(浙江专用)2020版高考数学大一轮复习 课时11 2.9 函数模型及其应用课件

合集下载

高考数学一轮复习目录

高考数学一轮复习目录

高考数学一轮复习目录一、集合与常用逻辑用语1.1集合的概念与运算1.2命题及其关系、充分条件与必要条件1.3简单的逻辑联结词、全称量词与存在量词二.函数1.1 函数及其表示2.2函数的单调性与最值2.3函数的奇偶性与周期性2.4一次函数、二次函数2.5指数与指数函数2.6对数与对数函数2.7幂函数2.8函数的图象及其变换2.9函数与方程2.10函数模型及其应用三、导数及其应用3.1导数、导数的计算3.2导数在函数单调性、极值中的应用3.3导数在函数最值及生活实际中的应用3.4微积分基本定理四、三角函数、解三角形4.1任意角和弧度制及任意角的三角函数4.2同角三角函数的基本关系及三角函数的诱导公式4.3三角函数的图象与性质4.4函数y=Asin(ωx+φ)的图象与性质4.5简单的三角恒等变换4.6正、余弦定理及其应用举例五、平面向量5.1平面向量的概念及其线性运算5.2平面向量的基本定理及坐标运算5.3平面向量的数量积及其应用六、数列6.1数列的概念与简单表示法6.2等差数列及其前n 项和6.3等比数列及其前n 项和6.4数列的通项与求和6.5数列的综合应用七、不等式7.1不等式的概念与性质7.2一元二次不等式及其解法7.3二元一次不等式组与简单的线性规划问题7.4基本不等式及其应用八.立体几何8.1空间几何体的结构及其三视图与直观图8.2空间几何体的表面积与体积8.3空间点、直线、平面之间的位置关系8.4直线、平面平行的判定及其性质8.5直线、平面垂直的判定及其性质8.6空间向量及其运算8.7空间向量的应用九、解析几何9.1直线及其方程9.2点与直线、直线与直线的位置关系9.3圆的方程9.4直线与圆、圆与圆的位置关系9.5椭圆9.6双曲线9.7抛物线9.8直线与圆锥曲线的位置关系9.9曲线与方程十.计数原理10.1分类加法计数原理与分步乘法计数原理10.2排列与组合10.3二项式定理十一、概率与统计11.1事件与概率11.2古典概型与几何概型11.3离散型随机变量及其分布列11.4二项分布及其应用11.5离散型随机变量的均值与方差、正态分布11.6随机抽样与用样本估计总体11.7变量间的相关关系十二、选修部分选修4-4 坐标系与参数方程选修4-5 不等式选讲十三、算法初步、推理与证明、复数12.1算法与程序框图12.2基本算法语句12.3合情推理与演绎推理12.4直接证明与间接证明12.5数学归纳法12.6数系的扩充与复数的引入。

(浙江专用)2020版高考数学大一轮复习高考解答题专讲1函数与导数课件

(浙江专用)2020版高考数学大一轮复习高考解答题专讲1函数与导数课件

③当x1<x2,即a>1时,f'(x),f(x)随x的变化情况如下表:
1
-∞,
a
x
1
,1
a
1
a
1
(1,+∞)
f'(x)
+
0
-
ቤተ መጻሕፍቲ ባይዱ
0
+
f(x)

极大值

极小值

∴f(x)在x=1处取得极小值,即a>1满足题意.
1
当a<0时,令f'(x)=0,得x1= ,x2=1.
f'(x),f(x)随x的变化情况如下表:
1
( 1 )-( 2 )
所以 -x2+2ln x2<0,即
2
1 - 2
<a-2.
1
-
2 2
,
-17题型一
题型二
题型三
不等式问题
导数在不等式中的应用问题难度较大,属中高档题.归纳起来常
见的命题角度有:(1)证明不等式;(2)不等式恒成立问题;(3)存在型不
等式成立问题.
-18题型一
-
ln λ
0
(ln λ,+∞)
+
f(x)

极小值

-22题型一
题型二
题型三
①当λ≥e3时,ln λ≥3,f(x)在[-3,3]上单调递减,
∴f(x)的最大值f(-3)>f(0)=λ.
∴当λ≥e3时命题成立;
②当e-3<λ<e3时,-3<ln λ<3,
∴f(x)在(-3,ln λ)上单调递减,在(ln λ,3)上单调递增.

2020版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.9 函数模型及其应用 Word版含解析

2020版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.9 函数模型及其应用 Word版含解析

2.9函数模型及其应用[知识梳理]1.七类常见函数模型2.指数、对数、幂函数模型的性质3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:特别提醒:(1)“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.(2)充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.(3)易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.[诊断自测]1.概念思辨(1)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.()(2)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.()(3)当a>1时,不存在实数x0,使a x0<x a0<log a x0.()(4)对数函数增长模型比较适合于描述增长速度平缓的变化规律.()答案(1)√(2)√(3)√(4)√2.教材衍化(1)(必修A1P59T6)如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是(lg 2=0.3010,lg 3=0.4771,lg 109=2.0374,lg 0.09=-2.9543)()A.2015年B.2011年C.2010年D.2008年答案 B解析设1995年总值为a,经过x年翻两番,则a·(1+9%)x=4a.∴x=2lg 2lg 1.09≈16.故选B.(2)(必修A1P107T1)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()A .y =2x -2B .y =12(x 2-1) C .y =log 2x D .y =log 12x答案 B解析 由题意得,表中数据y 随x 的变化趋势,函数在(0,+∞)上是增函数,且y 的变化随x 的增大越来越快.∵A 中函数是线性增加的函数,C 中函数是比线性增加还缓慢的函数,D中函数是减函数,∴排除A ,C ,D ,∴B 中函数y =12(x 2-1)符合题意.故选B. 3.小题热身(1) (2018·湖北八校联考)某人根据经验绘制了2016年春节前后,从1月25日至2月11日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在1月30日大约卖出了西红柿 ________千克.答案 1909解析 前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式,得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909. (2)(2017·朝阳区模拟)某商场2017年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①f (x )=p ·q x (q >0,q ≠1); ②f (x )=log p x +q (p >0,p ≠1); ③f (x )=x 2+px +q .能较准确反映商场月销售额f (x )与月份x 关系的函数模型为________(填写相应函数的序号),若所选函数满足f (1)=10,f (3)=2,则f (x )=________.答案 ③ x 2-8x +17解析 (ⅰ)因为f (x )=p ·q x ,f (x )=log q x +q 是单调函数,f (x )=x 2+px +q 中,f ′(x )=2x +p ,令f ′(x )=0,得x =-p2,f (x )出现一个递增区间和一个递减区间,所以模拟函数应选f (x )=x 2+px +q .(ⅱ)∵f (1)=10,f (3)=2,∴⎩⎪⎨⎪⎧1+p +q =10,9+3p +q =2,解得p =-8,q =17, ∴f (x )=x 2-8x +17 故答案为③;x 2-8x +17.题型1 二次函数及分段函数模型典例 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5040x ,x ∈[120,144),12x 2-200x +80000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,亏损数额国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果亏损,则国家每月补偿数额的范围是多少?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?本题用函数法,再由均值定理解之.解 (1)当x ∈[200,300]时,设该项目获利为S ,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80000=-12x 2+400x -80000=-12(x-400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5000,当x =200时,S 取得最小值-20000,故国家每月补偿数额的范围是[5000,20000].(2)由题意,可知二氧化碳的每吨处理成本为 yx =⎩⎪⎨⎪⎧13x 2-80x +5040,x ∈[120,144),12x +80000x -200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5040=13(x -120)2+240, 所以当x =120时,yx 取得最小值240. ②当x ∈[144,500]时, y x =12x +80000x -200≥212x ×80000x -200=200,当且仅当12x =80000x ,即x =400时,yx 取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低.方法技巧一次函数、二次函数及分段函数模型的选取与应用策略 1.在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.2.实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.见典例.3.实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解,但应关注以下两点:(1)构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;(2)分段函数的最值是各段的最大(或最小)值中的最大(或最小)值. 提醒:(1)构建函数模型时不要忘记考虑函数的定义域. (2)对构建的较复杂的函数模型,要适时地用换元法转化为熟悉的函数问题求解.冲关针对训练(2017·广州模拟)某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1;B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A ,B 两种产品的利润表示为投资的函数关系式; (2)已知该企业已筹集到18万元资金,并将全部投入A ,B 两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?解 (1)f (x )=0.25x (x ≥0),g (x )=2x (x ≥0).(2)①由(1)得f (9)=2.25,g (9)=29=6,所以总利润y =8.25万元.②设B 产品投入x 万元,A 产品投入(18-x )万元,该企业可获总利润为y 万元.则y =14(18-x )+2x ,0≤x ≤18. 令x =t ,t ∈[0,3 2 ],则y =14(-t 2+8t +18)=-14(t -4)2+172. 所以当t =4时,y max =172=8.5,此时x =16,18-x =2,所以当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.题型2 指数函数模型典例 (2017·西安模拟)我国加入WTO 后,根据达成的协议,若干年内某产品的关税与市场供应量P 的关系近似满足:y =P (x )=2(1-kt )(x -b )2(其中t 为关税的税率,且t ∈⎣⎢⎡⎭⎪⎫0,12,x 为市场价格,b ,k为正常数),当t =18时的市场供应量曲线如图:(1)根据图象求b ,k 的值; (2)若市场需求量为Q ,它近似满足Q (x )=211-x2.当P =Q 时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元的范围内,求税率t 的最小值.本题用函数思想,采用换元法.解 (1)由图象知函数图象过(5,1),(7,2).所以⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫1-k 8(5-b )2=0,⎝ ⎛⎭⎪⎫1-k 8(7-b )2=1,解得⎩⎪⎨⎪⎧k =6,b =5.(2)当P =Q 时,2(1-6t )(x -5) 2=211-x 2 ,即(1-6t )(x -5)2=11-x 2,化简得1-6t =11-x 2(x -5)2=12·22-x(x -5)2=12·⎣⎢⎡⎦⎥⎤17(x -5)2-1x -5. 令m =1x -5(x ≥9),所以m ∈⎝ ⎛⎦⎥⎤0,14.设f (m )=17m 2-m ,m ∈⎝ ⎛⎦⎥⎤0,14,对称轴为m =134,所以f (m )max =f ⎝ ⎛⎭⎪⎫14=1316,所以,当m =14,即x =9时,1-6t 取得最大值为12×1316,即1-6t ≤12×1316,解得t ≥19192,即税率的最小值为19192. 方法技巧构建指数函数模型的关注点1.指数函数模型常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.2.应用指数函数模型时关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.3.y =a (1+x )n 通常利用指数运算与对数函数的性质求解. 冲关针对训练某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下问题:(1)写出该城市人口总数y (单位:万人)与年份x (单位:年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后该城市人口将达到120万人(精确到1年). (1.01210≈1.127,1.01215≈1.196,1.01216≈1.210,log 1.0121.2≈15.3) 解 (1)1年后该城市人口总数为y =100+100×1.2%=100×(1+1.2%),2年后该城市人口总数为y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2,3年后该城市人口总数为y =100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3,……x 年后该城市人口总数为y =100×(1+1.2%)x .所以该城市人口总数y (万人)与年份x (年)的函数关系式是y =100×(1+1.2%)x (x ∈N ).(2)10年后该城市人口总数为100×(1+1.2%)10≈112.7(万人). 所以10年后该城市人口总数约为112.7万人.(3)设x 年后该城市人口将达到120万人,即100(1+1.2%)x ≥120,于是1.012x ≥120100,所以x ≥log 1.012120100=log 1.0121.2≈15.3≈15(年),即大约15年后该城市人口总数将达到120万人.题型3 对数函数模型典例 某企业根据分析和预测,能获得10万~1000万元的投资收益,企业拟制定方案对科研进行奖励,方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y =f (x )模拟此方案.(1)写出模拟函数y =f (x )所满足的条件;(2)试分析函数模型y =4lg x -3是否符合此方案要求,并说明理由.用函数思想,采用导数法.解 (1)由题意,y =f (x )所满足的条件是:①f (x )在[10,1000]上为增函数,②f (x )≤9,③f (x )≤15x .(2)对于y =4lg x -3,显然在[10,1000]上是增函数,满足条件①.当10≤x ≤1000时,4lg 10-3≤y ≤4lg 1000-3,即1≤y ≤9,满足条件②.证明如下:f (x )≤15x ,即4lg x -3≤15x ,对于x ∈[10,1000]恒成立.令g (x )=4lg x -3-15x ,x ∈[10,1000],g ′(x )=20 lg e -x 5x,∵e<10,∴lg e<lg 10=12, ∴20lg e<10,又∵x ≥10,∴20lg e -x <0,∴g ′(x )<0对于x ∈[10,1000]恒成立,∴g (x )在[10,1000]上是减函数.∴g (x )≤g (10)=4lg 10-3-15×10=-1<0,即4lg x -3-15x ≤0,即4lg x -3≤15x ,对x ∈[10,1000]恒成立,从而满足条件③.方法技巧本例属奖金分配问题,奖金的收益属对数增长,随着投资收益的增加,奖金的增加会趋向于“饱和”状态,实际中很多经济现象都是这种规律,并注意掌握直接法、列式比较法、描点观察法.冲关针对训练候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.1.(2015·北京高考)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升答案 B 解析 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35600-35000=600千米耗油48升,所以每100千米的耗油量为8升.故选B.2.(2014·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B .(p +1)(q +1)-12 C.pqD .(p +1)(q +1)-1 答案 D解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =(1+p )(1+q )-1.故选D.3.(2015·四川高考)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 依题意有192=e b,48=e 22k +b =e 22k ·e b ,所以e 22k=48e b =48192=14,所以e 11k =12或-12(舍去),于是该食品在33 ℃的保鲜时间是e 33k +b =(e 11k )3·e b=⎝ ⎛⎭⎪⎫123×192=24(小时). 4.(2017·江西九江七校联考)某店销售进价为2元/件的产品A ,该店产品A 每日的销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =10x -2+4(x -6)2,其中2<x <6.(1)若产品A 销售价格为4元/件,求该店每日销售产品A 所获得的利润;(2)试确定产品A 的销售价格x 的值,其使该店每日销售产品A 所获得的利润最大.(保留1位小数)解 (1)当x =4时,y =102+4×(4-6)2=21千件,此时该店每日销售产品A 所获得的利润为(4-2)×21=42千元.(2)该店每日销售产品A 所获得的利润f (x )=(x -2)·⎣⎢⎡⎦⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,易知在⎝ ⎛⎭⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝ ⎛⎭⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减.所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值.故当销售价格为3.3元/件时,利润最大.[基础送分 提速狂刷练]一、选择题1.(2018·福州模拟)在一次数学实验中,运用计算器采集到如下一组数据:则y 关于x 的函数关系与下列函数最接近的(其中a ,b 为待定系数)是( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x答案 B 解析 由x =0时,y =1,排除D ;由f (-1.0)≠f (1.0),排除C ;由函数值增长速度不同,排除A.故选B.2.(2017·云南联考)某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升.故选A.3.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是( )A .2.4元B .3元C .2.8元D .3.2元答案 B解析 设每本定价x 元(x ≥2),销售总收入是y 元,则y =⎣⎢⎡⎦⎥⎤5×104-x -20.2×4×103·x =104·x (9-2x )≥9×104. ∴2x 2-9x +9≤0⇒32≤x ≤3.故选B.4.(2017·南昌期末)某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处答案 A解析 设仓库与车站距离为x ,土地费用为y 1,运输费用为y 2,于是y 1=k 1x ,y 2=k 2x ,∴⎩⎨⎧ 2=k 110,8=10k 2,解得k 1=20,k 2=45.设总费用为y ,则y =20x +4x 5≥220x ·4x5=8. 当且仅当20x =4x 5,即x =5时取等号.故选A.5.(2015·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下, 在该市用丙车比用乙车更省油答案 D解析 对于A 选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L ,故乙车消耗1升汽油的行驶路程可大于5千米,所以A 错误;对于B 选项,由图可知甲车消耗汽油最少;对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,所以C 错误;对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.故选D.6.(2017·北京朝阳测试)将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e n t .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a 8,则m 的值为( )A .7B .8C .9D .10答案 D解析 根据题意知12=e 5n ,令18a =a e n t ,即18=e n t ,因为12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.故选D.7.(2016·天津模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( )A .560万元B .420万元C .350万元D .320万元答案 D解析 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+(x -280)×(p +2)%,x >280, 依题有280×p %+(x -280)×(p +2)%x=(p +0.25)%,解得x =320.故选D.8.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案每天的回报如图所示.横轴为投资时间,纵轴为每天的回报,根据以上信息,若使回报最多,下列说法错误的是( )A .投资3天以内(含3天),采用方案一B .投资4天,不采用方案三C .投资6天,采用方案一D .投资12天,采用方案二答案 D解析 由图可知,投资3天以内(含3天),方案一的回报最高,A 正确;投资4天,方案一的回报约为40×4=160(元),方案二的回报约为10+20+30+40=100(元),都高于方案三的回报,B 正确;投资6天,方案一的回报约为40×6=240(元),方案二的回报约为10+20+30+40+50+60=210(元),都高于方案三的回报,C 正确;投资12天,明显方案三的回报最高,所以此时采用方案三,D 错误.故选D.9.(2017·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11答案 C解析 设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.10.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3000元B .3300元C .3500元D .4000元答案 B解析 由题意,设利润为y 元,租金定为3000+50x 元(0≤x ≤70,x ∈N ).则y =(3000+50x )(70-x )-100(70-x )=(2900+50x )·(70-x )=50(58+x )(70-x )≤50⎝ ⎛⎭⎪⎫58+x +70-x 22, 当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3000+300=3300(元)时,公司获得最大利润.故选B.二、填空题11.(2017·金版创新)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2. ∴当t =12a ,即A =14a 2时,D 取得最大值.12.一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ;当t =8时,y =a e-8b =12a , ∴e-8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt=18a .e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.13.(2014·北京高考改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),右图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________.答案 3.75分钟解析 由已知得⎩⎪⎨⎪⎧ 9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧ a =-0.2,b =1.5,c =-2, ∴p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t -1542+1316,∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.14.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________;(2)据测定,当空气中每立方米的含药量不大于0.25毫克时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.答案 (1)y =⎩⎨⎧ 10t ,0≤t ≤0.1,⎝ ⎛⎭⎪⎫116t -0.1,t >0.1 (2)0.6解析 (1)设y =kt ,由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1).由y =⎝ ⎛⎭⎪⎫116t -a 过点(0.1,1),得1=⎝ ⎛⎭⎪⎫1160.1-a ,解得a =0.1,∴y =⎝ ⎛⎭⎪⎫116t -0.1(t >0.1).(2)由⎝ ⎛⎭⎪⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.三、解答题15.(2017·济宁期末)已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x 元/件(1≤x ≤2),则新增的年销量P =4(2-x )2(万件).(1)写出今年商户甲的收益f (x )(单位:万元)与x 的函数关系式;(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.解 (1)由题意可得:f (x )=[1+4(2-x )2](x -1),1≤x ≤2.(2)甲往年以单价2元/件销售该商品时,年销量为1万件,可得收益为1万元.f ′(x )=8(x -2)(x -1)+1+4(2-x )2=12x 2-40x +33=(2x -3)(6x -11),可得当x ∈⎣⎢⎡⎭⎪⎫1,32时,函数f (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫32,116时,函数f (x )单调递减; 当x ∈⎝ ⎛⎦⎥⎤116,2时,函数f (x )单调递增. ∴x =32时,函数f (x )取得极大值,f ⎝ ⎛⎭⎪⎫32=1;又f (2)=1.∴当x =32或x =2时,函数f (x )取得最大值1(万元).因此商户甲今年采取降低单价提高销量的营销策略,不能获得比往年更大的收益.16.(2017·北京模拟)已知甲、乙两个工厂在今年的1月份的利润都是6万元,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x 之间的函数关系式分别符合下列函数模型:f (x )=a 1x 2-4x +6,g (x )=a 2·3x +b 2(a 1,a 2,b 2∈R ).(1)求函数f (x )与g (x )的解析式;(2)求甲、乙两个工厂今年5月份的利润;(3)在同一直角坐标系下画出函数f (x )与g (x )的草图,并根据草图比较今年1~10月份甲、乙两个工厂的利润的大小情况.解 (1)依题意:由f (1)=6,解得a 1=4,所以f (x )=4x 2-4x +6.由⎩⎪⎨⎪⎧ g (1)=6,g (2)=8,得⎩⎪⎨⎪⎧3a 2+b 2=6,9a 2+b 2=8, 解得a 2=13,b 2=5,所以g (x )=13×3x +5=3x -1+5.(2)由(1)知甲厂在今年5月份的利润为f (5)=86万元,乙厂在今年5月份的利润为g (5)=86万元,故有f (5)=g (5),即甲、乙两个工厂今年5月份的利润相等.(3)作函数图象如下:从图中可以看出今年1~10月份甲、乙两个工厂的利润:当x=1或x=5时,有f(x)=g(x);当x=2,3,4时,有f(x)>g(x);当x=6,7,8,9,10时,有f(x)<g(x).海阔天空专业文档。

(浙江专用)高考数学一轮复习 1-2-9函数模型及其应用课件 文

(浙江专用)高考数学一轮复习 1-2-9函数模型及其应用课件 文

• 规律方法 在建立二次函数模型解决实际 问题中的最优问题时,一定要注意自变量 的取值范围,需根据函数图象的对称轴与 函数定义域在坐标系中对应区间之间的位 置关系讨论求解.
• 【训练1】 (2014·舟山高三检测)某汽车销 售公司在A,B两地销售同一种品牌的汽车, 在 A 地的销售利润 ( 单位:万元 ) 为 y1 = 4.1x -0.1x2,在B地的销售利润(单位:万元)为 y2 = 2x ,其中 x 为销售量 ( 单位:辆 ) ,若该 公司在两地共销售 16辆该种品牌的汽车, 则能获得的最大利润是 • ( ) • A.10.5万元 B.11万元 • C.43万元 D.43.025万元
4.某种病毒经 30 分钟繁殖为原来的 2 倍,且知病毒的繁殖规律 为 y=ekt(其中 k 为常数,t 表示时间,单位:小时,y 表示 病毒个数),则 k=________,经过 5 小时,1 个病毒能繁殖 为________个. 解析 当 t=0.5 时,y=2,∴2= ∴k=2ln 2,∴y=e2tln 2,当 t=5 时,y=e10ln 2=210=1 024. 答案 2ln 2 1 024
指数函数型
对数函数型 幂函数型
• (2)指数、对数、幂函数模型性质比较
函数
性质 在(0,+ ∞)
y=ax
(a>1)
递增
y=logax
(a>1)
递增
y=xn
(n>0)
上的增减

单调
y轴

单调
x轴
单调递增
增长速度 越来越快 随x的增
越来越慢
相对平稳
• •

• •
• 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1) 函数 y = 2x 的函数值比 y = x2 的函数值 大. × • ( ) (2)“指数爆炸”是指数型函数 y = abx + c(a≠0 , b > 0 , b≠1) 增长速度越来越快的形 × 象比喻. • ( ×) (3)幂函数增长比直线增长更快. • ( ) (4)f(x) = x2 , g(x) = 2x , h(x) = log x ,当

2020年浙江高考数学一轮复习:函数模型及其应用

2020年浙江高考数学一轮复习:函数模型及其应用

C.24 小时 D.28 小时
解析:由已知得 192=eb,

48=e22k+b=e22k·eb,
解:由题意,最高点为(2+h,4),(h≥1).
返回
设抛物线方程为 y=a[x-(2+h)]2+4.
(1)当 h=1 时,最高点为(3,4),方程为 y=a(x-3)2+4.(*)
将点 A(2,3)代入(*)式得 a=-1.
即所求抛物线的方程为 y=-x2+6x-5.
(2)将点 A(2,3)代入 y=a[x-(2+h)]2+4,得 ah2=-1.
考点二 函数y=x+ax模型的应用
返回
重点保分型考点——师生共研
[典例引领]
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外
墙需要建造隔热层.某幢建筑物要建造可使用 20 年的隔热层,
每厘米厚的隔热层建造成本为 6 万元.该建筑物每年的能源消
耗费用 C(单位:万元)与隔热层厚度 x(单位:cm)满足关系
C(x)=3xk+5(0≤x≤10),若不建隔热层,每年能源消耗费用为
8 万元,设 f(x)为隔热层建造费用与 20 年的能源消耗费用之和.
(1)求 k 的值及 f(x)的表达式;
(2)隔热层修建多厚时,总费用 f(x)达到最小,并求最小值.
返回
解:(1)由已知条件得 C(0)=8,则 k=40,
表现为与 y 轴
随 n 值变化而 逐渐表现为
各有不同
平行
与 x 轴 平行
值的比较 存在一个 x0,当 x>x0 时,有 logax<xn<ax
返回
3.解函数应用问题的 4 步骤 (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步
选择函数模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符

高考数学《2.9 函数模型及其应用》

高考数学《2.9 函数模型及其应用》

f(x)=4
1
+
1 ������
,人均消费 g(x)(单位:元)与时间 x(单位:天)的函数关系
近似满足g(x)=104-|x-23|. (1)求该市旅游日收益p(x)(单位:万元)与时间x(1≤x≤30,x∈N*) 的函数关系式; (2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的税率 来收回投资,按此预计两年内能否收回全部投资. 思考分段函数模型适合哪些问题?
关闭
4
解析 答案
第二章
2.9 函数模型及其应用
知识梳理
核心考点
-9-
考点1
考点2
考点3
考点4
考点 1 二次函数模型
例1A,B两城相距100 km,在两城之间距A城x km处建一核电站给 A,B两城供电,为保证城市安全,核电站与城市距离不得小于10 km. 已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25 倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.
核心考点
-7-
知识梳理 双基自测
12345
4.(教材例题改编P123例2)在某个物理实验中,测量得变量x和变量 y的几组数据,如下表.则x,y最适合的函数模型是( )
x 0.50 y -0.99
0.99
2.01
3.98
0.01
0.98
2.00
A.y=2x C.y=2x-2
B.y=x2-1 D.y=log2x
关闭
(1)× (2)√ (3)√ (4)√ (5)√
答案
第二章
2.9 函数模型及其应用
知识梳理
核心考点
-5-
知识梳理 双基自测
12345

函数模型及其应用+课件-2025届高三数学一轮复习

函数模型及其应用+课件-2025届高三数学一轮复习
A
a
b
c
A.① B.①② C.①③ D.①②③
[解析] 由题图a,得进水的速度为1,出水的速度为2.在题图c中, 时到3时直线的斜率为2,即蓄水量每小时增加2, 只进水不出水(即两个进水口都进水),故①一定正确;若不进水只出水1小时后,则蓄水量减少2,故②一定错误;若两个进水口和一个出水口同时打开,则蓄水量也可以保持不变,故③不一定正确.故选A.
[思路点拨](1)根据与 的关系图可得正确的选项.
(2) 水池有两个相同的进水口和一个出水口,其进水量和出水量随时间的变化如图a, 所示,某天0时到6时该水池的蓄水量如图c所示,给出以下3个说法:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则说法一定正确的是( )
,,为常数,且,
对数函数模型
,,为常数,且,
幂函数模型
,, 为常数,,
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 已知函数,,,则随着 的增大,增长速度的大小关系是_______________.(填关于,, 的关系式)
[解析] 根据指数函数、一次函数、对数函数的增长速度关系可得 .
2.[教材改编] 在如图所示的锐角三角形空地中,欲建一个面积不小于的矩形花园(阴影部分),则其中 的取值范围是_________.
[思路点拨](2)蓄水量增加,说明进水速度大于出水速度,蓄水量减少,说明出水速度大于进水速度,再结合具体数据进行分析即可.
[总结反思]判断函数图象与实际问题变化过程是否相吻合时:首先要关注横轴与纵轴所表达的变量的实际意义;其次根据实际问题中两变量的变化快慢等特点,结合图象变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际的答案.

高考数学浙江专版(理)一轮复习:第2篇 第9讲 函数模型及其应用.pdf

高考数学浙江专版(理)一轮复习:第2篇 第9讲 函数模型及其应用.pdf

第9讲 函数模型及其应用 分层A级 基础达标演练 (时间:30分钟 满分:55分) 一、选择题(每小题5分,共20分) 1.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( ). A.10吨 B.13吨 C.11吨 D.9吨 解析 设该职工该月实际用水x吨,易知x>8,则水费y=16+2×2(x-8)=4x-16=20,∴x=9. 答案 D 2.(2012·潍坊一模)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( ). A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 解析 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,应选C. 答案 C 3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( ). A.36万件 B.18万件 C.22万件 D.9万件 解析 利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值. 答案 B 4.(2013·东莞调研)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( ). 解析 由运输效率(单位时间的运输量)逐步提高得曲线上的点的切线斜率应该逐渐增大,故选B. 答案 B 二、填空题(每小题5分,共10分) 5.(2013·银川模拟)某电脑公司2012年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2014年经营总收入要达到1 690万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,2013年预计经营总收入为________万元. 解析 设增长率为x,则有×(1+x)2=1 690,1+x=,因此2013年预计经营总收入为×=1 300(万元). 答案 1 300 6.(2012·金华十校期末)有一批材料可以建成200 m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形(如图所示),则围成场地的最大面积为________(围墙厚度不计). 解析 设矩形场地的宽为x m,则矩形场地的长为(200-4x)m,面积S=x(200-4x)=-4(x-25)2+2 500.故当x=25时,S取得最大值2 500,即围成场地的最大面积为2 500 m2. 答案 2 500 m2 三、解答题(共25分) 7.(12分)(2010·湖北卷)为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和. (1)求k的值及f(x)的表达式; (2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值. 解 (1)由已知条件C(0)=8则k=40, 因此f(x)=6x+20C(x) =6x+ (0≤x≤10). (2)f(x)=6x+10+-10 ≥2 -10=70(万元), 当且仅当6x+10=, 即x=5时等号成立. 所以当隔热层为5 cm时,总费用f(x)达到最小值,最小值为70万元. 8.(13分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各项开支2 000元. (1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额; (2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L, 则由题设得L=Q×(P-14)×100-3 600-2 000,① 由销量图易得Q= 代入①式得L= (1)当14≤P≤20时, Lmax=450元, 此时P=19.5元; 当20 <p≤26时,Lmax=元, 此时P=元. 故当P=19.5元时,月利润余额最大为450元. (2)设可在n年内脱贫, 依题意有12n×450-50 000-58 000≥0,解得n≥20, 即最早可望在20年后脱贫. 分层B级 创新能力提升 1.(2013·江门质检)我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x元(叫做税率x%),则每年销售量将减少10x万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x的最小值为( ). A.2 B.6 C.8 D.10 解析 由分析可知,每年此项经营中所收取的附加税额为104·(100-10x)·70·,令104·(100-10x)·70·≥112×104,解得2≤x≤8.故x的最小值为2. 答案 A 2.(2012·江西)如图,|OA|=2(单位:m),|OB|=1(单位:m),OA与OB的夹角为,以A为圆心,AB为半径作圆弧BD与线段OA延长线交于点C.甲、乙两质点同时从点O出发,甲先以速率1(单位:m/s)沿线段OB行至点B,再以速率3(单位:m/s)沿圆弧BD行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至点A后停止.设t时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是( ). 解析 当0<t≤1时,甲从O点行往B点,乙从O点行往A点,故所围图形为三角形,所以S(t)=×2t×t×sin=t2(01时,甲从B点沿圆弧BD行往C点,乙则停在A点,故所围图形为三角形加扇形,S=S△AOB+S扇=+×r×3(t-1)=t+. 此段图象为直线,当甲移动至C点后,甲、乙均不再移动.面积不再增加.显然选项A符合,故选A. 答案 A 3.(2012·合肥一模)某厂有许多形状为直角梯形的铁皮边角料(如图所示),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形面积的最大值为________. 解析 依题意知,构造三角形相似,得=,即x=(24-y),∴阴影部分的面积S=xy=(24-y)y=(-y2+24y),∴当y=12时,S有最大值为180. 答案 180 4.将一个长宽分别是a,b(00),剩下的员工平均每人每年创造的利润可以提高0.2x%. (1)若要保证剩余员工创造的年总利润不低于原来1 000名员工创造的年总利润,则最多调整出多少名员工从事第三产业? (2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少? 解 (1)由题意得:10(1 000-x)(1+0.2x%)≥10×1 000, 即x2-500x≤0,又x>0,所以00,所以0, 即f(x)≤不恒成立, 故函数模型y=+2不符合公司要求. (2)对于函数模型y=g(x)=, 即g(x)=10-, 当3a+20>0,即a>-时递增. 为使g(x)≤9对于x∈[10,1 000]恒成立, 即要g(1 000)≤9,3a+18≥1 000,即a≥. 为使g(x)≤对于x∈[10,1 000]恒成立, 即要≤, 即x2-48x+15a≥0恒成立, 即(x-24)2+15a-576≥0,x∈[10,1 000]恒成立, 又24∈[10,1 000], 故只需15a-576≥0即可, 所以a≥. 综上,a≥,故最小的正整数a的值为328.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15元 .
解析 依题意得实际乘车费用为8+1.5×(7.4-3)=14.6(元),应付车费15元.
5.某公司为了业务发展制订了一个激励销售人员的奖励方案,在销售额 为8万元时,奖励1万元.销售额为64万元时,奖励4万元.若公司拟定的奖 励模型为y=alog4x+b(其中y为奖金,x为销售额).某业务员要得到8万元奖 励,则他的销售额应为 1 024 万元.
A.y=ax+b C.y=a·bx
B.y=a+logbx D.y=ax2+b
解析 (1)画出大致散点图如图所示,根据散点图可知选B.
(2)根据散点图可知,较适宜的函数模型为y=a+logbx,故选B.
规律方法 选择函数模型的基本思想 (1)根据数据描绘出散点图; (2)将散点根据趋势“连接”起来,得到大致走势图象; (3)根据图象与常见的基本函数的图象进行联想对比,选择最佳函数模 型.但必须注意实际意义与基本图形的平移性相结合.
§ 2.9 函数模型及其应用
1.几种常见的函数模型



2.三种增长型函数模型的图象与性质

3.解函数应用题的步骤(四步八字)
考点一 函数模型的选择



考点二 函数模型应用

考点三 构建数模型解决实际问题
教材研读
1.几种常见的函数模型
函数模型
函数解析式
一次函数模型 f(x)=ax+b(a、b为常数,且a≠0) 反比例函数模型 f(x)= kx (k为常数且k≠0) 二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,且a≠0)
y(万元)的统计表.
投入资金x(万元) 1 2 3 4 5 6
收益y(万元)
0.4 0.8 1.6 3.1 6.2 12.3
你认为体现投入资金x与收益y之间关系的最佳函数模型是( B ) A.y=ax+b B.y=a·bx C.y=ax2+bx+c D.y=blogax+c (2)某研究所对人体在成长过程中,年龄与身高的关系进行研究,根据统 计,某地区未成年人,从1岁到16岁的年龄x(岁)与身高y(米)的散点图如 图,则该关系较适宜的函数模型为 ( B )
解析 依题意得aalloogg44864bb1,4,

3 2
a
解b 得 1a, =2,b=-2.
3 a b 4 ,
∴y=2log4x-2,
当y=8,即2log4x-2=8时,x=1 024.则所求销售额为1 024万元.
考点突破
函数模型的选择 典例1 (1)下表是在某个投资方案中,整理到的投入资金x(万元)与收益
1.有一组实验数据,如下表:
t
1.99
3.0
4.0
5.1
v
1.5
4.04
7.5
12
则体现这些数据关系的最佳函数模型是 ( C )
A.v=log2t
B.v=2t-2
C.v= t 2 1 D.t=4时,v=log2t=log24=2,但题表中的v值是7.5,相
在(0,+∞)
① 增函数
② 增函数
上的增减性
y=xα(α>0) ③ 增函数
增长速度
④ 越来越快
⑤ 越来越慢
相对平稳
图象的变化 值的比较
随x增大逐渐表现为 随x增大逐渐表现为 取决于α值 与⑥ y轴 平行 与⑦ x轴 平行 存在一个x0,当x>x0时,有logax<xα<ax
3.解函数应用题的步骤(四步八字)
(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用 数学知识建立相应的数学模型; (3)求模:求解数学模型,得出数学结论; (4)还原:将用数学方法得到的结论还原为实际问题的意义. 以上过程用框图表示如下:
4.解函数应用题的关键是建立数学模型,要顺利地建立数学模型,重点要 过好三关: (1)事理关:通过阅读、理解,明白问题讲的是什么,熟悉实际背景,为解题 打开突破口. (2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子 表达数量关系. (3)数理关:在构建数学模型的过程中,用已有数学知识进行检验,从而认 定或构建相应的数学模型,完成由实际问题向数学问题的转化.
解析 设该股民购进这只股票的价格为a元,则经历n次涨停后的价
格为a(1+10%)n=a×1.1n元,又经历n次跌停后的价格为a×1.1n×(1-10%)n=a ×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a元<a元,故该股民这只股票略有亏损.
3.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m2的内接 矩形花园(阴影部分),则其边长x(单位:m)的取值范围是 ( C )
指数函数模型 f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)
对数函数模型 幂函数模型
f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1) f(x)=axn+b(a,b为常数,且a≠0)
2.三种增长型函数模型的图象与性质
函数性质
y=ax(a>1)
y=logax(a>1)
差很大,排除A;当t=4时,v=2t-2=24-2=14,与7.5相差太大,排除B;当t=4时,v =2t-2=2×4-2=6,与7.5相差也太大,排除D.故选C.
2.某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历 了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民 这只股票的盈亏情况(不考虑其他费用)为 ( B ) A.略有盈利 B.略有亏损 C.没有盈利也没有亏损 D.无法判断盈亏情况
A.[15,20] B.[12,25] C.[10,30] D.[20,30]
解析 矩形的一边长为x m,则由相似三角形的性质可得其邻边长
为(40-x)m,故矩形面积S=x(40-x)=-x2+40x,由S≥300得-x2+40x≥300,解得 10≤x≤30.
4.某出租车公司规定乘车收费标准如下:3千米以内为起步价8元(即行 程不超过3千米,一律收费8元);若超过3千米,则除起步价外,超过的部分 再按1.5元/千米计价.司机与某乘客约定按四舍五入以元计费不找零钱. 已知该乘客下车时乘车里程数为7.4千米,则该乘客应付的车费为
相关文档
最新文档