2021届上海市建平中学高三上学期9月月考数学试题

合集下载

上海市2021高三数学上学期9月月考试题(含解析)

上海市2021高三数学上学期9月月考试题(含解析)

高三数学上学期9月月考试题(含解析)一、填空题1.方程4260x x --=的解为______. 【答案】2log 3x = 【解析】 【分析】换元20x t =>,可得出260t t --=,解此方程,求出正数t 的值,即可得出x 的值. 【详解】令20x t =>,由4260x x --=,可得260t t --=,解得3t =或2t =-(舍去). 即23x =,解得2log 3x =. 故答案为:2log 3x =.【点睛】本题考查指数方程的求解,同时也考查了指数式与对数式的互化,解题的关键就是利用换元法将方程变为二次方程求解,考查运算求解能力,属于中等题. 2.设复数11z i =+,()22z xi x =+∈R ,若12z z ⋅∈R ,则x 的值等于______. 【答案】2- 【解析】 【分析】利用复数的乘法将复数12z z ⋅表示为一般形式,结合题意得出其虚部为零,由此可解出实数x 的值. 【详解】11z i =+,()22z xi x =+∈R ,()()()()121222z z i xi x x i ∴⋅=++=-++,12z z R ⋅∈,20x ∴+=,解得2x =-,因此,2x =-.故答案为:2-.【点睛】本题考查复数乘法运算以及复数的概念,考查计算能力,属于基础题.3.函数()2f x =______. 【答案】[)0,1 【解析】【分析】根据被开方数非负、分母不为零、真数大于零列出关于x 的不等式组,解出即可得出函数()y f x =的定义域.【详解】由题意可得()10lg 310lg1310x x x ->⎧⎪+≥=⎨⎪+>⎩,即10311x x ->⎧⎨+≥⎩,解得01x ≤<.因此,函数()y f x =的定义域为[)0,1. 故答案为:[)0,1.【点睛】本题考查具体函数的定义域的求解,解题时要根据函数解析式有意义列出关于自变量的不等式组进行求解,考查运算求解能力,属于中等题. 4.已知线性方程组的增广矩阵为103210⎛⎫⎪⎝⎭,则其对应的方程组解为______.【答案】36x y =⎧⎨=-⎩【解析】 【分析】根据增广矩阵得出二元一次方程组,解出即可.【详解】由题意可知,线性方程组为320x x y =⎧⎨+=⎩,解得36x y =⎧⎨=-⎩.因此,该线性方程组的解为36x y =⎧⎨=-⎩.故答案为:36x y =⎧⎨=-⎩.【点睛】本题考查线性方程组的求解,同时也考查了增广矩阵定义的应用,根据增广矩阵得出线性方程组是解题的关键,考查运算求解能力,属于基础题. 5.在二项式252()x x-展开式中,x 的一次项系数为 .(用数字作答)【答案】80- 【解析】试题分析:二项式的通项251031552()()(2)r rr r r r r T C x C x x--+=-=-,令1031,3r r -==,此时x 的一次项系数为335(2)80C -=-.考点:二项式定理.6.已知双曲线()22210k x y k -=>的一条渐近线的法向量是()1,2,那么________.【答案】【解析】【详解】由题意双曲线()22210k x y k -=>的一条渐近线的法向量是()1,2,可得该渐近线的斜率为12-,由于该双曲线的渐近线方程为y kx =±, 故12k =, 故答案为12. 7.圆锥的底面半径为3,高为1,则圆锥的侧面积为 . 【答案】【解析】试题分析:那么圆锥的母线,所以侧面积为考点:圆锥的侧面积8.设无穷等比数列{}n a 的公比12q =-,11a =,则()2462lim n n a a a a →∞++++=______.【答案】23- 【解析】 【分析】求出2a 的值,然后利用等比数列的求和公式求出2462n a a a a ++++,由此可计算出所求极限值.【详解】由等比数列的定义可知2112a a q ==-, 222214n n a q a +==,所以,数列{}2n a 是以212a =-为首项,以14为公比的等比数列,24621112124113414n n n a a a a ⎛⎫-- ⎪⎛⎫⎝⎭∴++++==-- ⎪⎝⎭-.因此,()2462212lim lim 1343n n n n a a a a →∞→∞⎡⎤⎛⎫++++=--=- ⎪⎢⎥⎝⎭⎣⎦.故答案为:23-. 【点睛】本题考查数列极限的计算,同时也考查了等比数列求和,解题时要熟悉几种常见的数列极限的计算,考查计算能力,属于中等题.9.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C上且AK =,则AFK △的面积为__________.【答案】8 【解析】抛物线C :28y x =的焦点为()2,0F ,准线与x 轴的交点为()2,0K -设A 点坐标为28y y ,⎛⎫⎪⎝⎭,则有22222222288y y y y ⎛⎫⎛⎫⎛⎫ ⎪++=⨯-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得216y = AFK ∴的面积为14482⨯⨯=10.现有10个数,它们能构成一个以1为首项,2-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是______. 【答案】710【解析】 【分析】先求出这10个数的值,找出其中小于8的数的个数,然后利用古典概型的概率公式可计算出所求事件的概率.【详解】由题意知,这10个数分别为1、2-、4、8-、16、32-、64、128-、256、512-,其中小于8的数为1、2-、4、8-、32-、128-、512-,共7个,因此,从这10个数中随机抽取一个数,则它小于8的概率是710. 故答案为:710. 【点睛】本题考查利用古典概型的概率的计算,同时也考查了等比数列定义的应用,解题的关键就是求出题中所涉及的数,考查计算能力,属于中等题.11.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,110(){2011ax x f x bx x x +-≤<=+≤≤+,,,,其中a b R ∈,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 . 【答案】-10 【解析】因为()f x 是定义在R 上且周期为2的函数,所以31()()22f f =-,且(1)(1)f f -=,故11()()22f f =-,从而121211212b a +=-++,322a b +=-①.由(1)(1)f f -=,得212b a +-+=,故2b a =-. ② 由①②得2a =,4b =-,从而310a b +=-.点睛:分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.12.定义函数348122(){1()222x x f x x f x --≤≤=>,则函数()()6g x xf x =-在区间内的所有零点的和为 . 【答案】【解析】当时,,,可知当时,;当时,,则,,当时,;当时,,则,,当时,;所以()()6g x xf x =-在区间内的所有零点的和为.考点:函数的零点. 二、选择题13.“tan 1x =-”是“()24x k k ππ=-+∈Z ”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B 【解析】 【分析】解方程tan 1x =-,得出x 的值,然后根据集合的包含关系可判断出“tan 1x =-”是“()24x k k ππ=-+∈Z ”的必要非充分条件关系.【详解】解方程tan 1x =-,得()4x k k Z ππ=-+∈,因此,“tan 1x =-”是“()24x k k ππ=-+∈Z ”的必要非充分条件.故选:B.【点睛】本题考查必要不充分条件的判断,一般转化为两集合的包含关系来进行判断,也可以根据两条件的逻辑性关系进行判断,考查推理能力,属于基础题.14.函数1(0)y x =<的反函数是 ( )A. 0)y x =<B. 0)y x =<C. 2)y x =>D. 2)y x =>【答案】D 【解析】【详解】因为1(0)y x =<,所以2y >,可得2)x y =>,,x y互换可得函数1(0)y x <的反函数是2)y x =>,故选:D.15.定义在R 上的函数()f x 既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,则5π3f ⎛⎫⎪⎝⎭的值为( )A. 12-B.2C. D.12【答案】B 【解析】 分析:要求53f π⎛⎫⎪⎝⎭,则必须用()sin f x x =来求解,通过奇偶性和周期性,将变量转化到区间02π⎡⎤⎢⎥⎣⎦,上,再应用其解析式求解 详解:()f x 的最小正周期是π552333f f f ππππ⎛⎫⎛⎫⎛⎫∴=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()f x 是偶函数33f f ππ⎛⎫⎛⎫∴-= ⎪ ⎪⎝⎭⎝⎭,533f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭当02x π⎡⎤∈⎢⎥⎣⎦,时,()sin f x x =,则53 sin 3332f f πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭故选B点睛:本题是一道关于正弦函数的题目,掌握正弦函数的周期性是解题的关键,考查了函数的周期性和函数单调性的性质。

2021届上海市上海实验学校高三上学期9月第一次月考数学试题Word版含解析

2021届上海市上海实验学校高三上学期9月第一次月考数学试题Word版含解析

2021届上海市上海实验学校高三上学期9月第一次月考数学试题一、单选题1.若a,b ∈R ,则a >b >0是a 2>b 2的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【详解】根据不等式的性质,由a >b >0可推出a 2>b 2;但,由a 2>b 2无法推出a >b >0,如a=-2,b=1,即a >b >0是a 2>b 2的充分不必要条件,故选A. 2.若0,0,31x y x y >>+=,则113x y+的最小值为( ) A .2B .12x xC .4 D.【答案】C【解析】根据基本不等式求最值.【详解】11113()(3)224333y x x y x y x y x y +=++=++≥+=,当且仅当132x y ==时取等号,故113x y +的最小值为4,选C.【点睛】本题考查根据基本不等式求最值,考查基本分析求解能力,属基础题.3.设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[]3,4上的值域为[]2,5-,则()f x 在区间[]10,10-上的值域为( )A.[]16,12-B.[]12,10-C.[]15,11-D.[]18,14-【答案】C【解析】根据已知中()g x 是定义在R 上,以1为周期的函数,由函数()()f x x g x =+在区间[3,4]上的值域为[2-,5],结合函数的周期性,我们可以分别求出()f x 在区间[10-,9]-,[9-,8]-,⋯,[9,10]上的值域,进而求出()f x 在区间[10-,10]上的值域.【详解】函数()()f x x g x =+,()()g x f x x =-∴。

()g x 为R 上周期为1的函数,则()(1)g x g x =+,∴(1)(1)()f x x f x x +-+=-,∴()(1)11f x f x =+-()或()(1)12f x f x =-+(),当[3,4]x ∈时,[]()2,5f x ∈-,利用(2)式()(1)1f x f x =-+可得:当[4,5]x ∈时,则[](1)[3,4](1)2,5x f x -∈⇒-∈-,∴[]()1,6f x ∈-,当[5,6]x ∈时,则[](1)[4,5](1)1,6x f x -∈⇒-∈-,∴[]()0,7f x ∈,当[6,7]x ∈时,则[](1)[5,6](1)0,7x f x -∈⇒-∈,∴[]()1,8f x ∈,当[9,10]x ∈时,则[](1)[8,9](1)3,10x f x -∈⇒-∈,∴[]()4,11f x ∈,利用(1)式()(1)1f x f x =+-可得:当[2,3]x ∈时,则[](1)[3,4](1)2,5x f x +∈⇒+∈-,∴[]()3,4f x ∈-,当[1,2]x ∈时,则[](1)[2,3](1)3,4x f x +∈⇒+∈-,∴[]()4,3f x ∈-,当[0,1]x ∈时,则[](1)[1,2](1)4,3x f x +∈⇒+∈-,∴[]()5,2f x ∈-,当[10,9]x ∈--时,则[](1)[9,8](1)14,7x f x +∈--⇒+∈--,∴[]()15,8f x ∈--,由分段函数的值域是由每一段并起来,∴()f x 在区间[10,10]-上的值域为[]15,11-故答案为:[]15,11-。

2021-2022年高三上学期9月月考试题 数学试题(理) 含答案

2021-2022年高三上学期9月月考试题 数学试题(理) 含答案

2021年高三上学期9月月考试题数学试题(理)含答案一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6},集合A={2,3,4},集合B={2,4,5},则下图中的阴影部分表示( )A.{2,4} B.{1,3}C.{5} D.{2,3,4,5}[答案] C[解析] 阴影部分在集合B中,不在集合A中,故阴影部分为B∩(∁U A)={2,4,5}∩{1,5,6}={5},故选C.2.函数y=1ln x-1的定义域为( )A.(1,2)∪(2,+∞)B.[1,+∞) C.(1,+∞) D.(1,2)∪[3,+∞) 答案 A解析由ln(x-1)≠0,得x-1>0且x-1≠1.由此解得x>1且x≠2,即函数y=1ln(x-1)的定义域是(1,2)∪(2,+∞).3.已知命题:若,则;命题:若,则;在下列命题中:(1);(2);(3)();(4)()p q p q p q p q∧∨∧⌝⌝∨,真命题是A.(1)(3)B. (1)(4)C. (2)(3)D. (2)(4)[答案]C4.若,则A. 15 B.14 C.13 D.12D5.下列函数中,既是偶函数,又在区间内是增函数的是( ) A . B. C. D. B6.下列说法错误的是( )A .若p :∃x ∈R ,x 2-x +1=0,则¬p :∀x ∈R ,x 2-x +1≠0B .“sin θ=12”是“θ=30°或150°”的充分不必要条件C .命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”D .已知p :∃x ∈R ,cos x =1,q :∀x ∈R ,x 2-x +1>0,则“p ∧(¬q )”为假命题 [答案] B[解析] 特称命题的否定为全称命题,“=”的否定为“≠”,∴A 正确;sin θ=12时,θ不一定为30°,例如θ=150°,但θ=30°时,sin θ=12,∴B 应是必要不充分条件,故B 错;C显然正确;当x =0时,cos x =1,∴p 真;对任意x ∈R ,x 2-x +1=(x -12)2+34>0,∴q 真,∴p ∧(¬q )为假,故D 正确.7.将函数y =3cos x +sin x (x ∈R)的图象向左平移m (m >0)个长度单位后,所得到的图象关于原点对称,则m 的最小值是( )A .π12B .π6C .π3D .2π3[答案] D[解析] y =3cos x +sin x =2sin(x +π3),向左平移m 个单位得到y =2sin(x +m +π3),此函数为奇函数,∴m +π3=k π,k ∈Z ,∵m >0,∴m 的最小值为2π3.8.函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图像大致是( )答案 C解析 f (x )=1+log 2x 的图像可由f (x )=log 2x 的图像上移1个单位得到,且过点(12,0),(1,1),由指数函数性质可知g (x )=21-x 为减函数,且过点(0,2),故选C.9.已知函数满足,当时,,若在区间 上方程有两个不同的实根,则实数的取值范围是A . B. C . D . [答案]B10.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导函数f ′(x )的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin(12x +π4)B .f (x )=4sin(12x +π4)C .f (x )=2sin(x +π4)D .f (x )=4sin(12x +3π4)[答案] B[解析] f ′(x )=Aωcos(ωx +φ),由f ′(x )的图象知,T 2=3π2-(-π2)=2π,∴T =4π,∴ω=12,∴Aω=2,∴A =4,∴f ′(x )=2cos(12x +φ),由f ′(x )的图象过点(3π2,-2)得cos(3π4+φ)=-1,∵0<φ<π,∴φ=π4, ∴f ′(x )=2cos(12x +π4),∴f (x )=4sin(12x +π4).11.已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或-12C .-14或-12D .0或-14答案 D解析 ∵f (x +2)=f (x ),∴T =2.又0≤x ≤1时,f (x )=x 2,可画出函数y =f (x )在一个周期内的图像如图.显然a =0时,y =x 与y =x 2在[0,2]内恰有两不同的公共点.另当直线y =x +a 与y =x 2(0≤x ≤1)相切时也恰有两个公共点,由题意知y ′=(x 2)′=2x =1,∴x =12.∴A (12,14),又A 点在y =x +a 上,∴a =-14,∴选D.12. 已知函数f (x )=ax sin x -32(a ∈R),若对x ∈[0,π2],f (x )的最大值为π-32,则函数f (x )在(0,π)内的零点个数为( C )A .0B .1C .2D .3解析 因为f ′(x )=a (sin x +x cos x ),当a ≤0时,f (x )在x ∈[0,π2]上单调递减,最大值f (0)=-32,不适合题意,所以a >0,此时f (x )在x ∈[0,π2]上单调递增,最大值f (π2)=π2a -32=π-32,解得a =1,符合题意,故a =1.f (x )=x sin x -32在x ∈(0,π)上的零点个数即为函数y =sin x ,y =32x 的图像在x ∈(0,π)上的交点个数.又x =π2时,sin π2=1>3π>0,所以两图像在x ∈(0,π)内有2个交点,即f (x )=x sin x -32在x ∈(0,π)上的零点个数是2.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.已知f (x )=x (1+|x |),则f ′(1)·f ′(-1)=________.答案 9解析 当x ≥0时,f (x )=x 2+x ,f ′(x )=2x +1, 则f ′(1)=3.当x <0时,f (x )=x -x 2,f ′(x )=1-2x ,则f ′(-1)=3,故f ′(1)·f ′(-1)=9. 14.若cos x cos y +sin x sin y =12,sin2x +sin2y =23,则sin(x +y )=________.[答案] 23[解析] ∵2x =(x +y )+(x -y ),2y =(x +y )-(x -y ),sin2x +sin2y =23,∴sin(x +y )cos(x -y )=13,又由cos x cos y +sin x sin y =12得cos(x -y )=12, ∴sin(x +y )=23.15.已知函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与直线y =0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为274,则a 的值为________. [答案] -316.已知函数f (x )=e sin x+cos x-12sin2x (x ∈R ),则函数f (x )的最大值与最小值的差是________. [答案] e 2-e-2[解析] 令sin x +cos x =t ,则sin2x =t 2-1,易知-2≤t ≤2,∴函数f (x )化为y =e t -12t 2+12.(-2≤t ≤2),y ′=e t -t ,令u (t )=e t -t ,则u ′(t )=e t-1.当0<t ≤2时,u ′(t )>0,当-2≤t <0时,u ′(t )<0,∴u (t )在[-2,0]上单调递减,在[0,2]上单调递增,∴u (t )的最小值为u (0)=1,于是u (t )≥1,∴y ′>0,∴函数y =e t-12t 2+12在[-2,2]上为增函数,∴其最大值为e 2-12,最小值为e-2-12,其差为e 2-e -2.三、解答题: 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数f (x )=23sin(π+x) cos(-3π-x )-2sin(π2-x )cos(π-x ).(1)求函数f (x )的单调递增区间;(2)若f (α2-π12)=32,α是第二象限角,求cos(2α+π3)的值.答案 (1)[k π-π3,k π+π6](k ∈Z ) (2)7+3516解析 (1)f (x )=3sin2x -2cos x (-cos x )=3sin2x +2cos 2x =3sin2x +cos2x +1=2sin(2x +π6)+1, 由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).故函数f (x )的单调增区间为[k π-π3,k π+π6](k ∈Z ).(2)∵f (α2-π12)=2sin α+1=32,∴sin α=14.∵α是第二象限角,∴cos α=-1-sin 2α=-154. ∴sin2α=-158,cos2α=78.∴cos(2α+π3)=cos2αcos π3-sin2αsin π3=78×12-(-158)×32=7+3516.17. 将函数y =f (x )的图象向左平移1个单位,再纵坐标不变,横坐标伸长到原来的π3倍,然后再向上平移1个单位,得到函数y =3sin x 的图象.(1)求y =f (x )的最小正周期(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,求当x ∈[0,1]时,函数y =g (x )的最小值和最大值.[解析] (1)函数y =3sin x 的图象向下平移1个单位得y =3sin x -1,再将各点的横坐标缩短到原来的3π倍得到y =3sin π3x -1,然后向右移1个单位得y =3sin(π3x -π3)-1.所以函数y =f (x )的最小正周期为T =2ππ3=6.(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称, ∴当x ∈[0,1]时,y =g (x )的最值即为当x ∈[3,4]时,y =f (x )的最值. ∵x ∈[3,4]时,π3x -π3∈[2π3,π],∴sin(π3x -π3)∈[0,32],∴f (x )∈[-1,12],∴y =g (x )的最小值是-1,最大值为12.19. (本小题满分12分)已知),(3)(23R x b ax x x f ∈+-=其中 (1)求的单调区间;(2)设,函数在区间上的最大值为,最小值为,求的取值范围. 解:(12分)(1))2(363)(2'a x x ax x x f -=-= 令a x x x f 20,0)('===或得当时,)),(,在(+∞∞,20)(a x f -单调递增,在上单调递减当时,)),(,在(+∞∞,02)(a x f -单调递增,在上单调递减.................5分 (2)由知在上递减,在递增3334128)2(,128)2(a b b a a a f m b a f M -=+-==+-==设0)1)(1(121212)(,8124)(2'3<-+=-=+-=a a a a g a a a g 所以上单调递减,1611)43()(,25)21()(min max ====g a g g a g 所以20.对于函数,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数和在点P 处相切,称点P 为这两个函数的切点. 设函数,.(Ⅰ)当,时, 判断函数和是否相切?并说明理由; (Ⅱ)已知,,且函数和相切,求切点P 的坐标; 解:(Ⅰ)结论:当,时,函数和不相切. 理由如下:由条件知,由,得, 又因为 ,, 所以当时,,,所以对于任意的,. 当,时,函数和不相切. (Ⅱ)若,则,,设切点坐标为 ,其中,由题意,得 , ① , ② 由②,得 ,代入①,得 . (*) 因为 ,且, 所以 . 设函数 ,, 则 . 令 ,解得或(舍).所以当时,取到最大值,且当时.因此,当且仅当时. 所以方程(*)有且仅有一解. 于是 , 因此切点P 的坐标为. 21.(本小题满分12分)设函数.(1)若函数在上为减函数,求实数的最小值; (2)若存在,使成立,求正实数的取值范围. 解:(1)由已知得.因在上为减函数,故在上恒成立. 所以当时,.2分当,即时,.所以于是,故a 的最小值为. 4分 (2)命题“若存在 ,使成立”等价于“当时,有 . 由(1),当时,,∴. 问题等价于:“当时,有”. 6分 ①当时,由(1),在上为减函数, 则()()222min124e f x f e ae ==-≤,故. 8分②当<时,由于'2111()()ln 24f x a x =--+-在上的值域为 (ⅰ),即,在恒成立,故在上为增函数, 于是,min 1()()4f x f e e ae e ==-≥>,矛盾. 10分 (ⅱ),即,由的单调性和值域知, 存在唯一,使,且满足: 当时,,为减函数;当时,,为增函数; 所以,0min 0001()()ln 4x f x f x ax x ==-≤, 所以,2001111111ln 4ln 4244a x x e e ≥->->-=,与矛盾. 综上,得请考生在第22、23、24题中任选一题做答,如果多做,则按所做第一题记分.在答题卡选答区域指定位置答题,并写上所做题的题号.注意所做题目的题号必须和所写的题号一致.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知与圆相切于点,半径,交于点. (1)求证:;(2)若圆的半径为,,求线段的长度.解:(1)证明:连接,,.与圆相切于点,. .,. .又,..…………………5分 (2)假设与圆相交于点,延长交圆于点. 与圆相切于点,是圆的割线,)()(2ON PO OM PO PN PM PA +⋅-=⋅=.,,16)35()35(2=+⨯-=PA . . 由(1)知. .在中,.C AB P O NC ABPMO5325313219cos 2222=⨯⨯⨯-+=∠⋅⋅⋅-+=AOP OC OA OC OA AC ..…………………10分23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为)(226222为参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+=-=.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为. (1)求圆的直角坐标方程;(2)设圆与直线交于点,若点的坐标为,求. 解:(1)由得,即.…………4分(2)将的参数方程代入圆的直角坐标方程,得25)226()223(22=++--t t . 即,…………6分由于082204)29(2>=⨯-=∆,可设是上述方程的两个实根.所以,又直线过点,可得:29)()()(||||||||212121=+-=-+-=+=+t t t t t t PB PA .…………10分 24.(本小题满分10分)选修4—5:不等式选讲 已知函数,,且的解集为. (1)求的值;(2)若,且,求 的最小值.解:(1)因为, 等价于,由有解,得,且其解集为.又的解集为,故. 5分 (2)由(1)知,又,由柯西不等式得∴ 的最小值为9 . 10分。

【高三】2021年高三上册数学九月份月考试题(有答案)

【高三】2021年高三上册数学九月份月考试题(有答案)

【高三】2021年高三上册数学九月份月考试题(有答案)来2022-2022学年第一学期高三9月份试题数学试题(考试时间:90分钟)(考试内容:全部)一、:(每小题6分)1.如果集合已知,则()a.b.c.d.2.如果复数的实部和虚部相等,那么实数()a.b.c.d.如果有三名志愿者参与不同的计划,他们每个人都不能承担这四项工作中的一项,每个人也不能分别承担其中一项a.种b.c.种d.种4)在展开式中,只有第六项的系数最大,则其常数项为()a.120b.210c.252d.45设不等式系统表示的平面区域为,如果圆不通过区域上的点,则的值范围为xkb1 coa.b.c.d.6.假设图中图像对应的函数① 是y=f(x),对应于图中图像的函数② 是()a.b.c.d.7.函数的零点数为a.1b 2c。

3d。

四8.已知关于的一元二次不等式的解集中有且仅有3个整数,则所有符合条件的的值之和是a、 13b。

18c。

21d。

269.已知函数,其中为实数,若对恒成立,且.则下列结论正确的是a、 b。

c.是奇函数d.的单调递增区间是10.均匀地掷硬币,两边的概率为。

反复扔。

序列定义如下:如果,事件“”的概率为()a.b.c.d.11.已知外接圆半径为1,圆心为O,值为()a.b.c.d.12.已知平面中有两个固定点,如果运动点的轨迹不变,则穿过平面中运动点的垂直线为垂直脚a.圆b.椭圆c.抛物线d.双曲线二、问题(每个子问题6分)13.三棱锥及其三视图中的主视图和左视图如图所示,则棱的长为_________.14.遵循以下公式:,,,,…………如果一个数字根据上述定律展开,发现等式右侧有一个数字“”,则___15.已知当取得最小值时,直线与曲线的交点个数为16.众所周知,它是一个定义在r上的函数,并不总是零,对于任何一个函数,它都满足,,考查下列结论:①;②为偶函数;③数列为等比数列;④数列为等差数列。

其中正确的是_________.三、回答问题17.(本题满分12分)已知数列满足,,数列满足.(1)证明该序列是一个等差序列,并求出该序列的通项公式;(2)求数列的前n项和.18.(本分题满分14分)现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(i)找出射手准确命中两次的概率;(ii)求该射手的总得分的分布列及数学期望;19.(这道题的满分是14分)设是抛物线上相异两点,到y轴的距离的积为且.(1)求抛物线的标准方程(2)过q的直线与抛物线的另一交点为r,与轴交点为t,且q为线段rt的中点,试求弦pr长度的最小值.20.(这道题的满分是14分)假设曲线在该点的切线垂直于直线(1)求的值;(2)如果常量为true,则查找(3)求证:2021-2021学年第一学期高三9月月考题数学问题的答案一、一百二十三兆四千五百六十七亿八千九百一十万一千一百一十二babbdcbcdbac2、头衔13.14.15.216._①③④_三、回答问题17.解(1)证明:由,得,——2分所以数列是等差数列,首项,公差为-----------4分——6分(2)-------------------------7分----①-------------------②----------9分① - ② 收到-----------------------------------11分------------------------------------------12分18.解:(i)记:“该射手恰好命中两次”为事件,“该射手第一次射击甲靶命中”为事件,“该射手第二次射击甲靶命中”为事件,“该射手射击乙靶命中”为事件.从标题的意思来看,,所以... 6分(ii)根据题意,的所有可能取值为0,1,2,3,4.,.,,,……11分因此,分发列是01234..................... 12分所以.………………………14分19.解决方案:(1)∵ op→ OQ→ = 0,那么x1x2+y1y2=0,---------------1点又p、q在抛物线上,故y12=2px1,y22=2px2,故得y122py222p+y1y2=0,y1y2=4p2--------------------------3分x1x2=4,所以4p2=4,P=1所以抛物线的方程为:------------5分(2)让直线PQ通过点E(a,0),方程为x=y+a联立方程组当x被消除时,y2-2y-2a=0∴①--------------------------------7分让线PR在点(B,0)与X轴相交,然后让线PR方程为X=NY+B,并让R(X3,Y3),同理可知②--------------------------9分可从① 和②由题意,q为线段rt的中点,∴y3=2y2,∴b=2a从(I)开始,y1y2=-4,代入①, 我们可以-2a=-4 ∴a=2.故b=4.----------------------11分∴∴.当n=0,即直线pq垂直于x轴时pr取最小值--------------------14分20.解决方案:(1)--------------2分由题设,,.------------------------------- 4分(2),,,即设置,即-------------------------------------6分① 如果,这与问题相矛盾-------------------8分②若方程的判别式当,立即单调递减,,即不等式成立.----------------------------------------------------------------------9分当时,方程,它的根,,当,单调递增,,与题设矛盾.总而言之--------------------------------------------------------------------10分(3)由(2)知,当时,时,成立.还不如所以,----------------------11分来。

高三上学期九月月考数学试题(附答案)

高三上学期九月月考数学试题(附答案)

2021-2021高三上学期九月月考数学试题(附答案)考生进行数学复习离不开做题,查字典数学网整理了高三上学期九月月考数学试题,请考生及时练习。

一、选择题:(本大题共有12道小题,每小题5分,共60分)1.已知集合 , ,则 ( B )A. B. C. D.2. 下列函数中既是奇函数,又在上单调递增的是 ( C )A. B. C. D.3. 给出两个命题:命题命题存在的否定是任意命题:函数是奇函数. 则下列命题是真命题的是( C )A. B. C. D.4.若函数f(x)=x2-ax- a在区间[0,2]上的最大值为1,则实数a等于( D )A.-1B.1C.-2D. 25 已知函数是函数的导函数,则的图象大致是( A )A. B. C. D.6.已知命题p:x2+2x-3命题q:xa,且的一个充分不必要条件是,则a的取值范围是 ( B )A.(-,1]B.[1,+)C.[-1,+)D.(-,-3]7.7. 已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点右侧,则实数m的取值范围是 ( B )A.(0,2)B.(-,1]C.(-,1)D.(0,2]8.若f(x)=ax,x1,4-a2x+2,x1是R上的单调递增函数,则实数a的取值范围为( C )A.(1,+)B.(4,8)C.[4,8)D.(1,8)9. 已知函数y=f(x)是定义在R上的偶函数,且当时,不等式成立,若a=30.2 f(30.2),b= (log2) f(log2), c= f ,则,,间的大小关系 ( A )A. B. C. D.10. 已知函数f(x)是定义在R上的偶函数,且在区间[0,+)上单调递增.若实数a满足f( )+f( )2f(2),则a的取值范围是( D)A.(-,4]B. (0,4]C.D.11.(文)已知是奇函数,则 ( A )A..14B. 12C. 10D.-811. (理)若函数的大小关系是 (C )A. B.C. D.不确定12.已知函数y=f(x)为奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x).当x(2,3)时,f(x)=log2(x-1).给出以下4个结论:其中所有正确结论的为 ( A )①函数y=f(x)的图象关于点(k,0)(kZ)成中心对称;②函数y=|f(x)|是以2为周期的周期函数;③函数y=f(|x|)在(k,k+1)(kZ)上单调递增;④当x(-1,0)时,f(x)=-log2(1-x).A.①②④B.②③C.①④D.①②③④二、填空题(本大题共有4道小题,每小题5分,共20分)13.已知实数满足则的最大值__-4_______14. 已知,则函数在点处的切线与坐标轴围成的三角形面积为 .15. 若函数 ( )满足且时, ,函数 ,则函数在区间内零点的个数有__12_个.16. 存在区间 ( ),使得,则称区间为函数的一个稳定区间.给出下列4 个函数:其中存在稳定区间的函数有②__③_ .(把所有正确的序号都填上)三、解答题(本大题共有5道小题,每小题12分,共60分)17.(本小题满分12分)设向量,,其中,,函数的图象在轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与轴的第一个交点为 .(Ⅰ)求函数的表达式;(Ⅱ)在中,角A,B,C的对边分别是,若,且,求边长 .解:解:(I)因为, -----------------------------1分由题意, -----------------------------3分将点代入,得,所以,又因为 -------------------5分即函数的表达式为 . --- ------------------6分(II)由,即又 ------------------------8分由,知,所以 -----------------10分由余弦定理知所以 ----------------------------------------------------12分18.(文)(本小题满分12分)为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:评估的平均得分全市的总体交通状况等级不合格合格优秀(Ⅰ)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;(Ⅱ)用简单随机抽样方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率.【解析】:(Ⅰ)6条道路的平均得分为 .-----------------3分该市的总体交通状况等级为合格. -----------------5分(Ⅱ)设表示事件样本平均数与总体平均数之差的绝对值不超过 . -----7分从条道路中抽取条的得分组成的所有基本事件为:,,,,,,,,,,,,,,,共个基本事件. -----------------9分事件包括,,,,,,共个基本事件,答:该样本平均数与总体平均数之差的绝对值不超过的概率为 .------12分18.(理)(本小题满分l 2分)在2021年全国高校自主招生考试中,某高校设计了一个面试考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立回答全部问题.规定:至少正确回答其中2题的便可通过.已知6道备选题中考生甲有4题能正确回答,2题不能回答;考生乙每题正确回答的概率都为23,且每题正确回答与否互不影响.(I)分别写出甲、乙两考生正确回答题数的分布列,并计算其数学期望;(II)试用统计知识分析比较两考生的通过能力.解析:(I)设考生甲、乙正确回答的题目个数分别为,则的可能取值为1,2,3,P(=1)=C14C22C36=15 ,P(=2)=C24C12C36=35,P(=3)=C34C02C36=15,考生甲正确完成题数的分布列为123P153515E=115+235+315=2. ..4分又~B(3,23),其分布列为P(=k)=Ck3(23)k(13)3-k,k=0,1,2,3;E=np=323=2. 6分(II)∵D=(2-1)215+(2-2)235+(2-3)215=25,D=npq=32313=23, D∵P(2)=35+15=0.8,P(2)=1227+8270.74,P(2)2). 10分从回答对题数的数学期望考查,两人水平相当;从回答对题数的方差考查,甲较稳定;从至少完成2题的概率考查,甲获得通过的可能性大.因此可以判断甲的实验通过能力较强.12分19(理)在四棱锥中,平面,是的中点,(Ⅰ)求证: ;(Ⅱ)求二面角的余弦值.解:(Ⅰ)取的中点 ,连接 , ,则∥ .因为所以 .1分因为平面,平面所以又所以平面 3分因为平面 ,所以又∥ ,所以又因为 ,所以平面 5分因为平面,所以 6分(注:也可建系用向量证明)(Ⅱ)以为原点,建立如图所示的空间直角坐标系 . 则 , , , , ,8分设平面的法向量为,则所以令 .所以 . 9分由(Ⅰ)知平面 , 平面 ,所以 .同理 .所以平面所以平面的一个法向量 . 10分所以, 11分由图可知,二面角为锐角,所以二面角的余弦值为 . 12分19.(文)在四棱锥中,平面,是的中点, ,(Ⅰ)求证:∥平面 ;(Ⅱ)求证: .证明:(Ⅰ)取的中点 ,连接 , . 则有∥ .因为平面,平面所以∥平面 .2分由题意知 ,所以∥ .同理∥平面 .4分又因为平面 , 平面 ,所以平面∥平面 .因为平面所以∥平面 . 6分(Ⅱ)取的中点 ,连接 , ,则∥ .因为 ,所以 . 7分因为平面,平面,所以又所以平面 9分因为平面所以又∥ ,所以又因为 ,所以平面 11分因为平面所以 12分20. (本小题满分12分) 已知椭圆的离心率为,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线相切..(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线与椭圆C相交于A、B两点,且,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.【解析】:(1)由题意知,,即,又,,故椭圆的方程为 4分(II)设,由得12分21.(文)已知函数,其中aR.(1)当时,求曲线在点处的切线的斜率;(2)当时,求函数的单调区间与极值.解:(1)当a=0时,f(x)=x2ex,f(x)=(x2+2x)ex,故f(1)=3e.所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e. 4分(2)f(x)=[x2+(a+2)x-2a2+4a] ex令f(x)=0,解得x=-2a,或x=a-2, 6分由a23知,-2aa-2.以下分两种情况讨论:①若a23,则-2ax(-,-2a)-2a(-2a,a-2)a-2(a-2,+)f(x)+0-0+f(x) 极大值极小值所以f(x)在(-,-2a),(a-2,+)上是增函数,在(-2a,a-2)上是减函数.函数f(x)在x=-2a处取得极大值为f(-2a),且f(-2a)=3ae-2a.函数f(x)在x=a-2处取得极小值为f(a-2),且f(a-2)=(4-3a)ea-2. 9分②若a23,则-2aa-2,当x变化时,f(x),f(x)的变化情况如下表:x(-,a-2)a-2(a-2,-2a)-2a(-2a,+)f(x)+0- 0+f(x) 极大值极小值所以f(x)在(-,a-2),(-2a,+)上是增函数,在(a-2,-2a)上是减函数.函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)ea-2.函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)=3ae-2a. 12分21. (理)已知函数 ( ).(1) 当时,证明:在上, ;(2)求证: .解:(1) 根据题意知,f(x)=a1-xx (x0),当a0时,f(x)的单调递增区间为(0,1],单调递减区间为(1,+当a0时,f(x)的单调递增区间为(1,+),单调递减区间为(0,1];当a=0时,f(x)不是单调函数.所以a=-1时,f( x)=-ln x+x-3,在(1,+)上单调递增,所以f(x)f(1 ),即f(x)-2,所以f(x)+2 6分(2) 由(1)得-ln x+x-3+20,即-ln x+x-1 0,所以ln x则有0ln 22ln 33ln 44ln nn 122334n-1n=1n(n2,nN*). 12分四、请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲直线AB经过⊙O上的点C,并且OA=OB,CA=CB.⊙O交直线OB于E,D,连接EC,CD.(Ⅰ )求证:直线AB是⊙O的切线;(Ⅱ)若tanCED=12,⊙O的半径为3,求OA的长.解:(1)证明:连接OC,∵OA=OB,CA=CB,OCOB,又∵OC是圆的半径,AB是圆的切线. 4分(2)∵ED是直径,ECD=90,EDC=90,又BCD+OCD=90,OCD=ODC,BCD=E,又CBD=EBC,△BCD∽△BEC,BCBE=BDBCBC2=BDBE,又tanCED=CDEC=12,△BCD∽△BEC,BDBC=CDEC=12,设BD=x,则BC=2x,∵BC2=BDBE,(2x)2=x(x+6),BD=2,OA=OB=BD+OD=2+3=5. 10分23.(本题满分10分)选修4-4:坐标系与参数方程已知曲线 (t为参数), ( 为参数).(Ⅰ)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)过曲线的左顶点且倾斜角为的直线交曲线于两点,求 .解:⑴曲线为圆心是,半径是1的圆.曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆.4分⑵曲线的左顶点为,则直线的参数方程为 ( 为参数) 将其代入曲线整理可得:,设对应参数分别为,则所以 10分24.(本小题满分10分)选修45:不等式选讲已知函数,且的解集为 .(Ⅰ)求的值;(Ⅱ)若,且,求证: .解:(Ⅰ)因为,所以等价于,2分由有解,得,且其解集为 . 4分又的解集为,故 .(5分)(Ⅱ)由(Ⅰ)知,又, 7分 =9.9分(或展开运用基本不等式).10分高三上学期九月月考数学试题的内容就是这些,更多精彩内容请考生持续关注查字典数学网。

2021年高三上学期9月月考数学试卷含解析

2021年高三上学期9月月考数学试卷含解析

2021年高三上学期9月月考数学试卷含解析一、填空题:(每题5分,共计70分)1.已知A={﹣1,0,2},B={﹣1,1},则A∪B= .2.已知复数z=,(i为虚数单位)则复数z的实部为.3.写出命题:“若x=3,则x2﹣2x﹣3=0”的否命题:.4.一位篮球运动员在最近的5场比赛中得分的茎叶图如图,则他在这5场比赛中得分的方差是.5.如图所示的流程图,输出的n= .6.已知抛物线y2=8x的焦点是双曲线的右焦点,则双曲线的渐近线方程为.7.若实数x,y满足不等式组,则z=x+2y的最大值为.8.已知圆柱的轴截面是边长为2的正方形,则圆柱的表面积为.9.在等差数列{a n}中,S n为其前n项的和,若a3=8,S3=20,则S5= .10.将y=sin2x的图象向右平移φ单位(φ>0),使得平移后的图象仍过点(),则φ的最小值为.11.若直线l:y=x+a被圆(x﹣2)2+y2=1截得的弦长为2,则a= .12.已知函数f(x)=,为奇函数,则不等式f(x)<4的解集为.13.在三角形ABC中,已知AB=3,A=120°,△ABC的面积为,则•的值= .14.设点P,M,N分别在函数y=2x+2,y=,y=x+3的图象上,且=2,则点P横坐标的取值范围为.二、解答题:(满分90分,作答请写出必要的解答过程)15.已知f(x)=sinx+acosx,(1)若a=,求f(x)的最大值及对应的x的值.(2)若f()=0,f(x)=(0<x<π),求tanx的值.16.已知三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,D为PB中点,E为PC的中点,(1)求证:BC∥平面ADE;(2)求证:平面AED⊥平面PAB.17.小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)18.已知椭圆C:+=1(a>b>0)的离心率为,且过点A(1,).(1)求椭圆C的方程;(2)若点B在椭圆上,点D在y轴上,且=2,求直线AB方程.19.已知数列{a n}满足a1=1,a2=a>0,数列{b n}满足b n=a n•a n+1(1)若{a n}为等比数列,求{b n}的前n项的和s n;(2)若b n=3n,求数列{a n}的通项公式;(3)若b n=n+2,求证:++…+>2﹣3.20.已知函数f(x)=e x,g(x)=lnx,(1)求证:f(x)≥x+1;(2)设x0>1,求证:存在唯一的x0使得g(x)图象在点A(x0,g(x0))处的切线l与y=f(x)图象也相切;(3)求证:对任意给定的正数a,总存在正数x,使得|﹣1|<a成立.xx学年江苏省淮安市淮阴中学高三(上)9月月考数学试卷参考答案与试题解析一、填空题:(每题5分,共计70分)1.已知A={﹣1,0,2},B={﹣1,1},则A∪B= {﹣1,0,1,2} .考点:并集及其运算.专题:集合.分析:利用并集的性质求解.解答:解:∵A={﹣1,0,2},B={﹣1,1},∴A∪B{﹣1,0,1,2},故答案为:{﹣1,0,1,2}.点评:本题考查并集的求法,是基础题,解题时要认真审题.2.已知复数z=,(i为虚数单位)则复数z的实部为 1 .考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、实部的定义即可得出.解答:解:∵复数z===i+1.∴复数z的实部为1.故答案为:1.点评:本题考查了复数的运算法则、实部的定义,属于基础题.3.写出命题:“若x=3,则x2﹣2x﹣3=0”的否命题:“若x≠3则x2﹣2x﹣3≠0”.考点:四种命题.专题:简易逻辑.分析:若原命题的形式是“若p,则q”,它的否命题是“若非p,则非q”,然后再通过方程根的有关结论,验证它们的真假即可.解答:解:原命题的形式是“若p,则q”,它的否命题是“若非p,则非q”,∴命题:“若x=3,则x2﹣2x﹣3=0”的否命题是“若x≠3则x2﹣2x﹣3≠0”.故答案为:“若x≠3则x2﹣2x﹣3≠0”.点评:写四种命题时应先分清原命题的题设和结论,在写出原命题的否命题、逆命题、逆否命题,属于基础知识.4.一位篮球运动员在最近的5场比赛中得分的茎叶图如图,则他在这5场比赛中得分的方差是 2 .考点:茎叶图.专题:概率与统计.分析:先求得数据的平均数,再利用方差计算公式计算.解答:解:==10,∴方差Dx=×(4+1+0+1+4)=2.故答案为:2.点评:本题考查了由茎叶图求数据的方差,熟练掌握方差的计算公式是解题的关键.5.如图所示的流程图,输出的n= 4 .考点:程序框图.专题:算法和程序框图.分析:由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解答:解:当n=1时,S=1,不满足退出循环的条件,故n=2,S=4;当S=4,不满足退出循环的条件,故n=3,S=9;当S=9,不满足退出循环的条件,故n=4,S=16;当S=16,满足退出循环的条件,故输出的n值为4,故答案为:4点评:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.已知抛物线y2=8x的焦点是双曲线的右焦点,则双曲线的渐近线方程为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的方程,算出它的焦点为F(2,0),即为双曲线的右焦点,由此建立关于a的等式并解出a值,进而可得此双曲线的渐近线方程.解答:解:∵抛物线方程为y2=8x,∴2p=8,=2,可得抛物线的焦点为F(2,0).∵抛物线y2=8x的焦点是双曲线的右焦点,∴双曲线的右焦点为(2,0),可得c==2,解得a2=1,因此双曲线的方程为,可得a=1且b=,∴双曲线的渐近线方程为y=x,即.故答案为:点评:本题给出双曲线的右焦点与已知抛物线的焦点相同,求双曲线的渐近线方程.着重考查了抛物线的简单性质、双曲线的标准方程与简单几何性质等知识,属于基础题.7.若实数x,y满足不等式组,则z=x+2y的最大值为 6 .考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组对应的平面区域如图,将直线l:z=x+2y进行平移,并观察它在轴上截距的变化,可得当l经过区域的右上顶点A时,z达到最大值.由此求出A点坐标,不难得到本题的答案.解答:解:作出不等式组对应的平面区域如右图,是位于△ABO及其内部的阴影部分.将直线l:z=x+2y进行平移,可知越向上平移,z的值越大,当l经过区域的右上顶点A时,z达到最大值由解得A(2,2)∴z max=F(2,2)=2+2×2=6故答案为:6点评:本题给出线性约束条件,求目标函数的最大值,着重考查了二元一次不等式组表示的平面区域和简单线性规划等知识点,属于基础题.8.已知圆柱的轴截面是边长为2的正方形,则圆柱的表面积为6π.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:计算题;空间位置关系与距离.分析:由圆柱的轴截面是边长为2的正方形可得圆柱底面圆的直径长为2,高为2.解答:解:∵圆柱的轴截面是边长为2的正方形,∴圆柱底面圆的直径长为2,高为2.则圆柱的表面积S=2•π•2+2•π•12=6π.故答案为6π.点评:考查了学生的空间想象力.9.在等差数列{a n}中,S n为其前n项的和,若a3=8,S3=20,则S5= 40 .考点:等差数列的前n项和.专题:等差数列与等比数列.分析:设出等差数列的首项和公差,由已知列式求出首项和公差,则答案可求.解答:解:设等差数列{a n}的首项为a1,公差为d,由若a3=8,S3=20,得,解得:.∴.故答案为:40.点评:本题考查了等差数列的前n项和,考查了等差数列的通项公式,是基础的计算题.10.将y=sin2x的图象向右平移φ单位(φ>0),使得平移后的图象仍过点(),则φ的最小值为.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:利用正弦函数的函数值相等,结合三角函数的图象的平移,判断平移的最小值即可.解答:解:因为y=sin2×=sin=,所以函数y=sin2x的图象向右平移单位,得到的图象仍过点(),所以φ的最小值为.故答案为:.点评:本题考查三角函数的值与函数的图象的平移,考查计算能力.11.若直线l:y=x+a被圆(x﹣2)2+y2=1截得的弦长为2,则a= ﹣2 .考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:由圆的方程,得到圆心与半径,根据直线l:y=x+a被圆(x﹣2)2+y2=1截得的弦长为2,可得直线l:y=x+a过圆心,即可求出a的值.解答:解:∵圆(x﹣2)2+y2=1,∴圆心为:(2,0),半径为:1∵直线l:y=x+a被圆(x﹣2)2+y2=1截得的弦长为2,∴直线l:y=x+a过圆心,∴a=﹣2.故答案为:﹣2.点评:本题主要考查直与圆的位置关系及其方程的应用,是常考题型,属中档题.12.已知函数f(x)=,为奇函数,则不等式f(x)<4的解集为(﹣∞,4).考点:其他不等式的解法.专题:函数的性质及应用.分析:根据函数奇偶性的定义,求出a,b,即可得到结论.解答:解:若x>0,则﹣x<0,则f(﹣x)=bx2+3x,∵f(x)是奇函数,∴f(﹣x)=﹣f(x),即bx2+3x=﹣x2﹣ax,则b=﹣1,a=﹣3,即f(x)=,若x≥0,则不等式f(x)<4等价x2﹣3x<4,即x2﹣3x﹣4<0,解得﹣1<x<4,此时0≤x<4,若x<0,不等式f(x)<4等价﹣x2﹣3x<4,即x2+3x+4>0,此时不等式恒成立,综上x<4.即不等式的解集为(﹣∞,4).点评:本题主要考查不等式的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.13.在三角形ABC中,已知AB=3,A=120°,△ABC的面积为,则•的值= .考点:平面向量数量积的运算.专题:解三角形.分析:利用三角形面积公式列出关系式,将c,sinA及已知面积代入求出b的值,再利用余弦定理列出关系式,把b,c,cosA的值代入计算即可求出a的值,然后利用余弦定理求cosB,结合数量积的定义求•的值.解答:解:∵AB=c=3,A=120°,△ABC的面积为,∴S△ABC=bcsinA=b=,即b=5,由余弦定理得:a2=b2+c2﹣2bccosA=25+9+15=49,则BC=a=7.由余弦定理得cosB=•=accosB=7×3×=.点评:此题考查了余弦定理,三角形的面积公式以及向量的数量积的运算,熟练掌握定理及公式是解本题的关键.14.设点P,M,N分别在函数y=2x+2,y=,y=x+3的图象上,且=2,则点P横坐标的取值范围为..考点:向量数乘的运算及其几何意义.专题:平面向量及应用.分析:如图所示,由=2,可得点P是线段MN的中点.设M(x1,y1),P(x,y),N(x2,y2).可得,,,(0≤x1≤4),y2=x2+3,y=2x+2.化为2x=﹣1﹣x1(0≤x1≤4).令f(t)=(0≤t≤4).利用导数研究其单调性极值与最值,即可得出.解答:解:如图所示,∵=2,∴点P是线段MN的中点.设M(x1,y1),P(x,y),N(x2,y2).∴,,,(0≤x1≤4),y2=x2+3,y=2x+2.化为2x=﹣1﹣x1(0≤x1≤4).令f(t)=(0≤t≤4).f′(t)=﹣1,当2≤t≤4时,f′(t)<0,函数f(t)单调递减.当0≤t<2时,f′(t)=0,解得,则当时,函数f(t)单调递增;当时,函数f(t)单调递减.而极大值即最大值=﹣3,又f(0)=﹣1,f(4)=﹣5.∴点P横坐标的取值范围为.故答案为:.点评:本题考查了利用导数研究函数的单调性极值与最值、向量的共线、分类讨论思想方法,考查了推理能力和计算能力,属于难题.二、解答题:(满分90分,作答请写出必要的解答过程)15.(14分)(xx秋•泗洪县校级期中)已知f(x)=sinx+acosx,(1)若a=,求f(x)的最大值及对应的x的值.(2)若f()=0,f(x)=(0<x<π),求tanx的值.考点:两角和与差的正弦函数;三角函数线.专题:三角函数的求值;三角函数的图像与性质.分析:(1)a=时,利用两角和的正弦值化简f(x),求出x取何值时f(x)有最大值;(2)由f()=0求出a的值,再由f(x)=,求出cosx、sinx的值,从而求出tanx的值.解答:解:(1)a=时,f(x)=sinx+cosx=2sin(x+),…(2分)当sin(x+)=1,即x+=+2kπ(k∈Z),∴x=+2kπ(k∈Z)时,f(x)有最大值2;…(6分)(2)∵f()=sin+acos=+a=0,∴a=﹣1;…(8分)∴f(x)=sinx﹣cosx=,∴,∴,即(cosx+)cosx=;整理得,25cos2x+5cosx﹣12=0,解得,cosx=,或cosx=﹣;当cosx=时,sinx=,当cosx=﹣时,sinx=﹣;又∵x∈(0,π)∴取;∴tanx=.…(14分)点评:本题考查了三角恒等变换的应用问题以及三角函数求值的问题,也考查了一定的计算能力,是较基础题.16.已知三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,D为PB中点,E为PC的中点,(1)求证:BC∥平面ADE;(2)求证:平面AED⊥平面PAB.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:证明题;空间位置关系与距离.分析:(1)由中位线定理和线面平行的判定定理,即可得证;(2)由线面垂直的性质和判定定理,以及通过面面垂直的判定定理,即可得证.解答:(1)证明:∵PE=EC,PD=DB,∴DE∥BC,∵DE⊂平面ADE,BC⊄平面ADE,∴BC∥平面ADE;(2)证明:∵PA⊥平面PAC,BC⊂平面PAC,∴PA⊥CB,∵AB⊥CB,AB∩PA=A,∴BC⊥平面PAB,∵DE∥BC∴DE⊥平面PAB,又∵DE⊂平面ADE,∴平面ADE⊥平面PAB.点评:本题考查线面平行的判定定理和线面垂直的判定和性质,以及面面垂直的判定定理,注意定理的条件的全面,属于基础题.17.小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)考点:根据实际问题选择函数类型;基本不等式.专题:综合题;函数的性质及应用.分析:(1)求出第x年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论;(2)利用利润=累计收入+销售收入﹣总支出,可得平均利润,利用基本不等式,可得结论.解答:解:(1)设大货车运输到第x年年底,该车运输累计收入与总支出的差为y万元,则y=25x﹣[6x+x(x﹣1)]﹣50=﹣x2+20x﹣50(0<x≤10,x∈N)由﹣x2+20x﹣50>0,可得10﹣5<x<10+5∵2<10﹣5<3,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入﹣总支出,∴二手车出售后,小张的年平均利润为=19﹣(x+)≤19﹣10=9当且仅当x=5时,等号成立∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.点评:本题考查函数模型的构建,考查基本不等式的运用,考查学生的计算能力,属于中档题.18.已知椭圆C:+=1(a>b>0)的离心率为,且过点A(1,).(1)求椭圆C的方程;(2)若点B在椭圆上,点D在y轴上,且=2,求直线AB方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知得,,由此能求出椭圆方程.(2)设B(x0,y0),D(0,m),则,,由此能求出直线方程.解答:解:(1)∵椭圆C:+=1(a>b>0)的离心率为,且过点A(1,),∴,∴a=2c,…(2分)∴b2=a2﹣c2=3c2设椭圆方程为:,∴∴椭圆方程为:…(7分)(2)设B(x0,y0),D(0,m),则,,∴﹣x0=2,m﹣y0=3﹣2m,即x0=﹣2,y0=3m﹣3,代入椭圆方程得m=1,∴D(0,1),…(14分)∴.…(16分)点评:本题主要考查椭圆方程的求法,考查直线方程的求法,考查直线与椭圆等知识,同时考查解析几何的基本思想方法和运算求解能力.19.已知数列{a n}满足a1=1,a2=a>0,数列{b n}满足b n=a n•a n+1(1)若{a n}为等比数列,求{b n}的前n项的和s n;(2)若b n=3n,求数列{a n}的通项公式;(3)若b n=n+2,求证:++…+>2﹣3.考点:数列与不等式的综合;数列的求和;数列递推式.专题:等差数列与等比数列;不等式的解法及应用.分析:(1)分a=1和a≠1求出等比数列{a n}的通项公式,进一步求得{b n}是等比数列,则其前n项和s n可求;(2)把b n=3n代入b n=a n•a n+1,然后分n为奇数和偶数得到数列{a n}的偶数项和奇数项为等比数列,由等比数列的通项公式得答案;(3)由b n=n+2得到a n a n+1=n+2,进一步得到,代入++…+整理后利用基本不等式证得结论.解答:(1)解:由a1=1,a2=a>0,若{a n}为等比数列,则,∴.当a=1时,b n=1,则s n=n;当a≠1时,.(2)解:∵3n=a n•a n+1,∴3n﹣1=a n﹣1•a n(n≥2,n∈N),∴.当n=2k+1(k∈N*)时,∴;当n=2k,(k∈N*)时,∴.∴.(3)证明:∵a n a n+1=n+2 ①,∴a n﹣1a n=n+1(n≥2)②,①﹣②得∴=(a3﹣a1)+(a4﹣a2)+…+(a n+1﹣a n﹣1)=a n+a n+1﹣a1﹣a2∴=.∵,∴>﹣3.点评:本题是数列与不等式综合题,考查了等比关系的确定,考查了首项转化思想方法,训练了放缩法证明数列不等式,是压轴题.20.已知函数f(x)=e x,g(x)=lnx,(1)求证:f(x)≥x+1;(2)设x0>1,求证:存在唯一的x0使得g(x)图象在点A(x0,g(x0))处的切线l与y=f(x)图象也相切;(3)求证:对任意给定的正数a,总存在正数x,使得|﹣1|<a成立.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.分析:(1)构造函数F(x)=e x﹣x﹣1,求函数的导数即可证明f(x)≥x+1;(2)求函数的导数,利用导数的几何意义即可证明存在唯一的x0使得g(x)图象在点A (x0,g(x0))处的切线l与y=f(x)图象也相切;(3)求函数的导数,利用导数和不等式之间的关系即可证明对任意给定的正数a,总存在正数x,使得|﹣1|<a成立.解答:解:(1)令F(x)=e x﹣x﹣1,x∈R,∵F'(x)=e x﹣1=0得x=0,∴当x>0时F'(x)>0,F(x)递增;当x<0时F'(x)<0,F(x)递减;∴F(x)min=F(0)=0,由最小值定义得F(x)≥F(x)min=0即e x≥x+1.(2)g(x)在x=x0处切线方程为①设直线l与y=e x图象相切于点,则l:②,由①②得,∴⑤下证x0在(1,+∞)上存在且唯一.令,,∴G(x)在(1,+∞)上递增.又,G(x)图象连续,∴存在唯一x0∈(1,+∞)使⑤式成立,从而由③④可确立x1.故得证.(1)由(1)知即证当a>0时不等式e x﹣1﹣x<ax即e x﹣ax﹣x﹣1<0在(0,+∞)上有解.令H(x)=e x﹣ax﹣x﹣1,即证H(x)min<0,由H'(x)=e x﹣a﹣1=0得x=ln(a+1)>0.当0<x<ln(a+1)时,H'(x)<0,H(x)递减,当x>ln(a+1)时,H'(x)>0,H(x)递增.∴H(x)min=H(ln(a+1))=a+1﹣aln(a+1)﹣ln(a+1)﹣1.令V(x)=x﹣xlnx﹣1,其中x=a+1>1则V'(x)=1﹣(1+lnx)=﹣lnx<0,∴V(x)递减,∴V(x)<V(1)=0.综上得证.点评:本题主要考查导数的综合应用,综合性较强,运算量较大.25479 6387 掇36279 8DB7 趷h31814 7C46 籆31899 7C9B 粛c>37172 9134 鄴638874 97DA 韚21629 547D 命Q23777 5CE1 峡。

上海市高三数学上学期9月月考试题(含解析)

上海市高三数学上学期9月月考试题(含解析)
A、B两地的距离是100km,按交通法规定,A、B两地之间的公路车速x应限制在60~120km/h,假设汽油的价格是7元/L,汽车的耗油率为 ,司机每小时的工资是70元(设汽车为匀速行驶),那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?
【答案】80,280
【解析】
【分析】
将总费用表示出来 ,再利用均值不等式得到答案.
【详解】对于A中的两个集合,可取函数f(x)=x-1,x∈ ,满足:(i)B={f(x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),故A是“保序同构”;
对于B中的两个集合,可取函数 满足题意,是“保序同构”;
对于C中的两个集合,可取函数f(x) (0<x<1),是“保序同构”.利用排除法可知选:D
上海市2021届高三数学上学期9月月考试题(含解析)
一、填空题
, ,则用列举法表示集合 =________
【答案】
【解析】
【分析】
根据题意,分析集合A可得A中的元素,将其元素代入y=x2+1中,计算可得y的值,即可得B的元素,用列举法表示即可得答案.
【详解】根据题意,A={﹣2,﹣1,0,1,2},

∵-1∈A,∴
∴A中另外两个元素为 , ;
(2) , , ,且 , ,
,故集合 中至少有3个元素,∴不是双元素集合;
(3)由 , ,可得
,所有元素积为1,∴ ,
、 、 ,∴ .
【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.
是偶函数, .
(1)求 的值,并判断函数 在 上的单调性,说明理由;
A.既不充分也不必要的条件B.充分而不必要的条件

2021届上海市建平中学高三上学期9月月考数学试题(解析版)

2021届上海市建平中学高三上学期9月月考数学试题(解析版)
(2)利用导数可求出该函数的最值.
【详解】
(1)由题意知, ,
将 代入化简得: ( );
(2) ,
(ⅰ)当 时,
①当 时, ,所以函数 在 上单调递增,
②当 时, ,所以函数 在 上单调递减,
从而促销费用投入 万元时,厂家的利润最大;
(ⅱ)当 时,因为函数 在 上单调递增,
所以在 上单调递增,故当 时,函数有最大值,
选项D,当 时,满足 ,但数列 不是等比数列,故D错误.
故选C.
点睛:证明或判断等比数列的方法
(1)定义法:对于数列 ,若 ,则数列 是等比数列;
(2)等比中项:对于数列 ,若 ,则数列 是等比数列;
(3)通项公式法 ( 均是不为0的常数, )⇔ 是等比数列.
(4)特值法:若是选择题、填空题可以用特值法进行判断,特别注意 的判断.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.
【答案】(1) ( );(2)当 时,促销费用投入1万元,厂家的利润最大,为 万元;当 时,促销费用投入 万元,厂家的利润最大,为 万元.
【解析】(1)根据产品的利润 销售额 产品的成本建立函数关系;
(3)将直线 方程为 ,代入椭圆的方程,结合根与系数的关系,求得 两点的坐标,进而得出 方程,即可求解.
【详解】
(1)由 ,可知 ,
又由 点坐标为 ,故 ,可得 ,
因为椭圆 过 点,故 ,可得 ,
所以椭圆 的方程为 .
【详解】
∵ ,
∴ , ,当且仅当 ,即 时等号成立.
故答案为: .
【点睛】
本题考查用基本不等式求最值,解题时需掌握基本不等式求最值的三个条件:一正二定三相等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.某人5次上班途中所花的时间(单位:分钟)分别为 、 、10、11、9,已知这组数据的平均数为10,方差为2,则 的值为
7.设 是等差数列 的前 项和,若 , ,则
8.不等式组 所表示的区域的面积为
9.将函数 的图像向右平移 ( )个单位得到函数 的图像,
若存在 使得 ,则 的最小值为
10.在 的展开式中任取两项,其系数的乘积是偶数的概率为
经调查测算,该促销产品在“双十一”的销售量 (万件)与促销费用 (万元)满足 (其中 , 为正常数),已知生产该产品还需投入成本 万元
(不含促销费用),每一件产品的销售价格定为 元,假定厂家的生产能力完全能满
足市场的销售需求.
(1)将该产品的利润 (万元)表示为促销费用 (万元)的函数;
(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.
(3)若数列 中存在三项 、 、 ( 且 )依次成等差数列,求
的取值范围.
参考答案
一.填空题
1. 2. 3. 4.
5.36. 47. 8. 16
9. 10. 11. 12.
二.选择题
13.A14.B15.C16.C
三.解答题
17.(1) , ;(2) .
18.(1)当 , 时, 取得最大值,最大值为2;(2) 或 .
建平中学2021届高三上学期9月月考
数学试卷
2020.09
一.填空题
1.设复数 ห้องสมุดไป่ตู้ 为虚数单位,则复数 的虚部为
2.已知全集 ,集合 ,则
3.若行列式 中的元素2的代数余子式的值等于2,则实数 的值为
4.正实数 、 满足 ,则 的最大值为
5.已知函数 , 是函数 的反函数,若 的图像过点 ,则 的值为
11.设 、 分别是抛物线 和圆 上的点,若存在实数 使得
,则 的最小值为
12.若函数 ( 且 )在 上单调递减,且关于
的方程 恰有两个不相等的实数解,则 的取值范围是
二.选择题
13.直线 的一个法向量为()
A. B. C. D.
14.已知 、 是空间两个不同的平面,则“平面 上存在不共线的三点到平面 的距离相等”是“ ∥ ”的()
19.(1) ;(2)当 时,促销费用投入1万元,厂家的利润最大,最大利润为13万元;当 时,促销费用投入 万元时,厂家的利润最大,最大利润为 万元.
20.(1) ;(2) ;(3)过定点 ,证明略.
21.(1) ;(2) , ;(3) .
求实数 的取值范围.
18.已知 .
(1)求 的最大值及该函数取得最大值时 的值;
(2)在△ 中, 、 、 分别是角 、 、 所对的边,若 , ,
且 ,求边 的值.
19.经过多年的运作,“双十一” 抢购活动已经演变成为整个电商行业的大型集体促销盛宴,
为迎接今年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销,
①曲线 恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线 上任意一点到原点的距离都不超过 ;
③曲线 所围成的“心形”区域的面积小于3;
其中,所有正确结论的序号是()
A.①B.②C.①②D.①②③
三.解答题
17.设函数 定义域为集合 ,函数 定义域为集合 .
(1)求集合 和 ;
(2)已知 , 满足 ,且 是 的充分条件,
20.设椭圆 ( )的左顶点为 ,中心为 ,若椭圆 过点
,且 .
(1)求椭圆 的方程;
(2)若△ 的顶点 也在椭圆 上,试求△ 面积的最大值;
(3)过点 作两条斜率分别为 、 的直线交椭圆 于
、 两点,且 ,求证:直线 恒过一个定点.
21.已知常数 ,数列 满足 , .
(1)若 , ,求 的值;
(2)在(1)的条件下,求数列 的前 项和 ;
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件
15.设数列 ,以下命题正确的是()
A.若 , ,则 为等比数列
B.若 , ,则 为等比数列
C.若 , ,则 为等比数列
D.若 , ,则 为等比数列
16.数学中有许多形状优美、寓意美好的曲线,曲线 就是其中之一(如图),给出下列三个结论:
相关文档
最新文档