21有理数加减乘除乘方2混算
有理数加减乘除乘方混合运算相关法则知识整理汇总

有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。
(2)如有括号,先进行括号里的运算。
1.先算乘方,再算乘除,最后算加减。
2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。
有理数的加减乘除乘方混合运算专题训练(带答案)

1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411()()()23523 2、4(81)( 2.25)()1693、11(22)3(11) 4、31(12)()15(1)455、2232[3()2]236、33102(4)87、)]21)21[(1228、121)]3()2[(29、)6(]32)5.0[(2210、23533||()14714223 322231113、199711(1)(10.5)()31214、33514(1)(8)(3)[(2)5]21715、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49 + 2×(-3 )2+ (-6 )÷(-91)17、-14+ ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(5220、0)132()43(235722523、)23232(21)21(224、332)2(3)5(6)7(425、6-(-12)÷2)2( 26、(-48)÷ 8-(-5)÷2)21(27、42×)43()32(÷ 0.25 28、23)9181(29、33323230、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0 32、22)3(61)2132(11、【基础题】计算:(1)618-÷)(-)(-312;(2))(-+51232;(3))(-)(-49+)(-60÷12;(4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382;(2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343;(4))(-31÷231)(--3214)(-.(1)36×23121)-(;(2)12.7÷)(-1980;(3)6342+)(-;(4))(-43×)-+(-31328;(5)1323-)(-÷)(-21;(6)320-÷34)(-81-;(7)236.15.02)-(-)(-÷22)(-;(8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2;(10)16÷)(-)-(-)(-48123.(1)11+(-22)-3×(-11);(2)0313243)-(-)(-;(3)2332-)(-;(4)23÷[ )-(-)(-423];(5))-(8743÷)(-87;(6))+()(-654360;(7)-27+2×23+(-6)÷231;(8))(-)-+-(-4151275420361.(1))-(-258÷)(-5;(2)-33121)(--;(3)223232)-(-)(-;(4)0132432)+(-)(-;(5))(-+51262;(6)-10+8÷22-4×3;(7)-51-55.24.0;(8)251-(1-0.5)×31;(1)(-8)×5-40;(2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15;(4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2;(6)-52+(1276185)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/343 11、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、9 1、【答案】(1)17;(2)511;(3)31;(4)-112、【答案】(1)-10;(2)22;(3)-16;(4)-253、【答案】(1)1;(2)0;(3)42;(4)423;(5)18;(6)0;(7)-4.64;(8)37;(9)8;(10)-25.4、【答案】(1)22;(2)0;(3)-17;(4)-423;(5)71;(6)-95;(7)-85;(8)6 .5、【答案】(1)3;(2)1;(3)-54;(4)0;(5)526;(6)-20;(7)-2;(8)-67.6、【答案】(1)-80;(2)5.6;(3)-2;(4)16;(5)-516;(6)-2.9复习有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分)1.3×(-2)=________,(-6)×(-31)=________.2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________.9.+121的倒数是________;________的倒数是-54.10.用“>”“<”填空:①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分)11.零除以任何数都得零()12.互为相反数的两个数的积为负数()13.如果ab >0,则a >0且b >0()14.1除以一个非零数的商叫做这个数的倒数()15.(-3)5表示5个-3相乘()三、选择题(每小题3分,共21分)16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与-22D .|-2|与-|-2|19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .120.下列各式中结果大于0的是A .1-910×3 B .(1-910)×3C .1-(9×3)10D .(1-9)10×321.下列说法中正确的是A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21)24.(3分)-6÷(+3)÷(-4)×(+2)25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(522231.(3分)(-5)2÷5×6 32.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a=1,求A 的值.(2)若a=-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91913-32 4.-81-1615.-23236.-1.2 7.1800 8.3.6×103平方公里9.32-14110.>>><二、11.×12.×13.×14.√15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4五、34.(1)2000 (2)0。
有理数的乘、除、乘方、混合运算习题

有理数的乘法、除法、乘方练习一、有理数的乘法运算法则:(一)没有0因数相乘的情况下:1、由负因数的个数确定符号----------+⎧⎨⎩奇数(如1,3,5,)个负因数,积为“—”偶数(如2,4,6,)个负因数,积为“”,可省略,再把绝对值相乘---------- (二)有一个以上的0因数相乘,积为0(三)适用的运算律: 1.2.()3.()a b b a a b c a b c a b c d a b a c a d ⨯=⨯⎧⎪⨯⨯=⨯⨯⎨⎪ ⨯+-=⨯+⨯-⨯⎩(四)策略:在有理数的乘、除中,碰到小数就 ,碰到带分数就练习:1、(–4)×(–9)= 2、(–52)×81 = 3、(–253)×135=4、(–12)×2.45×0×9×1005、10.12512(16)(2)2-⨯⨯-⨯- 6、(-6)×(-4)-(-5)×107、(0.7-103-254+ 0.03)×(-100) 8、(–11)×52+(–11)×953二、有理数的倒数:(一)定义:如 ,则称a 与b 互为倒数;其中一个是另一个的倒数。
(二)几种情况下的倒数:1、整数:2的倒数是 ;12-的倒数是 ;0没有倒数2、分数:12的倒数是 ;23-的倒数是 ;112的倒数是 ;223-的倒数是 ;发现:求倒数时,碰到带分数,必须化为3、小数:0.25的倒数是 ; 1.125-的倒数是 ; 发现:求倒数时,碰到小数,必须化为 ,练习:求下列各数的倒数: 4.25-是 235是 1.14-是三、有理数的除法法则:(a b a b ÷=⨯的 )即看到除法,就转化为 练习:1、(-18)÷(-9)2、-3÷(-31) 3、0÷(–105) 4、(-2)÷(-1.5)×(-3)5、 -0.2÷(-151)×(-261) 6、[65÷(-21-31)+281]÷(-181)四、乘方:(一)在n a 中,a 称为 ;n 称为 ;n a 称为 。
有理数的混合运算课件

例题三:有理数在实际生活中的应用
步骤 1. 将所有的收入相加:$1300 + 500 + 300 = 2100$元
2. 将所有的支出相加:$-100 - 200 - 300 - 100 = -600$元
例题三:有理数在实际生活中的应用
3. 将收入和支出相加得到净收入
$2100 - 600 = 1500$元
括号问题
识别括号
正确识别括号内的内容,理解括 号在运算中的优先级。
展开括号
在运算过程中,注意将括号内的 内容展开,以符合运算法则。
保留括号
在需要保留括号的情况下,不要 忘记括号内的内容,以确保运算
的准确性。
顺序问题
确定顺序
在混合运算中,确定正确的运算顺序,先乘除后 加减。
遵循顺序
在运算过程中,遵循正确的运算顺序,确保每一 步运算的准确性。
03 运算律
加法交换律、加法结合律。
减法运算
01 定义
有理数的减法运算可以转化为加法运算。
02 运算法则
减去一个数等于加上这个数的相反数。
03 运算律
减法同样满足交换律和结合律。
乘法运算
定义
运算律
有理数的乘法运算是由有理数的乘法 法则和运算律所定义的。
乘法交换律、乘法结合律、乘法分配 律。
运算法则
\times (-3) = 21$
例题一:加减乘除的混合运算
3. 计算加减
$(-3) + 5 - (-10.5) = 12.5$
结果
$12.5$
例题二:乘方与幂的混合运算
题目
计算$(-2)^3 + (-3)^2 \times 4^3 - 2^2 \times 3^3$
有理数的乘方及混合运算(提高)知识讲解

有理数的乘方、混合运算及科学记数法(提高)【学习目标】1.理解有理数乘方的定义;2. 掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;3. 进一步掌握有理数的混合运算.4. 会用科学记数法表示大数. 【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数.要点诠释: (1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果. (2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,如 2a ≥0.要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用. 要点四、科学记数法把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,l ≤|a |<10,n 是正整数),这种记数法叫做科学记数法,如42000000=74.210⨯. 要点诠释:(1)负数也可以用科学记数法表示,“-”照写,其它与正数一样,如-3000=3310-⨯; (2)把一个数写成10na ⨯形式时,若这个数是大于10的数,则n 比这个数的整数位数少1.【典型例题】类型一、有理数的乘方1. 计算:(1)44443333----;;();() (2)3333222(2)3333--;();(-); 【答案与解析】解:由乘方的定义可得: (1)43=3×3×3×3=81; -43=-(3×3×3×3)=-81;4(3)(3)(3)(3)(3)81-=-⨯-⨯-⨯-=; 4(3)[(3)(3)(3)(3)]81--=--⨯-⨯-⨯-=-(2)322228333⨯⨯==; 322228()()()()333327=⨯⨯=; 322228()()()()333327-=-⨯-⨯-=-; 3(2)(2)(2)(2)883333--⨯-⨯---=-=-=【总结升华】注意()na -与n a -的意义的区别.22()nn a a -=(n 为正整数),2121()n n a a ++-=-(n 为正整数). 举一反三:【变式】已知2a <,且24a -=,则3a 的倒数的相反数是 . 【答案】18类型二、乘方运算的符号法则2.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫⎪⎝⎭,-(-2)2010【思路点拨】理解乘方的意义,掌握乘方的符号法则. 【答案与解析】解:根据乘方的符号法则判断可得:(-2)7运算的结果是负;(-3)24运算的结果为正;(-1.0009)2009运算的结果是负;553⎛⎫⎪⎝⎭运算的结果是正;-(-2)2010运算的结果是负. 【总结升华】 “一看底数,二看指数”,当底数是正数时,结果为正;当底数是0,指数不为0时,结果是0;当底数是负数时,再看指数,若指数为偶数,结果为正;若指数是奇数,结果为负. 举一反三: 【变式】(2015春•富阳市校级期中)计算(﹣2)2015+(﹣2)2014所得的结果是( ) A .﹣2 B . 2 C . ﹣22014 D .22015 【答案】C .解:(﹣2)2015+(﹣2)2014=(﹣2)2014(﹣2+1)=22014×(﹣1)=﹣22014. 类型三、有理数的混合运算3.计算:(1)-(-3)2+(-2)3÷[(-3)-(-5)](2)[73-6×(-7)2-(-1)10]÷(-214-24+214)(3)3112222233⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭;(4)()2311113121121324424340.2⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- 【答案与解析】解:(1)-(-3)2+(-2)3÷[(-3)-(-5)] =-9+(-8)÷(-3+5) =-9+(-8)÷2 =-9+(-4)=-13(2)[73-6×(-7)2-(-1)10]÷(-214-24+214) =(7×72-6×72-1)÷(-214+214-24) =[72×(7-6)-1]÷(-24) =(49-1)÷(-24) =-2(3)有绝对值的先去掉绝对值,然后再按混合运算.原式11221111[(2)]82338324=-+⨯--=--=- (4)将带分数化为假分数,小数化为分数后再进行运算.()23311113121121324424340.215457551()()241162434()5125724241251652316056125403912040⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-=÷-++-⨯--=-⨯-⨯+⨯+=--++=【总结升华】有理数的混合运算,确定运算顺序是关键,细心计算是运算正确的前提. 类型四、科学记数法4.(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( ) A .0.675×105 B . 6.75×104 C . 67.5×103 D .675×102【思路点拨】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【答案】B .将67500用科学记数法表示为:6.75×104.【总结升华】将一个绝对值较大的数写成科学记数法10na ⨯的形式时,其中1≤|a|<10,n 为比整数位数少1的数.在进行运算时,a 部分和10n的部分分别运算,然后再把结果整理成10na ⨯的形式. 类型五、探索规律5.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎡⎤⎡⎤---⎛⎫-+++ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦; 第3个数:234511(1)(1)(1)(1)11111423456⎡⎤⎡⎤⎡⎤⎡⎤-----⎛⎫-+++++ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦;…第n 个数:232111(1)(1)(1)111112342n n n -⎡⎤⎡⎤⎡⎤----⎛⎫-++++ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦⎣⎦….那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ). A .第10个数 B .第11个数 C .第12个数 D .第13个数 【答案】A【解析】第1个数结果为11022-=;第2个数结果为111326-=-;第3个数结果为111424-=-;…;发现运算中在112-⎛⎫+ ⎪⎝⎭后边的各式为43653456⨯⨯⨯⨯…,分子、分母相约为1,所以第n 个数结果为1112n -+,把第10、11、12、13个数分别求出,比较大小即可.【总结升华】解答此类问题的方法一般是:从所给的特殊情形入手,再经过猜想归纳,从看似杂乱的问题中找出内在的规律,使问题变得有章可循. 举一反三:【变式】观察下面三行数:①-3,9,-27,81,-243,729,… ②0,12,-24,84,-240,732,… ③-1,3,-9,27,-81,243,… (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和. 【答案】解:(1)第①行数的规律是:-3,(-3)2,(-3)3,(-3)4,…;(2)第②行数是第①行数相应的数加3,即:-3+3,(-3)2+3,(-3)3+3,(-3)4+3,…;第③行数是第①行数相应的数的13,即133-⨯,21(3)3-⨯,31(3)3-⨯,41(3)3-⨯,…; (3)每行数中的第10个数的和是:1010101(3)[(3)3](3)3-+-++-⨯=59049+59052+19683=137784.。
有理数加减乘除混合运算法则小结5.10

有理数的加减乘除知识梳理一、有理数的加法法则:①同号两数相加,和取相同的符号并把绝对值相加;如:-2+(-3)=-5②绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 如: 2+(-3)=-(3-2)=-1 ③一个数与零相加仍得这个数; 如: 0+(-3)=-3④两个互为相反数的数相加和为零; 如: 3+(-3)=0二、有理数的减法法则:减去一个数等于加上这个数的相反数 如: 5-(-3)=5+3=8三、有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;如:(-2)×(-5)=+(2×5)=10 2×(-5)=-(2×5)=-10②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正。
如:(-4)×(-2)×1×(-3)=-(4×2×1×3)=-24④几个有理数相乘若其中有一个为零积就为零四、有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数六、运算律:① 加法交换律:a +b =b +a 。
② 加法结合律:(a +b )+c =a +(b +c )。
③ 乘法交换律:ab =ba 。
④ 乘法结合律:(ab )c =a (bc )。
⑤ 乘法分配律:a (b +c )=ab +ac 。
七、运算顺序:有理数的混合运算法则大体与整数混合运算相同:先算乘方或开方,再算乘法或除法,后算加法或减法,有括号时、先算小括号里面的运算、再算中括号、然后算大括号。
有理数计算题1、(1)2+(-3) (2)(-5)+(-8) (3)6+(-4)(4)5+(-5) (5)0+(-2) (6))43(31-+(7)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121 (8)()⎪⎭⎫ ⎝⎛++-5112.1 2、(1)9-(-5) (2)(-3)-1 (3)(-3)-(-5)(4)0-8 (5)0-(-74) (6)(-6)-(-6) (7)(-52)-(-53) (8)(-32)-52; 3、(1) )127()65()411()310(-++-+ (2))539()518()23()52()21(++++-+-;(3)(-72)-(-37)-(-22)-17; (4)(-32)-21-(-65)-(-31);(5)(-8)-(-15)+(-9)-(-12) (6)0.5+(-41)-(-2.75)+21;(6)(-32)+(-61)-(-41)-21 (8)21+(-32)-(-54)+(-21)4、(1)(-9)×32 (2)(-132)×(-0.26)(3)(74)×56 (4)(-132)×(-0.26) 5、(1)18÷(-3) (2) (-57)÷(-3) (3) (-53)÷526、(1)(-4)×(-10)×0.5×(-3) (2) (-83)×34×(-1.8)(3)-36÷(-131)÷(-32) (4)(-1)÷(-4)÷74(5)3÷(-76)×(-97) (6)131÷(-3)×(-31)7、 (1)(65―43―97)×36 (2) 3×(–9)+7×(–9)(3)-3÷(31-41) (4)56×(-31-21)÷45。
有理数的加减乘除乘方混合运算专题训练带答案

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷22231113、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-35722523、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.(1)36×23121)-(; (2)12.7÷)(-1980⨯;(3)6342+)(-⨯; (4))(-43×)-+(-31328;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯.(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423];(5))-(8743÷)(-87; (6))+()(-654360⨯;(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.(1))-(-258÷)(-5; (2)-33121)(--⨯;(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3;(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-11 2、【答案】 (1)-10; (2)22; (3)-16; (4)-25 3、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64; (8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________. 5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22 ②(21)2________(21)3 ③32________22 ④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( ) 15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是 A .1-910×3 B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是 A .2890 B .2890000 C .28900 D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0。
有理数的加减乘除乘方运算

有理数的加减乘除乘方运算⎧⎪⎨⎪⎩加减运算有理数的运算乘除运算乘方运算知识点1 加减运算一、法则有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.注:两数相加,先定符号,再算绝对值有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-.二、运算律有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.a b b a+=+②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++三、有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.四、加减混合运算技巧:(1)把符号相同的加数相结合;(2)凑零:互为相反数的两个数先相加(3)凑整:相加和为整数的两个数先相加(4)同分母:分数相加,同分母或易通分的分数先相加(5)同形:分数与小数均有时,化统一形式(6)带分数:带分数化为整数和真分数分别运算知识点2 乘除运算一、法则有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.二、有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值.多个有理数相乘:(1)几个不是0的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为0,那么积等于0.三、有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.ab ba(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.()()ab c a bc =(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac +=+四、倒数的概念:乘积是1的两个数互为倒数.五、负倒数:乘积是-1的两个数互为负倒数整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).知识点3 乘方乘方的概念:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,n 个相同的因数a 相乘,即n a a a a ⋅⋅⋅⋅⋅⋅⋅个,记作,读作“a 的n 次方”;(2)在中,a 叫做底数,n 叫做指数;(3)当看作a 的n 次方的结果时,读作a 的n 次幂.注意:()224-=,其底数为()2-,()()()22224-=-⨯-=; n a n a n a224-=-,其底数为2,()()222121224-=-⨯=-⨯⨯=-;239=749⎛⎫ ⎪⎝⎭,其底数为37,2333977749⎛⎫=⨯= ⎪⎝⎭; 239=77,其底数为3,23339777⨯==; 221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,带分数的乘方运算,一定要先化成假分数后再运算.一个数可以看作这个数本身的一次方,例如,5就是15,指数1通常省略不写.正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方.科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是正整数).用科学记数法表示一个n 位整数,其中10的指数是1n -,10的指数比整数的位数少1.万410=,亿810= .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.3有理数的加减乘除乘方混算二
学习目标:能够在掌握运算律的基础上,初步能够进行有理数的加减乘除混合运算。
一、课前小测
1、3
)3(-= _______ (2) 3)3(--=_________(3) 4)2(-=_______(4)4
)2(--=________ 2、 计算(1) 6-(-12)÷(-3) (2) -9×(-11)÷3÷(-3) (3)()241()216141-÷-+ (4)
(-25)÷()7
3
(877362)73-÷+÷+-
二、例题讲解
3、计算(1) 64124÷⎪⎭⎫ ⎝
⎛- (2) ()()33323
2÷---⨯-
4、已知2(3)40a b ++-=,求 -22a b +的值。
5、若|a|=4,|b|=2,且ab<0,求a+b
三、课堂练习 6、选择题:
(1)、如果b a ÷()0≠b 的商是负数,那么---------------------( )
A 、b a ,异号
B 、b a ,同为正数
C 、b a ,同为负数
D 、b a ,同号 (2)、下列结论错误的是------------------------------------( ) A 、若b a ,异号, 则b a ⋅<0,
b a <0 B 、若b a ,同号,则b a ⋅>0,b
a
>0 C 、
b
a
b a b a -=-=- D 、b a b a -=-- 7、如果 ,求 a b 的值。
8、计算(1) 6-(-12)÷2
)2(- (2)3×(-4)+(-28)÷7
(3)(-48)÷ 8 -(-5)÷2
)21(- (4) 42×)4
3
()32(-+-÷ 0.25
(5)()23)9181(-÷- (6))24()6
143241121(-⨯-+--
(7)107
5
)13(3172103213⨯--⨯+⨯-⨯
- (8)()()843026330220302-⨯+⨯--⨯ 2|3|(2)0a b ++-=
四、课后作业 A 基础训练 1、直接写出答案
(1)10+(-4)=___ __; (2)(-15)+(-32)=___ __; (3)(-5)×0 =_ ____
(4)=-⨯)23(94__ __; (5)=-÷)1(34 ; (6)=÷-4
3
25.0
2、计算: (1) 271—332—531+(—371) (2)2-(-21+41-81)÷16
1
(3))()(24-12
783-211-1⨯+ (4)1023
--9.22--7.10-1.33)(
(5)12(18)(7)15--+-- (6)(82268-+--)÷ 101
(7)(-5)×6+(-125) ÷(-5)3
(8) )25
1
(4)5(25.0-⨯⨯-⨯--
(9)、(-5)×(-7)-5×(-6) (10)22)3(6
1
)2132(1-+÷-+-
3、某一天,甲,乙两人利用温差测量山峰的高度,甲在山顶测得温度是-3℃,乙此时在山脚测得
温度是3℃,已知该地区高度每增加100m ,气温大约降低0.6℃,这个山峰的高度大约是多少米?
B 能力提高
4计算.(1)2
3121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪
⎝⎭⎝⎭
(2) 94)211(42415.032
2⨯-----+-
5、0|2|)1(2=++-b a 若,求b a 的值。
6、按规律填空: ①、1=1=12,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,…………,则1+3+5+7+…+2009 =_________。
②、2=1×2,2+4=6=2×3,2+4+6=12=3×4,…………,2+4+6+8+…………+1000 = ___________。
7、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:
(1)经过第3次捏合后,可以拉出___________ 根细面条; (2)第 _________次捏合后,可拉出32根细面条. (3)第10次捏合后,可以拉出_______根细面条。