双馈发电机工作原理

合集下载

双馈发电机原理讲解完整版

双馈发电机原理讲解完整版

双馈发电机原理讲解 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一.双馈发电机原理讲解二.风力发电机的主要类型1.异步发电机笼鼠式异步发电机特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。

缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。

一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。

绕线转子异步发电机特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。

风速大的时候多余的能量可以消耗在转子电阻上。

双馈异步发电机特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。

2.同步发电机永磁同步发电机特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。

转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。

一般用于海上风机。

直流励磁同步发电机特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

三. 双馈异步发电机原理1.旋转磁场旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。

从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。

三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。

2.旋转磁场的转速和转向以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。

① ωt=0 o 时,合成磁场方向:向下② ωt=60o 时,合成磁场方向顺时针转过60o 。

双馈风力发电机工作原理

双馈风力发电机工作原理

双馈风力发电机工作原理双馈风力发电机由三个主要部分组成:风轮,机械传动系统和电气系统。

风轮是由叶片和轮毂组成的,它负责将风能转化为旋转能量。

机械传动系统则负责将旋转能量转移到发电机上。

而电气系统则将机械能转化为电能,并送入电网中。

首先,风轮在风速的推动下开始旋转。

当风速足够高时,风轮旋转的速度也相应增加。

旋转的风轮通过主轴将旋转能量传输给发电机的转子。

与传统的固定速度(常规)发电机不同的是,双馈风力发电机是一种变速发电机。

它的转子上设有两组绕组:定子绕组和转子绕组。

定子绕组固定在发电机的圆柱形部分上,而转子绕组则固定在转子上。

定子绕组与电网直接相连,通过电网供电并产生旋转磁场。

转子绕组上也有一个与电网连接并可以提供电能的回路。

这个循环是通过一个双级功率变换器实现的,这也是双馈风力发电机名称的由来。

双级功率变换器是由一个转子侧变频器和一个定子侧变频器组成的。

当风轮旋转的速度发生变化时,定子绕组上的旋转磁场也会发生变化。

这个变化的旋转磁场会产生感应电动势,使转子绕组上的电流发生变化。

这个变化的电流经由双级功率变换器输入到定子绕组上。

由于双级功率变换器的存在,电流可以根据需求进行加减,从而实现功率的控制。

通过双级功率变换器,转子绕组上的电流可以与定子绕组上的电压相互配合,从而实现最佳的功率传输。

定子侧的变频器控制着定子绕组上的电流和频率,保持电网的稳定性和功率质量。

而转子侧的变频器则控制着转子绕组上的电流和频率,提高了发电机的效率和可靠性。

总的来说,双馈风力发电机通过风轮将风能转化为旋转能量,然后将旋转能量通过机械传动系统传输给发电机的转子。

转子上的双级功率变换器帮助将机械能转化为电能,并将其送入电网中。

通过双级功率变换器的灵活控制,双馈风力发电机能够提高整个系统的效率和稳定性,从而更好地利用风能资源。

双馈、直驱、半驱风力发电机工作原理

双馈、直驱、半驱风力发电机工作原理

双馈、直驱、半驱风力发电机工作原理双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。

它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中得到广泛应用。

我们来了解一下双馈风力发电机的工作原理。

双馈风力发电机是一种采用异步发电机的结构,其转子由两部分组成:一个是固定子,另一个是转子。

风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。

在双馈风力发电机中,转子的定子通过拖动转子的磁场,使得风力发电机可以实现变频调速。

双馈风力发电机具有转矩平稳、响应速度快的优点,可以适应不同风速下的工作状态。

接下来,我们介绍一下直驱风力发电机的工作原理。

直驱风力发电机是一种采用永磁同步发电机的结构,其转子由永磁体构成。

风力通过叶片传递给转子,转子通过直接驱动发电机产生电能。

直驱风力发电机不需要传动系统,减少了能量转换的损失,提高了发电效率。

直驱风力发电机具有结构简单、体积小、维护成本低等优点,逐渐成为风力发电领域的主流技术。

我们来了解一下半驱动风力发电机的工作原理。

半驱动风力发电机是双馈风力发电机和直驱风力发电机的结合体,它采用了双馈发电机的转子结构和直驱发电机的永磁体。

风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。

半驱动风力发电机兼具双馈风力发电机和直驱风力发电机的优点,具有较高的发电效率和稳定性。

双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。

它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中发挥重要作用。

双馈风力发电机通过变频调速实现转矩平稳,响应速度快;直驱风力发电机通过永磁同步发电机实现高效发电;半驱动风力发电机兼具双馈和直驱的优点,具有较高的发电效率和稳定性。

随着风力发电技术的不断发展,这些风力发电机构将进一步完善和提升,为可持续能源的开发和利用做出更大贡献。

双馈发电机工作原理

双馈发电机工作原理

双馈发电机工作原理第七章双馈风力发电机工作原理我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。

双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。

同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。

交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。

这说明交流励磁电机比同步电机多了两个可调量。

通过改变励磁频率,可改变发电机的转速,达到调速的目的。

这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。

改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。

这说明电机的功率角也可以进行调节。

所以交流励磁不仅可调节无功功率,还可以调节有功功率。

交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。

但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。

一、双馈电机的基本工作原理设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速11f 及电机的极对数p 的关系如下: p f n 1160= (3-1) 同样在转子三相对称绕组上通入频率为2f 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为: p f n 2260= (3-2) 由式3-2可知,改变频率2f ,即可改变2n ,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。

双馈发电机的原理

双馈发电机的原理

双馈发电机的原理双馈发电机是一种独特的电动机,在发电和驱动领域得到广泛应用。

它采用了双馈结构,即同时给定定子绕组和转子绕组电源,具有高效率和较好的性能。

本文将详细介绍双馈发电机的原理及其工作过程。

一、双馈发电机的结构双馈发电机由定子绕组、转子绕组和磁路组成。

定子绕组是通过固定在定子上的线圈形成的,而转子绕组是固定在转子上的线圈。

通过将定子和转子绕组分别接入电源,实现对发电机的控制。

二、双馈发电机的原理双馈发电机的原理是基于磁场的相互作用和电流的感应。

当定子绕组通电时,产生的磁场将影响转子绕组中的电流。

反过来,转子绕组中的电流也会产生磁场,进一步影响定子绕组中的电流。

通过这种相互作用,能够实现能量的转换和传输。

三、双馈发电机的工作过程在正常工作状态下,双馈发电机的定子和转子绕组均接通电源。

定子绕组产生旋转磁场,通过与转子绕组的电流相互作用,产生驱动力矩。

转子绕组中的电流会产生磁场,与定子绕组的磁场相互作用,进一步提高发电机的效率和性能。

四、双馈发电机的优势相比传统的发电机,双馈发电机具有以下优势:1. 高效率:双馈发电机能够通过转子绕组中的电流来调节和控制磁场,从而提高发电机的效率。

2. 较好的性能:双馈发电机在低速启动和高速运行时具有较好的性能,能够适应各种工况要求。

3. 灵活性:双馈发电机的结构和控制方式可以根据实际需求进行调整,具有较强的灵活性和适应性。

五、双馈发电机的应用领域双馈发电机广泛应用于风力发电、水力发电和轨道交通等领域。

在风力发电中,双馈发电机能够充分利用风能,并通过优化的控制系统实现最大的发电效率。

在水力发电中,双馈发电机具有低噪音、高效率和可靠性等优点。

在轨道交通中,双馈发电机能够实现高速度和高扭矩的需求。

六、总结双馈发电机作为一种独特的电动机,通过双馈结构实现了高效率和较好的性能。

它的工作原理是基于磁场的相互作用和电流的感应。

双馈发电机的优势包括高效率、较好的性能和灵活性,广泛应用于风力发电、水力发电和轨道交通等领域。

双馈异步发电机原理

双馈异步发电机原理

双馈异步发电机原理双馈异步发电机(Double Fed Induction Generator,DFIG)是一种常用于风力发电系统的电机。

它具有一定的功率调节能力和较高的发电效率,在现代能源领域得到广泛应用。

本文将就双馈异步发电机的原理进行介绍。

一、简介双馈异步发电机由固定部分(定子)和旋转部分(转子)组成。

定子绕组中通以三相对称电流,形成旋转磁场,而转子通过刚性转子轴与风力发电机的转动相连。

定子与转子的耦合通过定子绕组和转子绕组之间传递电流来实现。

这就是为什么它被称为“双馈”发电机的原因。

二、工作原理当双馈异步发电机以风力发电机的转动速度运转时,风轮带动发电机旋转,同时将机械能转化为电能。

定子的电压通过电网和电池汇流条供电。

为了实现双馈异步发电机的控制,定子绕组由逆变器供电,逆变器通过电网进行功率调节,并使双馈异步发电机保持在最佳工作状态。

三、主要特点1. 调节能力:双馈异步发电机的电压和频率可以通过逆变器调节,从而实现对功率输出的精确控制。

这使得它在风能系统中成为一种理想的发电机。

2. 高效性能:相比传统发电机,双馈异步发电机在输送能量时能够减小电流的损耗,提高发电效率。

3. 提高动态响应:双馈异步发电机可以通过逆变器的调节来提高其动态响应能力,使其能够更快速地适应变化的风速和负载。

4. 减少对电网的影响:双馈异步发电机可以通过逆变器来控制发电功率,减少对电网的负荷影响,提高电网的稳定性和可靠性。

四、应用领域双馈异步发电机在风力发电系统中得到广泛应用。

其调节能力和高效性能使其成为风能转换系统的核心组件。

同时,双馈异步发电机也可以应用于其他领域,如水力发电、轨道交通以及工业领域等。

总结双馈异步发电机具有调节能力强、高效、动态响应快以及对电网影响小等特点,为风力发电系统带来了巨大的发展潜力。

随着能源需求的不断增长,双馈异步发电机将继续在可再生能源领域发挥重要作用,为我们提供更清洁、可持续的发电解决方案。

双馈发电机工作原理

双馈发电机工作原理

双馈发电机工作原理双馈发电机(Doubly Fed Induction Generator,简称DFIG)是一种常见的风力发电机的类型,其工作原理基于异步电机的原理。

DFIG是由一个转子和一个固定转子组成的,其中转子通常由铜或铝制成。

DFIG的工作原理如下:1.转子:DFIG的主要部分是转子,它是由绕组组成的。

绕组中的导线将电能传递给转子,以形成旋转磁场。

旋转磁场通过与固定转子的磁场交互,产生电动势。

转子上的绕组通常是属于定子的,即与固定转子的绕组相连。

转子的绕组也被称为发电机侧的绕组。

2.固定转子:固定转子是固定在发电机的外部的,由静子绕组组成。

静子绕组通常是三相绕组,其绕组与电网相连,接收来自电网的电能。

静子绕组的电能由定子中的定子绕组接收,它们通过拖曳转子旋转磁场生成的电动势传输。

定子绕组也被称为电网侧的绕组。

3.转子绕组:转子绕组是双馈发电机的关键组成部分之一、它有两个绕组:一个是通过滑环连接到固定转子的绕组,另一个是通过短路圈连接到直流环。

这两个绕组可以使发电机在双馈模式和全功率模式之间切换。

当DFIG处于双馈模式时,转子的旋转磁场通过滑环绕组传递电动势到定子绕组,然后通过定子绕组传输到电网。

这种方式下,电网接收到的电能比转子绕组输入的电能要大。

当DFIG处于全功率模式时,转子的旋转磁场通过短路圈绕组传递电动势到直流环绕组,然后通过直流环绕组传输到定子绕组。

这种方式下,输出到电网的电能比输入到转子绕组的电能要大。

DFIG的双馈模式和全功率模式的切换是由电力电子装置控制的,这个装置通常被称为转子侧变流器。

总的来说,DFIG的工作原理是通过转子和固定转子间的相互作用,将输入的电能转换成输出的电能。

DFIG的旋转磁场产生电动势,在双馈模式和全功率模式下,电动势通过不同的绕组传输到电网。

这使得DFIG 在不同工作条件下都能有效地工作。

双馈风力发电机的工作原理

双馈风力发电机的工作原理

双馈风力发电机的工作原理
1、双馈风力发电机的工作原理:
是通过叶轮将风能转变为机械转矩,通过主轴传动链,经过齿轮箱增速到异步发电机转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。

如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。

双馈发电机正是由叶片通过齿轮箱变速,带动以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,已达到最大利用风能效果。

2、双馈风力发电的特点:
(1)由于定子直接与电网连接,转子采用变频供电,因此,系统中的变频器容量仅仅取决于发电机运行时的最大转差功率,一般发电机最大转差功率为25%-35%,因而变频器的最大容量仅为发电机容量的1/4-1/3,这样系统的总体配置费用就比较低。

(2)具有变速恒频的特性。

(3)可以实现有功功率和无功功率的调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章双馈风力发电机工作原理我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。

双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。

同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。

交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。

这说明交流励磁电机比同步电机多了两个可调量。

通过改变励磁频率,可改变发电机的转速,达到调速的目的。

这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。

改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。

这说明电机的功率角也可以进行调节。

所以交流励磁不仅可调节无功功率,还可以调节有功功率。

交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。

但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。

一、双馈电机的基本工作原理设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速11f 及电机的极对数p 的关系如下:pf n 1160=(3-1)同样在转子三相对称绕组上通入频率为2f 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:pf n 2260=(3-2)由式3-2可知,改变频率2f ,即可改变2n ,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。

因此,若设1n 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持常数==±12n n n ,见式3-3,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为1f 不变。

常数==±12n n n(3-3)双馈电机的转差率11n nn S -=,则双馈电机转子三相绕组内通入的电流频率应为:S f pn f 12260==(3-4)公式3-4表明,在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即S f 1)的电流,则在双馈电机的定子绕组中就能产生50Hz 的恒频电势。

所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。

根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态: 1. 亚同步运行状态:在此种状态下1n n <,由转差频率为2f 的电流产生的旋转磁场转速2n 与转子的转速方向相同,因此有12n n n =+。

2. 超同步运行状态:在此种状态下1n n >,改变通入转子绕组的频率为2f 的电流相序,则其所产生的旋转磁场的转速2n 与转子的转速方向相反,因此有12n n n =-。

3. 同步运行状态:在此种状态下1n n =,转差频率02=f ,这表明此时通入转子绕组的电流频率为0,也即直流电流,与普通的同步电机一样。

下面从等效电路的角度分析双馈电机的特性。

首先,作如下假定: 1. 只考虑定转子的基波分量,忽略谐波分量 2. 只考虑定转子空间磁势基波分量 3. 忽略磁滞、涡流、铁耗4. 变频电源可为转子提供能满足幅值、频率、功率因数要求的电源,不计其阻抗和损耗。

发电机定子侧电压电流的正方向按发电机惯例,转子侧电压电流的正方向按电动机惯例,电磁转矩与转向相反为正,转差率S 按转子转速小于同步转速为正,参照异步电机的分析方法,可得双馈发电机的等效电路,如图3-1所示:根据等效电路图,可得双馈发电机的基本方程式:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==⎪⎪⎭⎫ ⎝⎛++-=+--=m m m I I I jX I E E jX s R I E s U jX R I E U '21'21'2'2'2'2'211111)()((3-5)式中:● 1R 、1X 分别为定子侧的电阻和漏抗● '2R 、'2X 分别为转子折算到定子侧的电阻和漏抗● m X 为激磁电抗● 1U 、1E 、1I 分别为定子侧电压、感应电势和电流● '2E 、'2I 分别为转子侧感应电势,转子电流经过频率和绕组折算后折算到定子侧的值。

● '2U 转子励磁电压经过绕组折算后的值,s U /'2 为'2U 再经过频率折算后的值。

普通的绕线转子电机的转子侧是自行闭合的,根据基尔霍夫电压电流定律可以写出普通绕线式转子电机的基本方程式:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==⎪⎪⎭⎫ ⎝⎛+=+--=mm m I I I jX I E E jX s R I E jX R I E U'21'21'2'2'2'211111)()( (3-6)从等值电路和两组方程的对比中可以看出,双馈电机就是在普通绕线式转子电机的转子回路中增加了一个励磁电源,恰恰是这个交流励磁电源的加入大大改善了双馈电机的调节特性,使双馈电机表现出较其它电机更优越的一些特性。

下面我们根据两种电机的基本方程画出各自的矢量图,从矢量图中说明引入转子励磁电源对有功和无功的影响。

从矢量图中可以看出,对于传统的绕线式转子电机,当运行的转差率s 和转子参数确定后,定转子各相量相互之间的相位就确定了,无法进行调整。

即当转子的转速超过同步转速之后,电机运行于发电机状态,此时虽然发电机向电网输送有功功率,但是同时电机仍然要从电网中吸收滞后的无功进行励磁。

但从图3-4中可以看出引入了转子励磁电压之后,定子电压和电流的相位发生了变化,因此使得电机的功率因数可以调整,这样就大大改善了发电机的运行特性,对电力系统的安全运行就有重要意义。

二、 双馈发电机的功率传输关系风力机轴上输入的净机械功率(扣除损耗后)为mech P ,发电机定子向电网输出的电磁功率为1P ,转子输入/输出的电磁功率为2P ,s 为转差率,转子转速小于同步转速时为正,反之为负。

2P 又称为转差功率,它与定子的电磁功率存在如下关系:12P s P =如果将2P 定义为转子吸收的电磁功率,那么将有:12sP P =此处s 可正可负,即若0>s ,则02>P ,转子从电网吸收电磁功率,若0<s ,则02<P ,转子向电网馈送电磁功率。

下面考虑发电机超同步和亚同步两种运行状态下的功率流向:2.1 超同步运行状态顾名思义,超同步就是转子转速超过电机的同步转速时的一种运行状态,我们称之为正常发电状态。

(因为对于普通的异步电机,当转子转速超过同步转速时,就会处于发电机状态)。

根据图中的功率流向和能量守恒原理,流入的功率等于流出的功率111)1(P s P s P P mech +=+=因为发电机超同步运行,所以0<s ,所以上式可进一步写成:1)1(P s P mech -=将上述式子归纳得:超同步速,0<s ,1P P mech >2.2 亚同步运行状态即转子转速低于同步转速时的运行状态,我们可以称之为补偿发电状态(在亚同步转速时,正常应为电动机运行,但可以在转子回路通入励磁电流使其工作于发电状态)根据图中3-7以及能量守恒原理,流入的功率等于流出的功率:11P P s P mech =+因为发电机亚同步运行,所以0>s ,所以上式可进一步写成:1)1(P s P mech -=将上述式子归纳得到,亚同步速,0>s ,2P P mech <三、 双馈电机的数学模型上一节,我们从双馈电机的稳态等效电路以及功率流向的角度分析了双馈电机的工作原理,但这对于控制来说是远远不够的,本节我们将从数学模型的角度来分析双馈电机,为下一步的控制做准备。

双馈电机的数学模型与三相绕线式感应电机相似,是一个高阶、非线性、强耦合的多变量系统。

为了建立数学模型,一般作如下假设:1. 三相绕组对称,忽略空间谐波,磁势沿气隙圆周按正弦分布2. 忽略磁路饱和,各绕组的自感和互感都是线性的3. 忽略铁损4. 不考虑频率和温度变化对绕组的影响。

在建立基本方程之前,有几点必须说明:1. 首先要选定好磁链、电流和电压的正方向。

图3-9所示为双馈电机的物理模型和结构示意图。

图中,定子三相绕组轴线A 、B 、C 在空间上是固定,a 、b 、c 为转子轴线并且随转子旋转,r θ为转子a 轴和定子A 轴之间的电角度。

它与转子的机械角位移m θ的关系为p r m n /θθ=,p n 为极对数。

各轴线正方向取为对应绕组磁链的正方向。

定子电压、电流正方向按照发电机惯例标示,正值电流产生负值磁链;转子电压、电流正方向按照电动机惯例标示,正值电流产生正值磁链。

2. 为了简单起见,在下面的分析过程中,我们假设转子各绕组各个参数已经折算到定子侧,折算后定、转子每相绕组匝数相等。

于是,实际电机就被等效为图3-9所示的物理模型了。

双馈电机的数学模型包括电压方程、磁链方程、运动方程、电磁转矩方程等。

3.1 电压方程选取下标s 表示定子侧参数,下标r 表示转子侧参数。

定子各相绕组的电阻均取值为s r ,转子各相绕组的电阻均取值为r r 。

于是,交流励磁发电机定子绕组电压方程为:A A s A D i r u ψ+-=B B s B D i r u ψ+-=C C s CD i r u ψ+-=转子电压方程为: a a r a D i r u ψ+=b b r b D i r u ψ+=c c r c D i r u ψ+=可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡c b a C B A c b a C B A r r r s s s c b a C B A D D D D D D i i i i i i r r r r r r u u u u u u ψψψψψψ000000000000000000000000000 (3-7)或写成:DψRi u +=式中: c u u u u u u b a C B A 、、、、、 ——定子和转子相电压的瞬时值; c i i i i i i b a C B A 、、、、、——定子和转子相电流的瞬时值;c ψψψψψψ、、、、、b a C B A ——各组绕组的全磁链;r s r r 、 ——定子和转子的绕组电阻D ——微分算子dtd3.2 磁链方程定转子各绕组的合成磁链是由各绕组自感磁链与其它绕组互感磁链组成,按照上面的磁链正方向,磁链方程式为:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡c b a C B A cc cbcacCcBcA bc bb ba bC bB bA ac ab aa aC aB aA Cc Cb Ca CC CB CA Bc Bb Ba BC BB BA Ac Ab Aa AC AB AA c b a C B A i i i i i i L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ψψψψψψ (3-8)或写成:Li ψ=式中的电感L 是个6*6的矩阵,主对角线元素是与下标对应的绕组的自感,其他元素是与下标对应的两绕组间的互感。

相关文档
最新文档