2015最新人教版八年级数学下册期末考试卷

合集下载

2015八年级(下)期末数学试卷附答案

2015八年级(下)期末数学试卷附答案

八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠02.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=43.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<26.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣67.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣18.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣210.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,1511.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.2612.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=.(提示:方差公式为s2=.)18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开小时.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;2.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4考点:解分式方程.分析:首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.解答:解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.点评:此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.3.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得△ABC的周长等于三条中位线围成的三角形的周长的2倍,然后代入数据计算即可得解.解答:解:∵△ABC的周长是12cm,∴△ABC三条中位线围成的三角形的周长=×12=6(cm).故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.解答:解:由矩形的面积16=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选C.点评:本题考查了反比例函数的应用,注意反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<2考点:反比例函数的图象;反比例函数图象上点的坐标特征.专题:压轴题;数形结合.分析:先根据反比例函数的图象过点A(﹣1,﹣2),利用数形结合求出x<﹣1时y的取值范围,再由反比例函数的图象关于原点对称的特点即可求出答案.解答:解:∵反比例函数的图象过点A(﹣1,﹣2),∴由函数图象可知,x<﹣1时,﹣2<y<0,∴当x>1时,0<y<2.故选:D.点评:本题考查的是反比例函数的性质及其图象,能利用数形结合求出x<﹣1时y的取值范围是解答此题的关键.6.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣6考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△AOB=|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.故选:C.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣1考点:解分式方程.分析:去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.解答:解:方程的两边同乘(x﹣1),得2﹣x=x﹣1.故选D.点评:本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项.8.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个考点:平行四边形的判定.专题:几何图形问题.分析:根据平面的性质和平行四边形的判定求解.解答:解:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选:C.点评:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系.注意图形结合的解题思想.9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣2考点:反比例函数图象上点的坐标特征;菱形的性质.专题:计算题.分析:根据菱形的性质,点A与点C关于OB对称,而OB在y轴上,则可得到A(2,1),然后根据反比例函数图象上点的坐标特征求k的值.解答:解:∵菱形OABC的顶点B在y轴上,∴点A和点C关于y轴对称,∴A(2,1),∴k=2×1=2.故选A.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.10.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,15考点:众数;中位数.专题:常规题型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:根据图表数据,同一年龄人数最多的是15岁,共6人,所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是=15.5.故选B.点评:本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.26考点:直角三角形斜边上的中线;等腰三角形的性质.分析:根据等腰三角形三线合一的性质可得AD⊥BC,DC=,再根据直角三角形的性质可得DE=EC==6.5,然后可得答案.解答:解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC==6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故选:B.点评:此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6考点:翻折变换(折叠问题);勾股定理.专题:压轴题;探究型.分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解答:解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=1.考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0.解答:解:∵x﹣1=0,∴x=1,当x=1,时x+3≠0,∴当x=1时,分式的值是0.故答案为1.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为 2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:反比例函数的性质;反比例函数的定义.专题:计算题.分析:根据反比例函数的定义可知m2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.解答:解:∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣2.点评:本题考查了反比例函数的定义及图象性质.反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,注意自变量x的次数是﹣1;当k>0时,反比例函数图象在一、三象限,当k<0时,反比例函数图象在第二、四象限内.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为4.考点:菱形的判定与性质;勾股定理的逆定理.分析:根据勾股定理的逆定理可得对角线互相垂直,然后根据菱形性质可求出面积.解答:解:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=6.(提示:方差公式为s2=.)考点:方差.分析:先由平均数公式求得x的值,再由方差公式求解.解答:解:∵平均数=(﹣1+2+3+x+0)÷5=2∴﹣1+2+3+x+0=10,x=6∴方差S2=[(﹣1﹣2)2+(0﹣2)2+(2﹣2)2+(6﹣2)2+(3﹣2)2]÷5=6.故答案为6.点评:本题考查方差的定义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开15小时.考点:分式方程的应用.分析:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,根据题意可得,一个进水管(x+5)小时进的水量=两个出水管5个小时的出水量,一个进水管(x+3)小时进的水量=三个出水管3个小时的出水量,据此列方程组求解.解答:解:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,由题意得,,两式相除,得:,解得:x=15,经检验,x=15是原分式方程的解.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,第四项利用负整数指数幂法则计算,最后一项利用立方根定义计算即可得到结果.解答:解:原式=﹣1+3﹣2+1﹣3+4=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.考点:平行四边形的判定与性质.专题:探究型.分析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE 是平行四边形,即可得出结论.解答:解:猜想线段CD与线段AE的大小关系和位置关系是:相等且平行.理由:∵CE∥AB,∴∠DAO=∠ECO,∵在△ADO和△ECO中∴△ADO≌△ECO(ASA),∴AD=CE,∴四边形ADCE是平行四边形,∴CD AE.点评:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=[﹣]•=•=•=.当x=2时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?考点:分式方程的应用.分析:根据:原计划完成任务的天数﹣实际完成任务的天数=4,列方程即可.解答:解:设原计划每天种x棵树,据题意得,,解得x=30,经检验得出:x=30是原方程的解.答:原计划每天种30棵树.点评:此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)考点:全等三角形的判定与性质;矩形的判定与性质.专题:证明题.分析:作CF⊥BE,垂足为F,得出矩形CFED,求出∠CBF=∠A,根据AAS证△BAE≌△CBF,推出BF=AE即可.解答:证明:作CF⊥BE,垂足为F,∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∴四边形EFCD为矩形,∴CD=EF,∵∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,在△BAE和△CBF中,,∴△BAE≌△CBF(AAS),∴BF=AE,∴BE=BF+FE=AE+CD.点评:本题考查了全等三角形的性质和判定,矩形的判定和性质的应用,关键是求出△BAE≌△CBF,主要考查学生运用性质进行推理的能力.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题.专题:数形结合.分析:(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;(2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.解答:解:(1)由题意知,OA=3,OB=4在Rt△AOB中,AB=∵四边形ABCD为菱形∴AD=BC=AB=5,∴C(﹣4,﹣5).设经过点C的反比例函数的解析式为(k≠0),则=﹣5,解得k=20.故所求的反比例函数的解析式为.(2)设P(x,y)∵AD=AB=5,OA=3,∴OD=2,S△COD=即,∴|x|=,∴当x=时,y==,当x=﹣时,y==﹣∴P()或().点评:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.考点:一次函数综合题.分析:(1)根据平行四边形PQAB的对边相等的性质得到关于t的方程,通过解方程求得t的值;(2)由题意得到:OC=4cm,OA=16cm.利用梯形的面积公式求得S梯形OABC=62(cm2),S四边形PQOC=,结合限制性条件“PQ所在直线将四边形OABC分成左右两部分的面积比为1:2”列出关于t的方程,通过解方程来求t的值;(3)根据(2)中求得的t的值可以得到点P、Q的坐标,则利用待定系数法来求直线PQ的解析式.解答:解:(1)ts后,BP=(15﹣2t)cm,AQ=4t cm.由BP=AQ,得15﹣2t=4t,t=2.5(s).又∵OA∥BC,∴当t=2.5s时,四边形PQAB为平行四边形.(2)∵点C坐标为(0,4),点A坐标为(16,0),∴OC=4cm,OA=16cm.∴S梯形OABC=(OA+BC)•OC=×(16+15)×4=62(cm2).∵t秒后,PC=2tcm,OQ=(16﹣4t)cm,∴S四边形PQOC=,又∵PQ所在直线将四边形OABC分成左右两部分的面积比为1:2,∴,解得(s).当(s)时,直线PQ将四边形OABC分成左右两部分的面积比为1:2.(3)当s时,P(,4),Q(,0).设直线PQ的解析式为:y=kx+b(k≠0),则,解得所以,此时直线PQ的函数关系式为.点评:本题考查了一次函数综合题,解题时,利用了梯形的面积公式、待定系数法求一次函数的解析式、平行四边形的判定定理等知识点,题中运用动点的运动速度与运动时间求出相关线段的长是解题的关键.。

2015新人教版八年级下册数学期末试卷及答案

2015新人教版八年级下册数学期末试卷及答案

2015年八年级数学(下) 期末调研检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。

A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)M PFE CBAB C A D O11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

2015年人教版八年级下期末数学试题

2015年人教版八年级下期末数学试题

2014-2015学年第二学期期末测试卷一、选择题:(每题3分,共30分)1.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠12. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A 1.5,2,3a b c=== B 7,24,25a b c===C 6,8,10a b c=== D 3,4,5a b c===3.如图,直线l上有三个正方形a b c,,,若a c,的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.55EF交AC于点H,则的值为().6.0)y kx b k=+≠(的图象如图所示,当0y>时,x的取值范围是()A.0x< B.0x> C.2x< D.2x>7. 已知函数y=(2m-1)x的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )A.m>21B.m<21C.m<2D.m>08. 下列各图中表示y是x的函数的是()9.已知:ΔABC中,AB=4,AC=3,BC=7,则ΔABC的面积是( )A.6B.5C.1.57D.2710.有一块直角三角形纸片,如图1所示,两直角边AC=6cm,BC=8cm ,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cmB.3cmC.4cm D.5cm二、填空题:(每题3分,共18分)11.计算:___________52021=÷+-12. |1|0a b++=,则b a=_________。

13.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k 的取值范围是.14.如图菱形ABCD的边长是2cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为________cm2.15.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.16.一名学生军训时连续射靶5次,命中的环数分别为4,7,8,6,5•则这名学生射击环数的方差是_________.A D第14题第15题第3题第4题第5题三、解答题:(每题5分,共20分) 17.计算:⎛÷ ⎝2+18. 如图所示,△ABC 中,2,30,45=︒=∠︒=∠AB C B .求:AC 的长。

2015年人教版八年级下册期末考试数学试卷及答案

2015年人教版八年级下册期末考试数学试卷及答案

2015年下学期期末考试八年级数学试卷一、选择题(每小题3分,共42分)将唯一正确答案的代号字母填在下面的方格内1.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.2.(3分)(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,103.(3分)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)如图,在▱ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=()A.110°B.70°C.50°D.30°6.(3分)函数的自变量x的取值范围为()A.x≥2且x≠8 B.x>2 C.x≥2 D.x≠87.(3分)下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.同一底上两个角相等的四边形是等腰梯形8.(3分)若ab>0,mn<0,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,在梯形ABCD中,AB∥DC,DE∥CB,若CD=4,△ADE周长为18,那么梯形ABCD的周长为()A.22 B.26 C.38 D.3010.(3分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(,1)C.(1,)D.(,2)11.(3分)在下列各图象中,y不是x函数的是()A.B.C.D.12.(3分)已知点(﹣6,y1),(8,y2)都在直线y=﹣x﹣6上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较13.(3分)雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利润45元.当M型号的时装为多少套时,能使该厂所获利润最大()A.40 B.44 C.66 D.8014.(3分)在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)答案直接填在题中横线上15.(3分)如果,那么xy的值为_________.16.(3分)一组数据0,﹣1,6,1,﹣1,这组数据的方差是_________.17.(3分)(2008•广安)在平面直角坐标系中,将直线y=2x﹣1向上平移动4个单位长度后,所得直线的解析式为_________.18.(3分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y 轴交点交于点D,则点C的坐标为_________,点D的坐标为_________.19.(3分)如图,在菱形ABCD中,AB=13cm,BC边上的高AH=5cm,那么对角线AC 的长为_________cm.三、解答题(共58分)20.(8分)计算(1)﹣÷(2×);(2).21.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.22.某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:五项成绩素质考评得分(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10 10 6 10 7乙班10 8 8 9 8丙班9 10 9 6 9根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10乙班8.6 8丙班9 9(2)参照表中的数据,你推荐哪个班为区级先进班集体?并说明理由;_________(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照按3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为市级先进班集体?23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)月份用水量(m3)收费(元)9 5 7.510 9 27(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y于x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?24.小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是_________km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(10分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(12分)如图,已知点A(2,0)、B(﹣1,1),点P是直线y=﹣x+4上任意一点.(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;(2)在(1)的条件下,求出△PAB的面积.参考答案1-10、ADBDB ACBBB 11-14、CABA15、-616、6.817、y=2x+318、(﹣1,0);(0,)19、20、(1)(2)2+21、证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG;∴▱AGCH是菱形.22、解:(1)丙班的平均数为=8.6(分);甲班成绩为6,7,10,10,10,中位数为10(分);乙班的众数为8分,填表如下:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10 10乙班8.6 8 8丙班8.6 9 9(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;故答案为:甲班;(3)根据题意得:丙班的平均分为9×+10×+9×+6×+9×=8.9(分),补全条形统计图,如图所示:∵8.5<8.7<8.9,∴依照这个成绩,应推荐丙班为市级先进班集体.23、解:(1)由题意5a=7.5,解得a=1.5;6a+(9﹣6)c=27,解得c=6.(2)依照题意,当x≤6时,y=1.5x;当x≥6时,y=6×1.5+6×(x﹣6),y=9+6(x﹣6)=6x﹣27,(x>6)(3)将x=8代入y=6x﹣27(x>6)得y=6×8﹣27=21(元).24、解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=33.5km,∵汽车每行驶100km耗油10L,25、(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE即60﹣4t=4t解得:t=∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升.26、解:(1)作出点A关于直线y=﹣x+4的对称点C,连结BC交直线于点P,∴PA=PC,AD=CD,则PB+PA=PB+PC=BC,由直线y=﹣x+4得与x轴上的交点D为(4,0)、与y轴的交点为E为(0,4),∴OD=OE=4,则∠ODE=45°,则∠ADC=90°,∴AD=CD=2,∴点C的坐标是(4,2),设直线BC的解析式为y=kx+b,则有,解得:k=,b=,即直线BC的解析式为:y=x+.由方程组得:,即P的坐标是(,),由勾股定理得BC=、AB=,∴△PAB的周长是.(2)由直线BC的解析式y=x+得:点F的坐标是(﹣6,0),∴S△PAB=S△PAF﹣S△BAF=×AE×(﹣1)=.。

2015新人教版八年级下册数学期末试卷(常考题型)

2015新人教版八年级下册数学期末试卷(常考题型)

数 学 测 试 题(时间: 分钟;满分 分)一、选择题(本大题共 个小题,每小题 分,共 分✆✌.1x ,21≠-≥且x .1x ≠ .21-≥x .1x ,21≠->且x( 雅安)一组数据 , ,⌧, , , 的众数是 ,则这组数据的平均数、中位数分别为( )✌. , . , . ,  . ,( 新疆)下列各式计算正确的是( )✌.91)3(2-=-- .23218-=- .10=a .2)2(2-=-( 重庆)某特警部队为了选拔“神枪手”,举行了 米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶 次,经过统计计算,甲、乙两名战士的总成绩都是 环,甲的方差是 ,乙的方差是 ,则下列说法中,正确的是( )✌.甲的成绩比乙的成绩稳定 .乙的成绩比甲的成绩稳定 .甲、乙两人成绩的稳定性相同 .无法确定谁的成绩更稳定( 襄阳)如图 ,平行四边形✌的对角线交于点 ,且✌,△ 的周长为 ,则平行四边形✌的两条对角线的和是( )✌.  .  .  . ( 黔东南州)如图 ,是直线3-=x y 的图象,点 ( ,❍)在该直线的上方,则❍的取值范围是( )✌.❍>  .❍>  .❍> .❍< ( 重庆)如图 ,矩形纸片✌中,✌♍❍, ♍❍,现将其沿✌☜对折,使得点 落在边✌上的点 处,折痕与边 交于点☜,则 ☜的长为( )✌. ♍❍ . ♍❍ . ♍❍ . ♍❍☎✆ ☎✆ ( )( 牡丹江)在平面直角坐标系中,点 为原点,直线b kx y +=交⌧轴于点✌(- , ),交⍓轴于点 .若△✌的面积为 ,则 的值为( )✌. . .- 或 . 或-( 长春)如图 ,在平面直角坐标系中,点✌的坐标为( , ),△ ✌沿⌧轴向右平移后得到△ ′✌′ ′,点✌的对应点在直线x y 43=上一点,则点 与其对应点 ′间的距离为( )✌.49. . .()()( )( 西宁)如图 ,在矩形✌中,☜,☞, 为✌, , 边上的点,且✌, ,✌☜, ,☜☞⊥☞,则☜的长为( )✌. .25 . .26( 西宁)如图 ,已知 平分∠✌,∠✌°, , ∥ ✌, ⊥ ✌于点 , ☜⊥ 于点☜.如果点 是 的中点,则 的长是( )✌. .2 .3 .32( 哈尔滨)梅凯种子公司以一定价格销售“黄金 号”玉米种子,如果一次购买 千克以上(不含 千克)的种子,超过 千克的那部分种子的价格将打折,并依此得到付款金额⍓(单位:元)与一次购买种子数量⌧(单位:千克)之间的函数关系如图 所示,下列四种说法:①一次购买种子数量不超过 千克时, 销售价格为 元 千克;②一次购买 千克种子时,付款金额为 元;③一次购买 千克以上种子时,超过 千克的那部分种子的价格打五折;④一次购买 千克种子比分两次购买且每次购买 千克种子少花 元钱.其中正确的个数是( )✌. 个 . 个 . 个 . 个 二、填空题(每题 分,共 分) ( 临沂)计算31948-的结果是  ( 重庆)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了 名学生,其统计数据如表: 时间(单位:小时)人数则这 名学生周末利用网络进行学习的平均时间是 小时( 西宁)直线12-=x y 沿⍓轴平移 个单位,则平移后直线与⍓轴的交点坐标为 ;( 眉山)直线2)3(-+-=b x a y 在直角坐标系中的图象如图 所示,化简:=--+---b a a a b 2962 .( 临沂)如图,菱形✌中,✌,∠ °,✌☜⊥ ,✌☞⊥ ,垂足分别为☜,☞,连接☜☞,则△✌☜☞的面积是 ;( 重庆)如图,平面直角坐标系中,已知直线x y =上一点 ( , ), 为⍓轴上一点,连接 ,线段 绕点 顺时针旋转 °至线段 ,过点 作直线✌⊥⌧轴,垂足为 ,直线✌与直线x y =交于点✌,且 ✌,连接 ,直线 与直线⍓⌧交于点✈,则点✈的坐标为 .()()( )三、解答题:(本大题 个小题,每个小题 分,共 分)。

新人教版2015-2016学年八年级下学期期末考试数学试题及答案

新人教版2015-2016学年八年级下学期期末考试数学试题及答案

新人教版2015-2016学年度八年级下期末考试数 学 试 卷时间120分钟,满分150分 2015.8.5A 卷(100分)一、选择题(每题3分,共30分)1.下列图案中是中心对称图形但不是轴对称图形的是 ( ▲ )A .B .C .D .2.不等式组⎩⎨⎧->≤31x x 的解集在数轴上表示正确的是(▲ )3.下列因式分解正确的是( ▲) A 、()ay ax y x a +=+ B 、()1255102-=-t t t tC 、1)2(3422--=+-y y yD 、()()x x x x x 3443162+-+=+- 4.在分式aba b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( ▲ )A .扩大为原来的2倍B .缩小为原来的21C .不变D .不确定5.使分式21xx -有意义...的x 的取值范围是( ▲ ) (A)x ≥21 (B )x ≤21 (C )12x >(D )12x ≠6.等腰三角形的底角是700,则顶角为 ( ▲ ) A .40° B .70° C .55° D .45° 7.多项式3262x x +中各项的公因式是( ▲ )-3 1 0 A . -3 1 0 B . -310 C .-31 0 D .A .2x B. x 2 C.32x D. 22x8.关于x 的分式方程:a xx x --=--2121有增根,则增根可能是(▲ )A .1=xB .0=xC .2=xD .a x =9.如图所示,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( ▲ )A .AB=DCB .∠1=∠2C .AB=AD D .∠D=∠B 10.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( ▲ ).A .0>xB .0<xC .2-<xD .2->x二、填空题(每空4分,共16分)11.命题“等角的补角相等”的逆命题是: ▲ .12.因式分解:x x -3= ▲ .13.当x = ▲ 时,分式44x x --的值等于零.14. 如图,△ABC 以点O 为旋转中心,旋转180°后得到△A ′B ′C ′.ED 是△ABC 的中位线,经旋转后为线段E ′D ′.已知BC=8,则E ′D ′= ▲ 。

2015最新人教版八年级数学下册期末考试卷及答案

2015最新人教版八年级数学下册期末考试卷及答案

新人教版八年级数学下期末综合检测一、选择题(每小题3分,共30分)1。

(2013·鞍山中考)要使式子有意义,则x的取值范围是()A.x>0 B。

x≥-2 C.x≥2 D。

x≤22.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等 C。

对角线互相平分D。

两组对角分别相等3.下列计算正确的是()A.×=4B。

+= C。

÷=2D。

=—154。

(2013·陕西中考)根据表中一次函数的自变量x与函数y的对应值,可得p的值为( )x —2 0 1y 3 p 0A。

1 B.—1 C.3 D.—35。

(2013·盐城中考)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )工资(元) 2 000 2 200 2 400 2 600人数(人) 1 3 4 2A.2400元、2400元B。

2400元、2300元C.2200元、2200元D。

2200元、2300元6。

四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是() A。

AB∥DC,AD∥BC B。

AB=DC,AD=BCC。

AO=CO,BO=DO D。

AB∥DC,AD=BC7。

(2013·巴中中考)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24B.16C.4D。

28.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )A。

B.2 C.3 D.49。

正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()10。

如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x〈ax+4的解集为()A。

x〈B。

x<3C.x> D.x〉3二、填空题(每小题3分,共24分)11.计算:—=。

2015—2016学年八年级下册数学期末考试测试卷(含答案)

2015—2016学年八年级下册数学期末考试测试卷(含答案)

2015-2016学年新人教版八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=43.下列四点中,在函数y=2x﹣5的图象上的点是()A.(﹣1,3)B.(0,5)C.(2,﹣1)D.(1,﹣7)4.点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两个点,且x1<x2,则以下正确的是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1和y2的大小5.某超市对员工进行三项测试:电脑、语言、商品知识,并按三项测试得分的5:3:2的比例确定测试总分,已知某员工三项得分分别为80,70,75,则这位超市员工的总分为()A.78 B.76 C.77 D.796.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D. 6.57.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等8.给定平面上不在同一直线上的三点,以这三点为顶点的平行四边形有()A.4个B.3个C.2个D.1个9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C. 3 D.二、填空题(每小题3分,共24分)11.计算:=.12.使在实数范围内有意义,x的取值范围是.13.命题“对顶角相等”的逆命题是,是(填“真命题”或“假命题”).14.直线y=﹣3x﹣2经过第象限.15.若平行四边形中相邻的两个内角度数比为1:4,则其中较小的内角是.16.五名男生的数学成绩如下:84,79,81,83,83,82,则这组数据的中位数是.17.在一个广场上有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.18.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为.三、解答题(共7小题,66分)19.(12分)(2015春•武夷山市校级期末)化简:(1)(﹣)﹣(+)(2)x=﹣1,求代数式x2+3x﹣4的值.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.21.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.22.(10分)(2014春•范县期末)如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?23.(10分)(2014•龙岩)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按元收取;超过5吨的部分,每吨按元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?24.甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:命中环数5 6 7 8 9 10 平均数众数方差甲命中环数的次数1 4 2 1 1 1 7 6 2.2乙命中环数的次数1 2 4 2 1 0(1)请你完成上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.25.(10分)(2015春•武夷山市校级期末)梯形ABCD中,AD∥BC,∠B=90°AD=24cm,AB=8cm,BC=26cm,动点P从A点开始沿AD边以1cm/s的速度向D运动,动点Q从C 点开始,沿BC边以3cm/s的速度向B运动,P、Q分别从A、C同时出发,当其中一点到端点时,另一点也随之停止,设运动时间为ts,当t为何值时,四边形PQCD是:①平行四边形;②等腰梯形.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.解答:解:A、=2,不是最简二次根式,故本选项错误;B、=,不是最简二次根式,故本选项错误;C、=,不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.点评:本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.2.下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=4考点:二次根式的加减法;二次根式的乘除法.分析:结合选项分别进行二次根式的加减法、乘除法运算,然后选择正确选项.解答:解:A、和不是同类二次根式,不能合并,故本选项错误;B、和不是同类二次根式,不能合并,故本选项错误;C、2和不是同类二次根式,不能合并,故本选项错误;D、+=2+2=4,计算正确,故本选项正确.故选D.点评:本题考查了二次根式的加减法、乘除法等知识,掌握运算法则是解答本题的关键.3.下列四点中,在函数y=2x﹣5的图象上的点是()A.(﹣1,3)B.(0,5)C.(2,﹣1)D.(1,﹣7)考点:一次函数图象上点的坐标特征.分析:只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.解答:解:A、把(﹣1,3)代入y=2x﹣5得:左边=3,右边=2×(﹣1)﹣5=﹣7,左边≠右边,故A选项错误;B、把(0,5)代入y=2x﹣5得:左边=5,右边=2×0﹣5=﹣5,左边≠右边,故B选项错误;C、把(2,﹣1)代入y=2x﹣5得:左边=﹣1,右边=2×2﹣5=﹣1,左边=右边,故C选项正确;D、把(1,﹣7)代入y=2x﹣5得:左边=﹣7,右边=2×1﹣5=﹣3,左边≠右边,故D选项错误.故选:C.点评:本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.4.点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两个点,且x1<x2,则以下正确的是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1和y2的大小考点:一次函数图象上点的坐标特征.分析:根据一次函数y=kx+b(k≠0,k,b为常数),当k<0时,y随x的增大而减小解答即可.解答:解:根据题意,k=﹣3<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选A.点评:本题考查了一次函数的性质,当k<0时,y随x的增大而减小.5.某超市对员工进行三项测试:电脑、语言、商品知识,并按三项测试得分的5:3:2的比例确定测试总分,已知某员工三项得分分别为80,70,75,则这位超市员工的总分为()A.78 B.76 C.77 D.79考点:加权平均数.分析:运用加权平均数的计算公式求解.解答:解:这位员工得分=(80×5+70×3+75×2)÷10=76(分).故选:B.点评:本题考查了加权平均数的计算,注意平均数等于所有数据的和除以数据的个数.6.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D. 6.5考点:直角三角形斜边上的中线;勾股定理.分析:利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.解答:解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选D.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.7.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.8.给定平面上不在同一直线上的三点,以这三点为顶点的平行四边形有()A.4个B.3个C.2个D.1个考点:平行四边形的判定.分析:只要将三角形的三边作为平行四边形的对角线作图,就可得出结论.解答:解:如图所示:以点A,B,C为顶点能做三个平行四边形:▱ABCD,▱ABFC,▱AEBC.故选:B.点评:本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法,并能进行推理作图是解决问题的关键.9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.解答:解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.点评:本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C. 3 D.考点:轴对称-最短路线问题.专题:计算题;压轴题.分析:由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解答:解:设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.点评:此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.二、填空题(每小题3分,共24分)11.计算:=2.考点:二次根式的乘除法.分析:根据二次根式乘方的意义与二次根式乘法的运算法则,即可求得答案.解答:解:=(﹣)(﹣)=2.故答案为:2.点评:此题考查了二次根式乘法与乘方运算.此题比较简单,注意运算符号的确定.12.使在实数范围内有意义,x的取值范围是x≥2.考点:二次根式有意义的条件.专题:探究型.分析:先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:∵使在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.13.命题“对顶角相等”的逆命题是“相等的角是对顶角”,是“假命题”.(填“真命题”或“假命题”).考点:命题与定理.分析:把原命题的条件和结论互换就得到它的逆命题,再对逆命题进行判断即可.解答:解:命题“对顶角相等”的逆命题是“相等的角是对顶角”,是“假命题”.故答案为:“相等的角是对顶角”,“假命题”.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.直线y=﹣3x﹣2经过第二,三,四象限.考点:一次函数图象与系数的关系.分析:因为k=﹣3<0,b=﹣2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=﹣3x﹣2的图象经过第二,三,四象限.解答:解:对于一次函数y=﹣3x﹣2,∵k=﹣3<0,∴图象经过第二、四象限;又∵b=﹣2<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,∴一次函数y=﹣3x﹣2的图象经过第二,三,四象限.故答案为:二,三,四;点评:本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y 随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.15.若平行四边形中相邻的两个内角度数比为1:4,则其中较小的内角是36°.考点:平行四边形的性质.分析:由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=4∠B,得出∠B+4∠B=180°,得出∠B=36°即可.解答:解:如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:4,∴∠C=4∠B,∴∠B+4∠B=180°,解得:∠B=36°,故答案为:36°.点评:本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.16.五名男生的数学成绩如下:84,79,81,83,83,82,则这组数据的中位数是82.5.考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:79,81,82,83,83,84,中位数为:=82.5.故答案为:82.5.点评:本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.在一个广场上有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:两棵树的高度差为6﹣2=4m,间距为5m,根据勾股定理可得:小鸟至少飞行的距离==m.故答案为:.点评:本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.18.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为25.考点:勾股定理.分析:根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.解答:解:∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.故答案是:25.点评:本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.三、解答题(共7小题,66分)19.(12分)(2015春•武夷山市校级期末)化简:(1)(﹣)﹣(+)(2)x=﹣1,求代数式x2+3x﹣4的值.考点:二次根式的混合运算.分析:(1)先进行二次根式的化简,然后去括号,合并同类二次根式求解;(2)先进行因式分解,然后将x的值代入求解.解答:解:(1)原式=2﹣﹣﹣=﹣;(2)x2+3x﹣4=(x+4)(x﹣1)=(+3)(﹣2)=2﹣2+3﹣6=﹣4+.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简以及合并.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.考点:勾股定理的逆定理;勾股定理.专题:几何图形问题.分析:连接BD,根据已知分别求得△ABD的面积与△BDC的面积,即可求四边形ABCD 的面积.解答:解:连接BD,∵AB=3cm,AD=4cm,∠A=90°∴BD=5cm,S△ABD=×3×4=6cm2又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.点评:此题主要考查勾股定理和逆定理的应用,还涉及了三角形的面积计算.连接BD,是关键的一步.21.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN 可得AB=AD,再根据菱形的判定定理可得结论.解答:证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形,∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°,在△ABM和△ADN中,,∴△ABM≌△ADN(AAS),∴AB=AD,∴四边形ABCD是菱形.点评:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.22.(10分)(2014春•范县期末)如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?考点:平行四边形的判定;等边三角形的性质;菱形的判定;矩形的判定.专题:证明题;开放型.分析:(1)由题意易得△BDE≌△BAC,所以DE=AC=AF,同理可证,EF=AB=AD,所以四边形ADEF为平行四边形;(2)AB=AC时,可得ADEF的邻边相等,所以ADEF为菱形,AEDF要是矩形,则∠DEF=90°,由∠DEF=∠BED+∠BEC+∠CEF,可推出∠BAC=150°时为矩形.解答:(1)四边形ADEF为平行四边形,证明:∵△ABD和△EBC都是等边三角形,∴BD=AB,BE=BC;∵∠DBA=∠EBC=60°,∴∠DBA﹣∠EBA=∠EBC﹣∠EBA,∴∠DBE=∠ABC;∵在△BDE和△BAC中,∴△BDE≌△BAC,∴DE=AC=AF,同理可证:△ECF≌△BCA,∴EF=AB=AD,∴ADEF为平行四边形;(2)AB=AC时,▱ADEF为菱形,当∠BAC=150°时▱ADEF为矩形.理由是:∵AB=AC,∴AD=AF.∴▱ADEF是菱形.∴∠DEF=90°=∠BED+∠BEC+∠CEF=∠BCA+60°+∠CBA=180﹣∠BAC+60°=240°﹣∠BAC,∴∠BAC=150°,∵∠DAB=∠FAC=60°,∴∠DAF=90°,∴平行四边形ADEF是矩形.点评:此题主要考查平行四边形、矩形、菱形的判定.23.(10分)(2014•龙岩)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6元收取;超过5吨的部分,每吨按 2.4元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?考点:一次函数的应用.分析:(1)由图可知,用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20﹣8)÷(10﹣5)=2.4元收取;(2)根据图象分x≤5和x>5,分别设出y与x的函数关系式,代入对应点,得出答案即可;(3)把y=76代入x>5的y与x的函数关系式,求出x的数值即可.解答:解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=∴y=x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得,解得k=,b=﹣4,∴y=x﹣4;综上所述,y=;(3)把y=代入y=x﹣4得x﹣4=,解得x=8,5×8=40(吨).答:该家庭这个月用了40吨生活用水.点评:此题考查一次函数的实际运用,结合图形,利用基本数量关系,得出函数解析式,进一步利用解析式解决问题.24.甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:命中环数5 6 7 8 9 10 平均数众数方差甲命中环数的次数1 4 2 1 1 1 7 6 2.2乙命中环数的次数1 2 4 2 1 0 77 1.2(1)请你完成上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.考点:方差;加权平均数;众数.分析:(1)根据平均数、众数和方差的定义分别求出乙的三个量;(2)从集中趋势和稳定性两个方面来考查两人的成绩.解答:解:(1)乙学生相关的数据为:平均数为:(5×1+6×2+7×4+8×2+9×1)=7;∵7出现的次数最多,故众数为7;方差为:[(5﹣7)2+(6﹣7)2+(6﹣7)2+…+(9﹣7)2]=1.2.(2)从平均水平看,甲、乙两名学生射击的环数平均数均为7环,水平相当;从集中趋势看,乙的众数比甲大,乙的成绩比甲的好些;从稳定性看,s乙2<s甲2,所以乙的成绩比甲稳定.点评:此题主要考查了学生对平均数,众数,方差的理解及运用能力,正确求出方差是解题关键.25.(10分)(2015春•武夷山市校级期末)梯形ABCD中,AD∥BC,∠B=90°AD=24cm,AB=8cm,BC=26cm,动点P从A点开始沿AD边以1cm/s的速度向D运动,动点Q从C 点开始,沿BC边以3cm/s的速度向B运动,P、Q分别从A、C同时出发,当其中一点到端点时,另一点也随之停止,设运动时间为ts,当t为何值时,四边形PQCD是:①平行四边形;②等腰梯形.考点:等腰梯形的判定;平行四边形的判定.专题:动点型.分析:(1)当四边形PQCD是平行四边形时,必须有PQ=CD,而PQ、CD均可用含有t 的式子表示出来,所以列方程解答即可.(2)当PQ=CD,PD≠QC时,四边形PQCD为等腰梯形.过P,D分别作PE⊥BC,DF⊥BC 后,可求出CF=2,所以当等腰梯形成立时,CQ=PD+4,然后列方程解答即可.解答:解:(1)∵AD∥BC,∴当QC=PD时,四边形PQCD是平行四边形.此时有3t=24﹣t,解得t=6.∴当t=6s时,四边形PQCD是平行四边形.(2)∵AD∥BC,∴当PQ=CD,PD≠QC时,四边形PQCD为等腰梯形.过P,D分别作PE⊥BC,DF⊥BC,垂足分别为E,F.∴四边形ABFD是矩形,四边形PEFD是矩形.∴EF=PD,BF=AD.∵AD=24cm,∴BF=24cm.∵BC=26cm.∴FC=BC﹣BF=26﹣24=2(cm).由等腰梯形的性质知,QE=FC=2cm.∴QC=EF+QE+FC=PD+4=AD﹣AP+4,即3t=(24﹣t)+4,解得t=7.∴当t=7s时,四边形PQCD是等腰梯形.点评:本题主要考查了平行四边形、等腰梯形的判定,以及一元一次方程在几何图形中的应用,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015最新人教版八年级数学下册期末考试

1、选择题(每小题3分,共30分) 1.(2013 鞍山中考)要使式子有意义,则x的取值范围是( ) A.xgt;0
B.xge;-2
C.xge;2
D.xle;2
2.矩形具有而菱形不具有的性质是( )
A.两组对边分别平行
B.对角线相等
C.对角线互相平分
D.两组对角分别相等
3.下列计算正确的是( ) A.×=4
B.
+
=
C.
÷
=2
D.
=-15
4.(2013 陕西中考)根据表中一次函数的自变量x与函数y的对应值,可得p的值为( )
x[来源:Zx
-2 0 1 y
3[
p
A.1
B.-1
C.3
D.-3
5.(2013 盐城中考)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )
工资(元) 2 000 2 200 2 400 2 600 人数(人)
1
3
4
2
A.2400元、2400元
B.2400元、2300元
C.2200元、2200元
D.2200元、2300元
6.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.AB∥DC,AD∥BC
B.AB=DC,AD=BC
C.AO=CO,BO=DO
D.AB∥DC,AD=BC
7.(2013 巴中中考)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是
2
( ) A.24
B.16
C.4
D.2
8.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )
A.
B.2
C.3
D.4
9.正比例函数y=kx(kne;0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )
10.(2013 黔西南州中考)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x
D.xgt;3
二、填空题(每小题3分,共24分)
11.计算:-= .
12.(2013 恩施州中考)函数y=的自变量x的取值范围是 .
13.已知a,b,c是△ABC的三边长,且满足关系式
+|a-b|=0,则△ABC的形状
为 .
14.(2013 十堰中考)某次能力测试中,10人的成绩统计如下表,则这10人成绩的平均数为
3
人数 3 1 2 2 2
15.(2013 资阳中考)在一次函数y=(2-k)x+1中,y随x的增大而增大,则k的取值范围为 . 16.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件 ,使四边形AECF是平行四边形(只填一个即可). 17.(2013 泉州中考)如图,菱形ABCD的周长为8
,对角线AC和BD相交于点O,AC∶
BD=1∶2,则AO∶BO= ,菱形ABCD的面积S= .
18.(2013 上海中考)李老师开车从甲地到相距240km 的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是 L. 三、解答题(共66分)
19.(10分)计算:(1)9+7-5+2.
(2)(2-1)(
+1)-(1-2)2
.
20.(6分)(2013 荆门中考)化简求值:÷ ,其中a=-2.
21.(6分)(2013 武汉中考)直线y=2x+b经过点(3,5),求关于x的不等式2x+bge;0的解集.
4
22.(8分)(2013 宜昌中考)如图,点E,F分别是锐角ang;A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF. (1)请你判断所画四边形的形状,并说明理由. (2)连接EF,若
AE=8cm,ang;A=60deg;,求线段EF的长.
23.(8分)(2013 昭通中考)如图,在菱形ABCD
中,AB=2,ang;DAB=60deg;,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM为何值时,四边形AMDN是矩形?请说明理由.
24.(8分)(2013 鄂州中考)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,
你不用数也能明白!”小华想了想说:“没问题!让我们来量
一量吧!”小明、小华在楼体两侧各选A,B两点,测量数据如图,其中矩形CDEF表示楼体,
AB=150m,CD=10m,ang;A=30deg;,ang;B=45deg;(A,C,D,B四
点在同一直线上),问: (1)楼高多少米?
(2)若每层楼按3m计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:asymp;1.73,
asymp;
1.41,
asymp;2.24)
25.(10分)(2013 株洲中考)某生物小组观察一植物
生长,得到植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).
(1)该植物从观察时起,多少天以后停止长高?
(2)求直线AC的解析式,并求该植物最高长多少厘米?
26.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表
5
平均数中位数[来方差[来
命中10环的次数
甲 7 0 乙
1
甲、乙射击成绩折线图
(1)请补全上述图表(请直接在表中填空和补全折线图). (2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
为大家推荐的2015最新人教版八年级数学下册期末考试卷,还满意吗?相信大家都会仔细阅读,考出一个满意的成绩,加油哦!
最新达州市初二数学下册期末测试题
八年级数学第二学期期末测试题精编。

相关文档
最新文档