IC datasheet pdf-REF2912,REF2920,REF2925,REF2930,REF2933,REF2940,pdf(100ppm_°C, 50μA in SOT23-3 CM
IC datasheet pdf-LT3652HV PDF DATASHEET

13652hvfT YPICAL APPLICATIOND ESCRIPTION ChargerThe LT ®3652HV is a complete monolithic step-down bat-tery charger that operates over a 4.95V to 34V input range. The LT3652HV provides a constant-current/constant-voltage charge characteristic, with maximum charge current externally programmable up to 2A. The charger employs a 3.3V fl oat voltage feedback reference, so any desired battery fl oat voltage up to 18V can be programmed with a resistor divider.The LT3652HV employs an input voltage regulation loop, which reduces charge current if the input voltage falls below a programmed level, set with a resistor divider. When the LT3652HV is powered by a solar panel, the input regulation loop is used to maintain the panel at peak output power.The L T3652HV c an b e c onfi gured t o t erminate c harging w hen charge c urrent f alls b elow 1/10 o f t he p rogrammed m aximum (C/10). Once charging is terminated, the LT3652HV enters a low-current (85μA) standby mode. An auto-recharge feature starts a new charging cycle if the battery voltage falls 2.5% below the programmed fl oat voltage. The LT3652HV also contains a programmable safety timer, used to terminate charging after a desired time is reached. This allows top-off charging at currents less than C/10.F EATURESA PPLICATIONS nInput Supply Voltage Regulation Loop for Peak Power T racking in (MPPT) Solar Applicationsn Wide Input Voltage Range: 4.95V to 34V (40V Abs Max)n Programmable Charge Rate Up to 2An User Selectable Termination: C/10 or On-Board Termination Timern Resistor Programmable Float Voltage Up to 18V Accommodates 4-Cell Li-Ion/Polymer , 5-Cell LiFePO 4, Lead-Acid Chemistriesn Parallelable for Higher Output Current n 1MHz Fixed Frequencyn 0.5% Float Voltage Reference Accuracy n 5% Charge Current Accuracy n 2.5% C/10 Detection Accuracyn Binary-Coded Open-Collector Status PinsnSolar Powered Applications n Remote Monitoring Stations n Portable Handheld Instruments n 12V to 24V Automotive SystemsnBattery Charging from Current Limited AdapterL , L T , L TC, L TM, Linear Technology and the Linear logo are registered trademarks and PowerPath is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.V IN_REG Loop Servos Maximum Charge Current to Prevent AC Adapter Output from Drooping Lower Than 24V 5-Cell LiFePO 4 Charger (18V at 1.5A) with C/10 TerminationPowered by Inexpensive 24VDC/1A Unregulated Wall Adapter.SYSTEM LOADD3ADAPTER OUTPUT CURRENT (A)00.2A D A P T E R O U T P U T V O L T A G E (V )12151833302724210.61 1.23652 TA01b360.40.8 1.61.421.81A/24VDC Unregulated AdapterI vs V CharacteristicLT3652HV23652hvfP IN CONFIGURATIONA BSOLUTE MAXIMUM RATINGS Voltages:V IN ........................................................................40V V IN_REG , SHDN , CHRG , FAUL T ............V IN + 0.5V , 40V SW ........................................................................40V SW-V IN .................................................................4.5V BOOST ...................................................SW+10V , 50V BAT , SENSE .. (20V)(Note 1)ORDER INFORMATIONLEAD FREE FINISH TAPE AND REEL PART MARKING*PACKAGE DESCRIPTION TEMPERATURE RANGE LT3652HVEDD#PBF LT3652HVEDD#TRPBF LFRG 12-Lead Plastic DFN 3mm × 3mm –40°C to 125°C LT3652HVIDD#PBF LT3652HVIDD#TRPBF LFRG 12-Lead Plastic DFN 3mm × 3mm –40°C to 125°C LT3652HVEMSE#PBF LT3652HVEMSE#TRPBF 3652HV 12-Lead Plastic MSOP –40°C to 125°C LT3652HVIMSE#PBFLT3652HVIMSE#TRPBF3652HV12-Lead Plastic MSOP–40°C to 125°CConsult LTC Marketing for parts specifi ed with wider operating temperature ranges. *The temperature grade is identifi ed by a label on the shipping container.Consult LTC Marketing for information on non-standard lead based fi nish parts.For more information on lead free part marking, go to: /leadfree/ For more information on tape and reel specifi cations, go to: /tapeandreel/TOP VIEWDD PACKAGE12-LEAD (3mm × 3mm) PLASTIC DFN1211891045321SW BOOST SENSE BAT NTCV FBV IN V IN_REG SHDN CHRG FAUL T TIMER6713123456V IN V IN_REG SHDN CHRG FAUL T TIMER 121110987SW BOOST SENSE BAT NTC V FBTOP VIEW13MSE PACKAGE12-LEAD PLASTIC MSOPT JMAX = 125°C, θJA = 43°C/W , θJC = 3°C/WEXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCBT JMAX = 125°C, θJA = 43°C/W , θJC = 3°C/WEXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCBBAT-SENSE .........................................–0.5V to +0.5VNTC, TIMER, ........................................................2.5V V FB ..........................................................................5V Operating Junction Temperature Range(Note 2) .............................................–40°C to 125°C Storage Temperature Range ...................–65°C to 150°CLT3652HV33652hvfE LECTRICAL CHARACTERISTICSSYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITSV IN V IN Operating RangeV IN Start Voltage V BAT = 4.2 (Notes 3, 4)V BAT = 4.2 (Note 4)l l 4.957.534V V V IN(OVLO)OVLO Threshold OVLO Hysteresis V IN Rising l3435140V V V IN(UVLO)UVLO Threshold UVLO Hysteresis V IN Rising 4.60.24.95V V V FB(FL T)Float Voltage Reference (Note 6)l 3.2823.263.3 3.3183.34V V ΔV RECHARGE Recharge Reference Threshold Voltage Relative to V FB(FL T) (Note 6)82.5mV V FB(PRE)Reference Precondition Threshold V FB Rising (Note 6)2.3V V FB(PREHYST)Reference Precondition Threshold HysteresisVoltage Relative to V FB(PRE) (Note 6)70mVV IN_REG(TH)Input Regulation Reference V FB = 3V; V SENSE – V BAT = 50mV l 2.65 2.7 2.75V I IN_REG Input Regulation Reference Bias Current V IN_REG = V IN_REG(TH)l 35100nA I VINOperating Input Supply CurrentCC/CV Mode, I SW = 0Standby ModeShutdown (SHDN = 0)l 2.58515 3.5mA μA μA I BOOST BOOST Supply Current Switch On, I SW = 0,2.5 < V (BOOST – SW) < 8.520mA I BOOST/I SW BOOST Switch Drive I SW = 2A30mA/A V SW(ON)Switch-On Voltage Drop V IN – V SW , I SW = 2A350mV I SW(MAX)Switch Current Limit l 2.53A V SENSE(PRE)Precondition Sense Voltage V SENSE – V BAT ; V FB = 2V 15mVV SENSE(DC)Maximum Sense Voltage V SENSE – V BAT ; V FB = 3V (Note 7)l 95100105mV V SENSE(C/10)C/10 T rigger Sense Voltage V SENSE – V BAT , Falling l7.51012.5mV I BAT BAT Input Bias Current Charging Terminated 0.11μA I SENSE SENSE Input Bias Current Charging Terminated 0.11μA I VFB V FB Input Bias Current Charging Terminated 65nA I VFB V FB Input Bias Current CV Operation (Note 5)110nAV NTC(H)NTC Range Limit (High)V NTC Rising l 1.25 1.36 1.45V V NTC(L)NTC Range Limit (Low)V NTC Falling l 0.270.290.315V V NTC(HYST)NTC Threshold Hysteresis % of threshold 20%R NTC(DIS)NTC Disable Impedance Impedance to ground l 250500kΩI NTC NTC Bias Current V NTC = 0.8V l 47.55052.5μA V SHDN Shutdown Threshold Risingl 1.151.2 1.25V V SHDN (HYST)Shutdown Hysteresis 120mV I SHDN SHDN Input Bias Current –10nAV CHRG , V FAUL T Status Low Voltage 10mA Load l 0.4V I TIMER Charge/Discharge Current 25μA V TIMER(DIS)Timer Disable Thresholdl0.10.25VThe l denotes the specifi cations which apply over the full operating junction temperature range, otherwise specifi cations are at T A = 25°C. V IN = 20V, Boost – SW = 4V, SHDN = 2V, V FB = 3.3V, C TIMER= 0.68μF.LT3652HV43652hvfSYMBOL PARAMETERCONDITIONS MIN TYP MAX UNITSt TIMERFull Charge Cycle Timeout 3hr Precondition Timeout 22.5minTimer Accuracyl–1010%f O Operating Frequency 1MHz DCDuty Cycle RangeContinuous Operationl 1590%E LECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the full operating junction temperature range, otherwise specifi cations are at T A = 25°C. V IN = 20V, Boost – SW = 4V, SHDN = 2V, V FB = 3.3V, C TIMER = 0.68μF.Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: The L T3652HV is tested under pulsed load conditions such that T J ≅ T A . The L T3652HVE is guaranteed to meet performance specifi cations from 0°C to 85°C junction temperature. Specifi cations over the –40°C to 125°C operating junction temperature range are assured by design, characterization, and correlation with statistical process controls. The L T3652HVI specifi cations are guaranteed over the full –40°C to 125°C operating junction temperature range. High junction temperatures degrade operating lifetimes; operating lifetime is derated for junction temperatures greater than 125°C.Note 3: V IN minimum voltages below the start threshold are only supported if (V BOOST -V SW ) > 2V .Note 4: This parameter is valid for programmed output battery fl oat voltages ≤ 4.2V . V IN operating range minimum is 0.75V above the programmed output battery fl oat voltage (V BAT(FL T) + 0.75V). V IN Start Voltage is 3.3V above the programmed output battery fl oat voltage (V BAT(FL T) + 3.3V).Note 5: Output battery fl oat voltage (V BAT(FL T)) programming resistor divider equivalent resistance = 250k compensates for input bias current. Note 6: All V FB voltages measured through 250k series resistance.Note 7: V SENSE(DC) is reduced by thermal foldback as junction temperature approaches 125°C.LT3652HV53652hvfT YPICAL PERFORMANCE CHARACTERISTICS Switch Forward Drop (V IN – V SW ) vs TemperatureCC/CV Charging; SENSE Pin Bias Current vs V SENSEC/10 Threshold (V SENSE –V BAT ) vs TemperatureV FB Reference Voltage vs TemperatureV IN Standby Mode Current vs TemperatureSwitch Drive (I SW /I BOOST ) vs Switch CurrentT J = 25°C, unless otherwise noted.TEMPERATURE (°C)–50V F B (F L T )3.2963.2983.3003.302050753652 G01a3.304–2525100125TEMPERATURE (°C)–5065I V I N C U R R E N T (μA )70758010090050753652 G029585–2525100SWITCH CURRENT (A)I S W /I B O O S T18243036 1.6126021273315930.40.8 1.20.2 1.80.6 1.0 1.4 2.03652 G03TEMPERATURE (°C)–50320V S W (O N ) (m V )340360380480420050753652 G04440460400–2525100125V SENSE (V)–350I S E N S E (μA )–250–150–5010050–300–200–10003652 G05TEMPERATURE (°C)–508V S E N S E (C /10) (m V )9101112050753652 G06–2525100125TEMPERATURE (°C)–50V I N _R E G (T H ) (V )2.6802.6852.6902.7152.7102.7052.7002.695050753652 G012.720–2525100125V IN_REG Thresholdvs Temperature: I CHG at 50%LT3652HV63652hvfTYPICAL PERFORMANCE CHARACTERISTICSMaximum Charge Current (V SENSE –V BAT ) vs TemperatureThermal Foldback – Maximum Charge Current (V SENSE –V BAT ) vs TemperatureCC/CV Charging; BAT Pin Bias Current vs V BATT A = 25°C, unless otherwise noted.TEMPERATURE (°C)–5099.0V S E N S E (D C ) (m V )99.299.699.8100.0101.0100.4050753652 G0799.4100.6100.8100.2–2525100125TEMPERATURE (°C)V S E N S E (D C )(m V )4080206010012045658510512535135255575951153652 G08V BAT (V)–0.4I B A T (m A )0.00.40.82.21.62.01.2–0.20.20.61.01.81.43652 G09V IN_REG (V)2.65V S E N S E (D C ) (m V )208060402.67 2.692.73652 G101002.66 2.682.722.71 2.732.742.75V BAT(FL T) (V)020I R F B (μA )861012183652 G114264810121614TIME (MINUTES)EFFICIENCY (%)C H A R G E C U R R E N T (A ); P OW E R L O S S (W )0.52.02.51.51.040801003652 G123.0354575655595852060140120160180200Maximum Charge Current(V SENSE –V BAT ) vs V IN_REG VoltageV FLOAT Programming Resistor Current vs V FLOAT for 2-Resistor NetworkCharge Current, Effi ciency, and Power Loss vs Time(I CHG(MAX) = 2A; V FLOAT = 8.2V)Charger Effi ciency vs Battery Voltage (I CHG= 2A)V BAT (V)70E F F I C I E N C Y (%)7680828486887472789057911134141536810123652 G13LT3652HV73652hvfP IN FUNCTIONS V IN (Pin 1): Charger Input Supply. V IN operating range is 4.95V to 34V. V IN must be 3.3V greater than the pro-grammed output battery fl oat voltage (V BAT(FLT)) for reli-able start-up. (V IN – V BAT(FLT)) ≥ 0.75V is the minimum operating voltage, provided (V BOOST – V SW ) ≥ 2V. I VIN ~ 85μA after charge termination. This pin is typically con-nected to the cathode of a blocking diode.V IN_REG (Pin 2): Input Voltage Regulation Reference. Maxi-mum charge current is reduced when this pin is below 2.7V. Connecting a resistor divider from V IN to this pin enables programming of minimum operational V IN voltage. This is typically used to program the peak power voltage for a solar panel. The LT3652HV servos the maximum charge current required to maintain the programmed operational V IN voltage, through maintaining the voltage on V IN_REG at or above 2.7V. If the voltage regulation feature is not used, connect the pin to V IN .SHDN (Pin 3): Precision Threshold Shutdown Pin. The enable threshold is 1.2V (rising), with 120mV of input hysteresis. When in shutdown mode, all charging functions are disabled. The precision threshold allows use of the SHDN pin to incorporate UVLO functions. If the SHDN pin is pulled below 0.4V, the IC enters a low current shutdown mode where V IN current is reduced to 15μA. Typical SHDN pin input bias current is 10nA. If the shutdown function is not desired, connect the pin to V IN .CHRG (Pin 4): Open-Collector Charger Status Output; typically pulled up through a resistor to a reference volt-age. This status pin can be pulled up to voltages as high as V IN when disabled, and can sink currents up to 10mA when enabled. During a battery charging cycle, if required charge current is greater than 1/10 of the programmed maximum current (C/10), CHRG is pulled low. A tem-perature fault also causes this pin to be pulled low. After C/10 charge termination or, if the internal timer is used for termination and charge current is less than C/10, the CHRG pin remains high-impedance.FAULT (Pin 5): Open-Collector Charger Status Output; typically pulled up through a resistor to a reference volt-age. This status pin can be pulled up to voltages as high as V IN when disabled, and can sink currents up to 10mA when enabled. This pin indicates fault conditions during abattery charging cycle. A temperature fault causes this pin to be pulled low. If the internal timer is used for termina-tion, a bad battery fault also causes this pin to be pulled low. If no fault conditions exist, the FAULT pin remains high-impedance.TIMER (Pin 6): End-Of-Cycle Timer Programming Pin. If a timer-based charge termination is desired, connect a capacitor from this pin to ground. Full charge end-of-cycle time (in hours) is programmed with this capacitor following the equation: t EOC = C TIMER • 4.4 • 106A bad battery fault is generated if the battery does not achieve the precondition threshold voltage within one-eighth of t EOC , or: t PRE = C TIMER • 5.5 • 105A 0.68μF capacitor is typically used, which generates a timer EOC at three hours, and a precondition limit time of 22.5 minutes. If a timer-based termination is not desired, the timer function is disabled by connecting the TIMER pin to ground. With the timer function disabled, charging terminates when the charge current drops below a C/10 threshold, or I CHG(MAX)/10V FB (Pin 7): Battery Float Voltage Feedback Reference. The charge function operates to achieve a fi nal fl oat voltage of 3.3V on this pin. Output battery fl oat voltage (V BAT(FLT)) is programmed using a resistor divider. V BAT(FLT) can be programmed up to 18V.The auto-restart feature initiates a new charging cyclewhen the voltage at the V FB pin falls 2.5% below the float voltage reference.The V FB pin input bias current is 110nA. Using a resistor divider with an equivalent input resistance at the V FB pin of 250k compensates for input bias current error.Required resistor values to program desired V BAT(FLT) follow the equations:R1 = (V BAT(FLT) • 2.5 • 105)/3.3 (Ω) R2 = (R1 • 2.5 • 105)/(R1 - (2.5 • 105))(Ω)R1 is connected from BAT to V FB , and R2 is connected from V FBto ground.LT3652HV 83652hvfNTC (Pin 8): Battery Temperature Monitor Pin. This pin is the input to the NTC (Negative Temperature Coeffi cient) thermistor temperature monitoring circuit. This function is enabled by connecting a 10kΩ, B = 3380 NTC thermistor from the NTC pin to ground. The pin sources 50μA, and monitors the voltage across the 10kΩ thermistor. When the voltage on this pin is above 1.36 (T < 0°C) or below 0.29V (T > 40°C), charging is disabled and the CHRG and FAULT pins are both pulled low. If internal timer termina-tion is being used, the timer is paused, suspending the charging cycle. Charging resumes when the voltage on NTC returns to within the 0.29V to 1.36V active region. There is approximately 5°C of temperature hysteresis associated with each of the temperature thresholds. The temperature monitoring function remains enabled while the thermistor resistance to ground is less than 250k, so if this function is not desired, leave the NTC pin unconnected.BAT (Pin 9): Charger Output Monitor Pin. Connect a 10μF decoupling capacitance (C BAT ) to ground. Depend-ing on application requirements, larger value decoupling capacitors may be required. The charge function operates to achieve the programmed output battery fl oat voltage (V BAT(FLT)) at this pin. This pin is also the reference for the current sense voltage. Once a charge cycle is termi-nated, the input bias current of the BAT pin is reduced to < 0.1μA, to minimize battery discharge while the charger remains connected.SENSE (Pin 10): Charge Current Sense Pin. Connect the inductor sense resistor (R SENSE ) from the SENSE pin to the BAT pin. The voltage across this resistor sets the averagecharge current. The maximum charge current (I CHG(MAX)) corresponds to 100mV across the sense resistor. This resistor can be set to program maximum charge cur-rent as high as 2A. The sense resistor value follows the relation:R SENSE = 0.1/I CHG(MAX) (Ω)Once a charge cycle is terminated, the input bias current of the SENSE pin is reduced to < 0.1μA, to minimize battery discharge while the charger remains connected.BOOST (Pin 11): Bootstrapped Supply Rail for Switch D rive. This pin facilitates saturation of the switch transistor. Connect a 1μF or greater capacitor from the BOOST pin to the SW pin. Operating range of this pin is 0V to 8.5V, referenced to the SW pin. The voltage on the decoupling capacitor is refreshed through a rectifying diode, with the anode connected to either the battery output voltage or an external source, and the cathode connected to the BOOST pin.SW (Pin 12): Switch Output Pin. This pin is the output of the charger switch, and corresponds to the emitter of the switch transistor. When enabled, the switch shorts the SW pin to the V IN supply. The drive circuitry for this switch is bootstrapped above the V IN supply using the BOOST supply pin, allowing saturation of the switch for maximum effi ciency. The effective on-resistance of the boosted switch is 0.175Ω.SGND (Pin 13): Ground Reference and Backside Exposed Lead Frame Thermal Connection. Solder the exposed lead frame to the PCB ground plane.P IN FUNCTIONSLT3652HV93652hvfB LOCK DIAGRAM+–LT3652HV103652hvfA PPLICATIONS INFORMATION OverviewL T3652HV is a complete monolithic, mid-power , multi-chemistry buck battery charger , addressing high input voltage applications with solutions that require a minimum of external components. The IC uses a 1MHz constant fre-quency, average-current mode step-down architecture.The L T3652HV incorporates a 2A switch that is driven by a bootstrapped supply to maximize efficiency during charging cycles. Wide input range allows operation to full charge from voltages as high as 34V . A precision threshold shutdown pin allows incorporation of UVLO functionality using a simple resistor divider . The IC can also be put into a low-current shutdown mode, in which the input supply bias is reduced to only 15μA.The L T3652HV employs an input voltage regulation loop, which reduces charge current if a monitored input voltage falls below a programmed level. When the L T3652HV is powered by a solar panel, the input regulation loop is used to maintain the panel at peak output power .The L T3652HV automatically enters a battery precondition mode if the sensed battery voltage is very low. In this mode, the charge current is reduced to 15% of the programmed maximum, as set by the inductor sense resistor , R SENSE . Once the battery voltage reaches 70% of the fully charged float voltage, the IC automatically increases maximum charge current to the full programmed value.The L T3652HV can use a charge-current based C/10 termination scheme, which ends a charge cycle when the battery charge current falls to one tenth of the pro-grammed maximum charge current. The L T3652HV also contains an internal charge cycle control timer , for timer-based termination. When using the internal timer , the IC combines C/10 detection with a programmable time constraint, during which the charging cycle can continue beyond the C/10 level to top-off a battery. The charge cycle terminates when a specific time elapses, typically 3 hours. When the timer-based scheme is used, the IC also supports bad battery detection, which triggers a system fault if a battery stays in precondition mode for more than one eighth of the total charge cycle time.Once charging is terminated, the L T3652HV automati-cally enters a low-current standby mode where supply bias currents are reduced to 85μA. The IC continues tomonitor the battery voltage while in standby, and if that voltage falls 2.5% from the full-charge float voltage, the L T3652HV engages an automatic charge cycle restart. The IC also automatically restarts a new charge cycle after a bad battery fault once the failed battery is removed and replaced with another battery.The L T3652HV contains provisions for a battery tem-perature monitoring circuit. This feature monitors battery temperature using a thermistor during the charging cycle. If the battery temperature moves outside a safe charg-ing range of 0°C to 40°C, the IC suspends charging and signals a fault condition until the temperature returns to the safe charging range.The L T3652HV contains two digital open-collector outputs, which provide charger status and signal fault conditions. These binary-coded pins signal battery charging, standby or shutdown modes, battery temperature faults, and bad battery faults.General Operation (See Block Diagram)The L T3652HV uses average current mode control loop architecture, such that the IC servos directly to average charge current. The L T3652HV senses charger output voltage through a resistor divider via the V FB pin. The difference between the voltage on this pin and an internal 3.3V voltage reference is integrated by the voltage error amplifier (V-EA). This amplifier generates an error volt-age on its output (I TH ), which corresponds to the average current sensed across the inductor current sense resistor , R SENSE , which is connected between the SENSE and BAT pins. The I TH voltage is then divided down by a factor of 10, and imposed on the input of the current error amplifier (C-EA). The difference between this imposed voltage and the current sense resistor voltage is integrated, with the resulting voltage (V C ) used as a threshold that is compared against an internally generated ramp. The output of this comparison controls the charger’s switch.The I TH error voltage corresponds linearly to average current sensed across the inductor current sense resistor , allowing maximum charge current control by limiting the effective voltage range of I TH . A clamp limits this voltage to 1V which, in turn, limits the current sense voltage to 100mV . This sets the maximum charge current, or the current delivered while the charger is operating in con-A PPLICATIONS INFORMATIONstant-current (CC) mode, which corresponds to 100mV across R SENSE. The I TH voltage is pulled down to reduce this maximum charge current should the voltage on the V IN_REG pin falls below 2.7V (V IN_REG(TH)) or the die tem-perature approaches 125°C.If the voltage on the V FB pin is below 2.3V (V FB(PRE)), the L T3652HV engages precondition mode. D uring the precondition interval, the charger continues to operate in constant-current mode, but the maximum charge current is reduced to 15% of the maximum programmed value as set by R SENSE.When the charger output voltage approaches the float volt-age, or the voltage on the V FB pin approaches 3.3V (V FB(FL T)), the charger transitions into constant-voltage (CV) mode and charge current is reduced from the maximum value. As this occurs, the I TH voltage falls from the limit clamp and servos to lower voltages. The IC monitors the I TH volt-age as it is reduced, and detection of C/10 charge current is achieved when I TH = 0.1V. If the charger is configured for C/10 termination, this threshold is used to terminate the charge cycle. Once the charge cycle is terminated, the CHRG status pin becomes high-impedance and the charger enters low-current standby mode.The L T3652HV contains an internal charge cycle timer that terminates a successful charge cycle after a programmed amount of time. This timer is typically programmed to achieve end-of-cycle (EOC) in 3 hours, but can be con-figured for any amount of time by setting an appropriate timing capacitor value (C TIMER). When timer termination is used, the charge cycle does not terminate when C/10 is achieved. Because the CHRG status pin responds to the C/10 current level, the IC will indicate a fully-charged battery status, but the charger continues to source low currents into the battery until the programmed EOC time has elapsed, at which time the charge cycle will terminate. At EOC when the charging cycle terminates, if the battery did not achieve at least 97.5% of the full float voltage, charging is deemed unsuccessful, the L T3652HV re-initiates, and charging continues for another full timer cycle.Use of the timer function also enables bad-battery detec-tion. This fault condition is achieved if the battery does not respond to preconditioning, such that the charger remains in (or enters) precondition mode after 1/8th of the programmed charge cycle time. A bad battery fault halts the charging cycle, the CHRG status pin goes high-impedance, and the FAUL T pin is pulled low.When the L T3652HV terminates a charging cycle, whether through C/10 detection or by reaching timer EOC, the average current mode analog loop remains active, but the internal float voltage reference is reduced by 2.5%. Because the voltage on a successfully charged battery is at the full float voltage, the voltage error amp detects an over-voltage condition and I TH is pulled low. When the voltage error amp output drops below 0.3V, the IC enters standby mode, where most of the internal circuitry is dis-abled, and the V IN bias current is reduced to 85μA. When the voltage on the V FB pin drops below the reduced float reference level, the output of the voltage error amp will climb, at which point the IC comes out of standby mode and a new charging cycle is initiated.V IN Input SupplyThe L T3652HV is biased through a reverse-current block-ing element from the charger input supply to the V IN pin. This supply provides large switched currents, so a high-quality, low ESR decoupling capacitor is recommended to minimize voltage glitches on V IN. The V IN decoupling capacitor (C VIN) absorbs all input switching ripple current in the charger, so it must have an adequate ripple current rating. RMS ripple current (I CVIN(RMS)) is:I CVIN(RMS)≅ I CHG(MAX) • (V BAT / V IN)•([V IN / V BAT] – 1)1/2,where I CHG(MAX) is the maximum average charge current (100mV/R SENSE). The above relation has a maximum at V IN = 2 • V BAT, where:I CVIN(RMS) = I CHG(MAX)/2.The simple worst-case of ½ • I CHG(MAX) is commonly used for design.。
REF2940中文资料

q MicroSIZE PACKAGE: SOT23-3 q LOW DROPOUT: 1mV q HIGH OUTPUT CURRENT: 25mA q LOW TEMPERATURE DRIFT: 100ppm/°C max q HIGH ACCURACY: 2% q LOW IQ: 50µA max
REF2912-1.25V
OUTPUT VOLTAGE Initial Accuracy NOISE Output Voltage Noise Voltage Noise LINE REGULATION VOUT 1.225 1.25 1.275 2 V % µVp-p µVrms 190 µV/V
DESCRIPTION
The REF29xx is a precision, low-power, low-voltage dropout voltage reference family available in a tiny SOT23-3. The REF29xx’s small size and low power consumption (50µA max) make it ideal for portable and battery-powered applications. The REF29xx does not require a load capacitor, but is stable with any capacitive load. Unloaded, the REF29xx can be operated with supplies within 1mV of output voltage. All models are specified for the wide temperature range, –40°C to +125°C.
IC datasheet pdf-REF3012,REF3020,REF3025,REF3033,REF3040,REF3030,pdf(50ppm_°C Max, 50μA in SOT23-3

VOLTAGE (V) 1.25 2.048 2.5 3.0 3.3 4.096
DROPOUT VOLTAGE vs LOAD CURRENT 350
IN 1 REF3012 REF3020 REF3025 REF3030 REF3033 REF3040 SOT23-3
300
Dropout Voltage (mV)
REF3012 REF3020 REF3025 REF3030 REF3033 REF3040
SBVS032F – MARCH 2002 – REVISED AUGUST 2008
50ppm/°C Max, 50µA in SOT23-3 CMOS VOLTAGE REFERENCE
"
R30F
"
REF3033
"
SOT23-3
"
DBZ
"
–40°C to +125°C
"
R30D
"
REF3040
"
SOT23-3
"
DBZ
"
–40°C to +125°C
"
R30E
"
"
"
"
"
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at .
ELECTRICAL CHARACTERISTICS
MIC29152BT资料

元器件交易网 MIC29150/29300/29500/29750 Ordering Information
Part Number MIC29150-3.3BT MIC29150-4.2BT MIC29150-5.0BT MIC29150-12BT MIC29150-3.3BU MIC29150-5.0BU MIC29150-12BU MIC29151-3.3BT MIC29151-5.0BT MIC29151-12BT MIC29151-3.3BU MIC29151-5.0BU MIC29151-12BU MIC29152BT MIC29152BU MIC29153BT MIC29153BU MIC29300-3.3BT MIC29300-5.0BT MIC29300-12BT MIC29300-3.3BU MIC29300-5.0BU MIC29300-12BU MIC29301-3.3BT MIC29301-5.0BT MIC29301-12BT MIC29301-3.3BU MIC29301-5.0BU MIC29301-12BU MIC29302BT MIC29302BU MIC29303BT MIC29303BU Temp. Range* Volts Current Package –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C –40 to +125°C 3.3 4.2 5.0 12 3.3 5.0 12 3.3 5.0 12 3.3 5.0 12 Adj Adj Adj Adj 3.3 5.0 12 3.3 5.0 12 3.3 5.0 12 3.3 5.0 12 Adj Adj Adj Adj 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 1.5A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A 3.0A TO-220 TO-220 TO-220 TO-220 TO-263 TO-263 TO-263 TO-220-5 TO-220-5 TO-220-5 TO-263-5 TO-263-5 TO-263-5 TO-220-5 TO-263-5 TO-220-5 TO-263-5 TO-220 TO-220 TO-220 TO-263 TO-263 TO-263 TO-220-5 TO-220-5 TO-220-5 TO-263-5 TO-263-5 TO-263-5 TO-220-5 TO-263-5 TO-220-5 TO-263-5 Part Number MIC29500-3.3BT MIC29500-5.0BT MIC29501-3.3BT MIC29501-5.0BT MIC29501-3.3BU MIC29501-5.0BU MIC29502BT MIC29502BU MIC29503BT MIC29503BU MIC29750-3.3BWT MIC29750-5.0BWT MIC29751-3.3BWT MIC29751-5.0BWT MIC29752BWT
电压基准芯片大全

LM236D-2-5:2.5V基准电压源400uA~10mA宽工作电流ﻫLM236DR-2—5:2、5V基准电压源 400uA~10mA宽工作电流ﻫLM236LP-2—5:2。
5V基准电压源400uA~10mA宽工作电流LM285D-1—2:微功耗电压基准。
10uA~20mA宽工作电流ﻫLM285D-2-5:微功耗电压基准. 10uA~20mA宽工作电流ﻫLM285LP—2-5:微功耗电压基准. 10uA~20mA宽工作电流ﻫLM336BD—2-5:2.5V基准电压源。
10uA~20mA宽工作电流ﻫLM336BLP-2-5:2。
5V基准电压源ﻫLM385BD—1—2:1.2V精密电压基准、15uA~20mA宽工作电流LM385BD-2-5:2。
5V精密电压基准. 15uA~20mA宽工作电流ﻫLM385BLP—1—2:1.2V精密电压基准. 15uA~20mA宽工作电流LM385BLP—2-5:2。
5V精密电压基准、 15uA~20mA宽工作电流ﻫLM385BPW -1—2:微功耗电压基准、15uA~20mA宽工作电流ﻫLM385BPW—2-5:微功耗电压基准. 15uA~20mA宽工作电流LM385D-1-2:1.2V精密电压基准。
15uA~20mA宽工作电流ﻫLM385DR—1—2:1.2V精密电压基准。
15uA~20mA宽工作电流LM385DR-2-5:2、5V精密电压基准、 15uA~20mA宽工作电流ﻫLM385LP-2—5:2、5V精密电压基准. 15uA~20mA宽工作电流ﻫLM385PW-1—2:1。
2V微功率基准电压源、15uA~20mA宽工作电流LM385PW-2-5:2、5V微功率基准电压源、15uA~20mA宽工作电流ﻫREF02AP:+5V精密电压基准REF02AU:+5V精密电压基准ﻫREF02BP:+5V精密电压基准REF02BU:+5V精密电压基准REF1004I-2、5:+2、5V精密电压基准REF102AP:10V精密电压基准REF102AU:10V精密电压基准ﻫREF102BP:10V精密电压基准ﻫREF200AU:双电流基准ﻫREF2912AIDBZT:1、2V电压基准REF2920AIDBZT:2V电压基准ﻫREF2925AIDBZT:2、5V电压基准ﻫREF2930AIDBZT:3V电压基准ﻫREF2933AIDBZT:3。
REF192资料

REV. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
APPLICATIONS Portable Instrumentation A-to-D and D-to-A Converters Smart Sensors Solar Powered Applications Loop Current Powered Instrumentations
GENERAL DESCRIPTION REF19x series precision bandgap voltage references use a patented temperature drift curvature correction circuit and laser trimming of highly stable thin film resistors to achieve a very low temperature coefficient and a high initial accuracy.
电压基准

电压基准芯片型号 芯片技术资料 MAX8069 MAX8069: 低电压基准DS4305DS4305K DS4305 DS4305K: 可编程电压基准 MAX1358MAX1359MAX1360MAX1358 MAX1359 MAX1360: 16位数据采集器 带有ADC 、DAC 、UPIO 、RTC 、电压监视器和温度传感器 DS4303DS4303K DS4303 DS4303K: 可编程电压基准AX6173 MAX6174 MAX6175 MAX6176 MAX6177 MAX6173 MAX6174MAX6175MAX6176MAX6177: 高精度电压基准,带有温度传感器DS3902 DS3902: 双路、非易失、可变电阻器,带有用户EEPROM MAX6143 MAX6143: 高精度电压基准,带有温度传感器MAX6037 MAX6037A MAX6037B MAX6037C MAX6037MAX6037AMAX6037BMAX6037C: 低功耗、固定或可调输出基准,SOT23封装 MAX6043 MAX6043: 精密的高压基准,SOT23封装MAX6029 MAX6029: 超低功耗、高精度串联型电压基准MAX6035 MAX6035: 高电源电压、精密电压基准,SOT23封装MAX6126 MAX6126: 超高精度、超低噪声、串联型电压基准MAX6133 MAX6133: 3ppm/°C 、低功耗、低压差电压基准MAX6129 MAX6129: 超低功耗、串联型电压基准LM4050LM4051LM4050 LM4051: 50ppm/°C 、精密的微功耗并联型电压基准,提供多种反向击穿电压 DS3903 DS3903: 三路、128抽头、非易失数字电位器MAX6034 MAX6034: 精密、微功耗、低压差、SC70串联型电压基准 MAX6033 MAX6033: 超高精度、SOT23封装、串联型电压基准MAX6138 MAX6138: 0.1%、25ppm 、SC70并联型电压基准,带有多种反向击穿电压 MAX5420 MAX5421 MAX5420MAX5421: 数字可编程精密分压器,用于PGAMAX5430 MAX5431 MAX5430MAX5431: ±15V 数字编程精密分压器,用于PGAMAX6018 MAX6018A MAX6018B MAX6018MAX6018AMAX6018B: 精密的、微功耗、1.8V 电源、低压差、SOT23封装电压基准MAX6833 MAX6834 MAX6835 MAX6836 MAX6837 MAX6838 MAX6839 MAX6840 MAX6833MAX6834MAX6835MAX6836MAX6837MAX6838MAX6839MAX6840: 超低电压、SC70电压检测器及微处理器复位电路 AX6161 MAX6161A MAX6161B MAX6162 MAX6162A MAX6162B MAX6163 MAX6163A MAX6163B MAX6164 MAX6164A MAX6164B MAX6165 MAX6165A MAX6165B MAX6166 MAX6166A MAX6166B MAX6167 MAX6167A MAX6167B MAX6168 MAX6161MAX6161AMAX6161BMAX6162MAX6162AMAX6162BMAX6163MAX6163AMAX6163BMAX6164MAX6164AMAX6164BMAX6165MAX6165AMAX6165BMAX6166MAX6166AMAX6166BMAX6167MAX6167AMAX6167BMAX6168: 精密的、微功耗、低压差、高输出电流、SO-8电压基准 MAX6023 MAX6023: 精密的、低功耗、低压差、UCSP 电压基准 MAX6220 MAX6220: 低噪声、精密的、+2.5V/+4.096V/+5V 电压基准 MAX6100 MAX6101 MAX6102 MAX6103 MAX6104 MAX6105 MAX6106 MAX6107 MAX6100MAX6101MAX6102MAX6103MAX6104MAX6105MAX6106MAX6107: 低成本、微功耗、低压差、高输出电流、SOT23封装的电压基准 MAX6006A MAX6006B MAX6006AMAX6006BMAX6007B MAX6008A MAX6008B MAX6009A MAX6009B MAX6007BMAX6008AMAX6008BMAX6009AMAX6009B: 1µA 、SOT23封装、精密的并联型电压基准 LM4040LM4040: 改进的、精密微功耗并联型电压基准,带有多种反向击穿电压 REF01REF02 REF01 REF02: +5V 、+10V 精密电压基准MAX6061 MAX6061A MAX6061B MAX6062 MAX6062A MAX6062B MAX6063 MAX6063A MAX6063B MAX6064 MAX6064A MAX6064B MAX6065 MAX6065A MAX6065B MAX6066 MAX6066A MAX6066B MAX6067 MAX6067A MAX6067B MAX6068 MAX6061MAX6061AMAX6061BMAX6062MAX6062AMAX6062BMAX6063MAX6063AMAX6063BMAX6064MAX6064AMAX6064BMAX6065MAX6065AMAX6065BMAX6066MAX6066AMAX6066BMAX6067MAX6067AMAX6067BMAX6068: 精密的、微功耗、低压差、高输出电流、SOT23封装电压基准 LM4041LM4041: 改进的、精密微功耗并联型电压基准 MX580MX580: 高精度、+2.5V 电压基准 ICL8069ICL8069: 低电压基准 MAX872MAX874MAX872 MAX874: 10µA 、低压差、精密电压基准 MAX873MAX875MAX876MAX873 MAX875 MAX876: 低功耗、低漂移、+2.5V/+5V/+10V 精密电压基准 MX581MX581: 高精度、10V 电压基准 MX584 MX584: 引脚可编程的精密电压基准MAX6806 MAX6807 MAX6806MAX6807MAX6808 MAX6808: 电压检测器MAX6190 MAX6191 MAX6192 MAX6193 MAX6194 MAX6195 MAX6198 MAX6190MAX6191MAX6192MAX6193MAX6194MAX6195MAX6198: 精密的、微功耗、低压差电压基准MAX6001 MAX6002 MAX6003 MAX6004 MAX6005 MAX6001MAX6002MAX6003MAX6004MAX6005: 低成本、低功耗、低压差、SOT23-3封装的电压基准 MAX6012 MAX6012A MAX6012B MAX6021 MAX6021A MAX6021B MAX6025 MAX6025A MAX6025B MAX6030 MAX6041 MAX6041A MAX6041B MAX6045 MAX6045A MAX6045B MAX6050 MAX6050A MAX6050B MAX6012MAX6012AMAX6012BMAX6021MAX6021AMAX6021BMAX6025MAX6025AMAX6025BMAX6030MAX6041MAX6041AMAX6041BMAX6045MAX6045AMAX6045BMAX6050MAX6050AMAX6050B: 精密的、低功耗、低压差、SOT23-3封装、电压基准 MAX6325 MAX6341 MAX6350 MAX6325MAX6341MAX6350: 1ppm/°C 、低噪声、+2.5V/+4.096V/+5V 电压基准 MAX6125 MAX6141 MAX6145 MAX6150 MAX6160 MAX6125MAX6141MAX6145MAX6150MAX6160: SOT23封装、低成本、低压差、三端电压基准 MAX6225 MAX6241 MAX6250 MAX6225MAX6241MAX6250: 低噪声、精密的、+2.5V/+4.096V/+5V 电压基准MAX6520 MAX6520: 50ppm/°C、SOT23、三端、1.2V电压基准MAX6120 MAX6120: 低成本、微功耗、精密的、三端、1.2V电压基准MAX674 MAX674: 精密的、+10V电压基准MAX675 MAX675: 精密的、5V电压基准,取代MAX673MAX672 MAX672: 此型号被MAX674取代电压基准•TI 德州仪器电压基准•Xicor公司电压基准•Intersil公司电压基准•Microchip 微芯电压基准•ON 安森美电压基准•Sipex 公司 Power电源管理器件电压基准TI 德州仪器电压基准 - - 更多...1.LM236D-2-5:2.5V基准电压源 400uA~10mA宽工作电流2.LM236DR-2-5:2.5V基准电压源 400uA~10mA宽工作电流3.LM236LP-2-5:2.5V基准电压源 400uA~10mA宽工作电流4.LM285D-1-2:微功耗电压基准. 10uA~20mA宽工作电流5.LM285D-2-5:微功耗电压基准. 10uA~20mA宽工作电流6.LM285LP-2-5:微功耗电压基准. 10uA~20mA宽工作电流7.LM336BD-2-5:2.5V基准电压源. 10uA~20mA宽工作电流8.LM336BLP-2-5:2.5V基准电压源9.LM385BD-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流10.LM385BD-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流11.LM385BLP-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流12.LM385BLP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流13.LM385BPW-1-2:微功耗电压基准. 15uA~20mA宽工作电流14.LM385BPW-2-5:微功耗电压基准. 15uA~20mA宽工作电流15.LM385D-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流16.LM385DR-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流17.LM385DR-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流18.LM385LP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流19.LM385PW-1-2:1.2V微功率基准电压源. 15uA~20mA宽工作电流20.LM385PW-2-5:2.5V微功率基准电压源. 15uA~20mA宽工作电流21.REF02AP:+5V精密电压基准22.REF02AU:+5V精密电压基准23.REF02BP:+5V精密电压基准24.REF02BU:+5V精密电压基准25.REF1004I-2.5:+2.5V精密电压基准26.REF102AP:10V精密电压基准27.REF102AU:10V精密电压基准28.REF102BP:10V精密电压基准29.REF200AU:双电流基准30.REF2912AIDBZT:1.2V电压基准31.REF2920AIDBZT:2V电压基准32.REF2925AIDBZT:2.5V电压基准33.REF2930AIDBZT:3V电压基准34.REF2933AIDBZT:3.3V电压基准35.REF2940AIDBZT:4V电压基准36.REF3012AIDBZT:1.25V,50ppm/℃,50uASOT23-3封装电压基准37.REF3020AIDBZT:2.048V,50ppm/℃,50uASOT23-3封装电压基准38.REF3025AIDBZT:2.5V,50ppm/℃,50uASOT23-3封装电压基准39.REF3033AIDBZT:3.3V,50ppm/℃,50uASOT23-3封装电压基准40.REF3040AIDBZT:4.096V,50ppm/℃,50uASOT23-3封装电压基准41.REF3120AIDBZT:20ppM(最大)100uA,SOT23封装电压基准42.REF3133AIDBZT:20ppm/℃, 100uA, SOT23-3封装3.3V电压基准43.TL1431CD:精密可编程输出电压基准44.TL1431CPW:精密可编程输出电压基准45.LM336BLP-2-5:2.5V基准电压源46.LM385-1.2V:1.2V精密电压基准. 15uA~20mA宽工作电流Xicor公司电压基准1.X60003CIG3-50:Xicor 公司电压基准2.X60003DIG3-50:Xicor 公司电压基准3.X60008BIS8-25:Xicor 公司电压基准4.X60008BIS8-41:Xicor 公司电压基准5.X60008BIS8-50:Xicor 公司电压基准6.X60008CIS8-25:Xicor 公司电压基准7.X60008CIS8-41:Xicor 公司电压基准8.X60008CIS8-50:Xicor 公司电压基准9.X60008DIS8-25:Xicor 公司电压基准10.X60008DIS8-41:Xicor 公司电压基准11.X60008DIS8-50:Xicor 公司电压基准12.X60008EIS8-50:Xicor 公司电压基准Intersil公司电压基准1.电压基准(Intersil)2.ISL60002CIB825:Intersil 公司电压基准3.ISL60002CIH325:Intersil 公司电压基准4.ISL60002DIB825:Intersil 公司电压基准5.ISL60002DIH325:Intersil 公司电压基准6.X60003CIG3-50T1:Intersil 公司电压基准7.X60003DIG3-50T1:Intersil 公司电压基准Microchip 微芯电压基准1.电压基准:2.MCP1525-I/TT:2.5V电压基准3.MCP1525T-I/TT:2.5V电压基准4.MCP1541-I/TT:4.096V电压基准5.MCP1541T-I/TT:4.096V电压基准ON 安森美电压基准1.电压基准:2.LM285D-1.2G:1.2V电压基准3.LM285D-2.5G:2.5V电压基准4.LM285D-2.5R2G:2.5V电压基准5.LM285Z-2.5G:2.5V电压基准6.LM385BD-1.2G:1.2V电压基准7.LM385BD-2.5G:2.5V电压基准8.LM385BD-2.5R2G:2.5V电压基准9.LM385BZ-1.2G:1.2V电压基准10.LM385BZ-2.5G:2.5V电压基准11.LM385D-1.2G:1.2V电压基准12.LM385D-1.2R2G:1.2V电压基准13.LM385D-2.5G:1.2V电压基准14.MC1403BP1G:低电压参考源15.MC1403D:低电压参考源16.MC1403DG:低电压参考源17.MC1403P1:低电压参考源18.MC1403P1G:低电压参考源19.NCP100SNT1:精密电压基准20.NCP100SNT1G:精密电压基准21.NCV1009D:2.5V电压基准22.NCV1009DG:2.5V电压基准23.NCV1009DR2G:2.5V电压基准24.NCV1009ZG:2.5V电压基准25.TL431ACDG:可编程精密参考源26.TL431ACDR2G:可编程精密参考源27.TL431ACLPG:可编程精密参考源28.TL431AIDG:可编程精密参考源29.TL431AIDMR2G:可编程精密参考源30.TL431AIDR2G:可编程精密参考源31.TL431AILPG:可编程精密参考源32.TL431BCDG:可编程精密参考源33.TL431BCDMR2G:可编程精密参考源34.TL431BCLPG:可编程精密参考源35.TL431BIDG:可编程精密参考源36.TL431BIDMR2G:可编程精密参考源37.TL431BIDR2G:可编程精密参考源38.TL431BILPG:可编程精密参考源39.TL431BVDG:可编程精密参考源40.TL431BVDR2G:可编程精密参考源41.TL431BVLPG:可编程精密参考源42.TL431CDG:可编程精密参考源43.TL431CLPG:可编程精密参考源44.TL431CLPRAG:可编程精密参考源45.TL431CPG:可编程精密参考源46.TL431IDG:可编程精密参考源47.TL431ILPG:可编程精密参考源48.TLV431ALPG:低电压精密可调参考源49.TLV431ALPRAG:低电压精密可调参考源50.TLV431ALPRPG:低电压精密可调参考源51.TLV431ASN1T1G:低电压精密可调参考源52.TLV431ASNT1G:低电压精密可调参考源53.TLV431BLPG:低电压精密可调参考源54.TLV431BLPRAG:低电压精密可调参考源55.TLV431BSN1T1G:低电压精密可调参考源56.TLV431BSNT1G:低电压精密可调参考源Sipex 半导体公司 Power电源管理器件电压基准- - 更多...1.SPX1004AN-1.2:1.2伏/2.5伏微功耗电压基准SPX1004N-2.5:2.5伏微功耗电压基准2.SPX1431S:精准可调分流调节器3.SPX2431AM:精准可调分流调节器SPX2431AM-L/TR:SPX2431AM-L/TRSPX2431M-L:SPX2431M-L4.SPX385AM-L-5-0:微功耗电压基准SPX385AN-1.2:SPX385AN-1.25.SPX431AM5:精准可调分流调节器SPX431AN-L/TR:SPX431AN-L/TRSPX431BM1/TR:SPX431BM1/TRSPX431BM1-L/TR:SPX431BM1-L/TRSPX431CS:SPX431CSSPX431LCN-L/TR:SPX431LCN-L/TR6.SPX432AM/TR:1.24V精准可调分流调节器SPX432AM-L/TR:SPX432AM-L/TR。
ADR292中文资料

VS = 5.0 V, 0 mA to 5 mA
ELECTRICAL SPECIFICATIONS (V = 2.7 V, T = ؊40؇C ≤ T ≤ +125؇C unless otherwise noted)
S
A
A
Parameter TEMPERATURE COEFFICIENT “E” Grade “F” Grade “G” Grade LINE REGULATION “E/F” Grades “G” Grade LOAD REGULATION “E/F” Grades “G” Grade SUPPLY CURRENT THERMAL HYSTERESIS
Symbol VO VOERR
2.048 2.050 +2 +0.10 2.048 2.051 +3 +0.15 2.048 2.054 +6 +0.29 30 40 30 40 50 6 420 100 125 100 125
VO VOERR
IOUT = 0 mA
VO VOERR ∆VO/∆VIN ∆VO/∆ ILOAD ∆VO eN eN
∆VO/∆VIN ∆VO/∆ ILOAD IS VO–HYS
2.7 V to 15 V, IOUT = 0 mA
VS = 5.0 V, 0 mA to 5 mA TA = +25°C –40°C ≤ TA ≤ +125°C SO-8, TSSOP-8 –2–
REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: Fax: 781/326-8703 © Analog Devices, Inc., 2001
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
REF2912 REF2920 REF2925 REF2930 REF2933 REF2940
SBVS033B – JUNE 2002 – REVISED FEBRUARY 2008
100ppm/°C, 50µA in SOT23-3 CMOS VOLTAGE REFERENCE
PACKAGE/ORDERING INFORMATION(1)
PACKAGE DESIGNATOR(1) DBZ SPECIFIED TEMPERATURE RANGE –40°C to +125°C PACKAGE MARKING R29A ORDERING NUMBER REF2912AIDBZT REF2912AIDBZR REF2920AIDBZT REF2920AIDBZR REF2925AIDBZT REF2925AIDBZR REF2930AIDBZT REF2930AIDBZR REF2933AIDBZT REF2933AIDBZR REF2940AIDBZT REF2940AIDBZR TRANSPORT MEDIA, QUANTITY Tape and Reel, 250 Tape and Reel, 3000 Tape and Reel, 250 Tape and Reel, 3000 Tape and Reel, 250 Tape and Reel, 3000 Tape and Reel, 250 Tape and Reel, 3000 Tape and Reel, 250 Tape and Reel, 3000 Tape and Reel, 250 Tape and Reel, 3000
14 42 60
REF2920
OUTPUT VOLTAGE Initial Accuracy NOISE Output Voltage Noise Voltage Noise LINE REGULATION VOUT 2.007 2.048 2.089 2 V % µVPP µVrms 290 µV/V
FEATURES
q MicroSIZE PACKAGE: SOT23-3 q LOW DROPOUT: 1mV q HIGH OUTPUT CURRENT: 25mA q LOW TEMPERATURE DRIFT: 100ppm/°C max q HIGH ACCURACY: 2% q LOW IQ: 50µA max
ELECTRICAL CHARACTERISTICS
Boldface limits apply over the specified temperature range, TA = –40°C to +125°C.
At TA = +25°C, ILOAD = 0mA, VIN = 5V, unless otherwise noted. REF29xx PARAMETER CONDITIONS MIN TYP MAX UNITS
PRODUCT REF2912 REF2920 REF2925 REF2930 REF2933 REF2940 VOLTAGE (V) 1.25 2.048 2.5 3.0 3.3 4.096
APPLICATIONS
q PORTABLE, BATTERY-POWERED EQUIPMENT q DATA ACQUISITION SYSTEMS q MEDICAL EQUIPMENT q HAND-HELD TEST EQUIPMENT
f = 0.1Hz to 10Hz f = 10Hz to 10kHz VREF + 50mV ≤ VIN ≤ 5.5V
DROPOUT VOLTAGE vs LOAD CURRENT
IN
1
Dropout Voltage (mV)
OUT
2
REF2912 REF2920 REF2925 REF2930 REF2933 REF2940 SOT23-3
350
3
GND
300 250 200 150 100 50 0 0 5 10 15 20 25 30 Load Current (mA)
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
REF2912-1.25V
OUTPUT VOLTAGE Initial Accuracy NOISE Output Voltage Noise Voltage Noise LINE REGULATION VOUT 1.225 1.25 1.275 2 V % µVP 0.1Hz to 10Hz f = 10Hz to 10kHz 1.8V ≤ VIN ≤ 5.5V
PRODUCT REF2912
PACKAGE-LEAD SO T23-3
"
REF2920
"
SOT23-3
"
DBZ
"
–40°C to +125°C
"
R29B
"
REF2925
"
SOT23-3
"
DBZ
"
–40°C to +125°C
"
R29C
"
REF2930
"
SOT23-3
"
DBZ
"
–40°C to +125°C
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.
Copyright © 2002-2008, Texas Instruments Incorporated
ABSOLUTE MAXIMUM RATINGS(1)
Supply Voltage, V+ to V– ................................................................... 7.0V Output Short-Circuit(2) .............................................................. Continuous Operating Temperature .................................................. –40°C to +125°C Storage Temperature ..................................................... –65°C to +125°C Junction Temperature .................................................................... +150°C Lead Temperature (soldering, 10s) ............................................... +300°C NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these, or any other conditions beyond those specified, is not implied. (2) Short-circuit to ground.
"
R29D
"
REF2933
"
SOT23-3
"
DBZ
"
–40°C to +125°C
"
R29E
"
REF2940
"
SOT23-3
"
DBZ
"
–40°C to +125°C
"
R29F
"
"
"
"
"
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI web site at .
ELECTROSTATIC DISCHARGE SENSITIVITY
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.