ++=有3个不同的实数根123,,x x x ,则222123x x x ++=____________.二、选择题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)13、设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2- 14、已知z 是复数,21,2z i i+=+-则z =( ) A . 1i - B . 2i + C . 12i - D . 3i + 15、不等式11xx <+的解集是( ) A . {}10x x -<< B . {},1x x R x ∈≠-且 C . R D . {}01x x << 16.已知,,i j k 表示共面的三个单位向量, i j ⊥,那么()()i k j k +⋅+的取值范围是( ) A . []3,3- B . []2,2- C . 21,21⎡⎤-+⎣⎦ D . 12,12⎡⎤-+⎣⎦17、已知函数()sin(3)f x x ϕ=+的图象关于直线23x π=对称,则ϕ的最小正值等于( ) A . 8π B . 4π C . 3π D . 2π18、已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是( ).A m αβα⊥⊂且 .B m αβα⊥且 .C m n n β⊥且 .D m n αβ⊥且19、5.甲、乙两个小组,甲组有3名男生2名女生,乙组有3名女生2名男生,从甲、乙两组中各选出3名同学,则选出的6人中恰有1名男生的概率等于( )A . 3100B . 4100C . 5100D . 610020、已知直线x y a +=与圆224x y +=交于,B A 两点,且OA OB OA OB +=-(其中O为坐标原点),则实数a 等于( ).A 2 .B 2- .C 22-或 .D 66-或21、已知曲线210x y ++=与双曲线2221(0)y x b b-=>的渐近线相切,则此双曲线的焦距等于( )A . 22B . 23C . 4D . 2522、对于定义在实数集R 上的函数()f x ,若()f x 与(1)f x +都是偶函数,则( ) A .()f x 是奇函数 B .(1)f x -是奇函数 C .(2)f x +是偶函数 D .(2)f x +是奇函数23、在直三棱柱111ABC A B C -中,12AA =,二面角11B AA C --的大小等于060,B 到面1AC 的距离等于3,1C 到面1AB 的距离等于23,则直线1BC 与直线1AB 所成角的正切值等于( ) A .7 B . 6 C . 5 D . 224、对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.给出下列4个函数:①()sin 2x f x π⎛⎫=⎪⎝⎭;②()221f x x =-;③()12x f x =-;④()()2log 22f x x =-. 其中存在唯一“可等域区间”的“可等域函数”为( ) .A ①②③ .B ②③ .C ①③ .D ②③④ 三、解答题25、(本题满分7分)设{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,试判断集合A 与集合B 的关系; (2)若B A ⊆,求实数a 组成的集合C .26、(本题满分7分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,向量()2s i n ,2c o s m B B = ,()3cos ,cos n B B =-,且1m n ⋅=-.(1)求角B ;(2)若2b =,求ABC ∆面积的最大值.27、(本题满分8分) 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,已知2,22PA AB AD ===,求 (1)PCD ∆的面积;(2)异面直线BC 与AE 所成角的大小. 28、(本题满分13分) 在数列{}n a 中,112a =-,()*1212,n n a a n n n N -=--≥∈,设n n b a n =+. (1)证明:数列{}n b 是等比数列; (2)求数列{}n nb 的前n 项和n T ; 29、(本题满分12分)抛物线()2:20C y px p =>的焦点恰是椭圆22143x y +=的一个焦点,过点,02p F ⎛⎫⎪⎝⎭的直线与抛物线C 交于点,A B .(1)求抛物线C 的方程;(2)O 是坐标原点,求AOB ∆的面积的最小值; (3)O 是坐标原点,证明:OA OB ⋅为定值.PA BCDE30、(本题满分13分)设a 是实数,函数()42x xf x a=+-()x R ∈(1)求证:函数()f x 不是奇函数;(2)当0a ≤时,求满足()2f x a >的x 取值范围;(3)求函数()y f x =的值域(a 表示). 31、(本题满分18分)设()(),0P a b a b ⋅≠、(),2R a 为坐标平面xoy 上的点,直线OR (O 为坐标原点)与抛物线24y x ab=交于点Q (异于O ). (1)若对任意0ab ≠,点Q 在抛物线()210y mx m =+≠上,试问当m 为何值时,点P 在某一圆上,并求出该圆方程M ;(2)若点()(,)0P a b ab ≠在椭圆2241x y +=上,试问:点Q 能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;(3)对(1)中点P 所在圆方程M ,设A 、B 是圆M 上两点,且满足1OA OB ⋅=,试问:是否存在一个定圆S ,使直线AB 恒与圆S 相切.2015年春季高考模拟试卷2015年春季高考模拟试卷六参考答案1、()[),43,-∞-+∞;2、23π;3、2;4、(),4-∞-;5、12;6、23-;7、223π;8、()2,2-;9、4;10、2-;11、13-;12、5; 13-17、CABDD 18-24CACDC AB25、(1)由28150x x -+=得3x =或5x =,所以{}3,5A =.若15a =,得1105x -=,即5x =,所以{}5B =,故B A Ü. (2)因为{}3,5A =,又B A ⊆.①当B =∅时,则方程10ax -=无解,则0a =; ②当B ≠∅时,则0a ≠,由10ax -=,得1x a =,所以13a =或15a =,即13a =或15a = 故集合11035C ⎧⎫=⎨⎬⎩⎭,,.26、(1)【3π】(2)【 3】 27、(1)【23】(2)【 4π】28、(1)略(2)【222n n n T +=-】29、(1)【24y x =】(2)【2】(3)【3-】 30、(略)31、解:(1)222,4y x a aQ b b y xab ⎧=⎪⎪⎛⎫⇒⎨⎪⎝⎭⎪=⎪⎩, 代入22211a y mx m b b ⎛⎫=+∴=+ ⎪⎝⎭2220ma b b ⇒+-=当1m =时,点 (,)P a b 在圆:M ()2211x y +-=上(2)(),P a b 在椭圆2241x y +=上,即()2221a b += ∴可设1cos ,sin 2a b θθ==又2,a Q b b ⎛⎫ ⎪⎝⎭,于是2Q Q a x b y b ⎧=⎪⎪∴⎨⎪=⎪⎩222222242cos sin sin Q Q a y mx m m b b θθθ⎛⎫⎛⎫⎛⎫⎛⎫⇒-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 222164cos 16sin sin m θθθ=-=(令4m =)∴点Q 在双曲线22416y x -=上 (3)圆M 的方程为()2211x y +-=设()()1122:,,,,,AB x ky A x y B x y λ=+由1OA OB ⋅=()()2222222211221122121111221x y x y y y y y y y +⋅+=--+⋅--+=⋅=⇒1214y y = 又()22111x y x ky ⎧+-=⎪⎨=+⎪⎩ ()()2221210k y k y λλ⇒++-+=,21222111421y y k k λλ∴==⇒=++又原点O 到直线AB 距离21d k λ=+ 12d ∴=,即原点O 到直线AB 的距离恒为12∴直线AB 恒与圆221:4S x y +=相切.。

相关文档
最新文档