温度传感器的选择与应用

合集下载

NTC热敏电阻温度传感器产品选型方法与应用

NTC热敏电阻温度传感器产品选型方法与应用

NTC热敏电阻温度传感器产品选型方法与应用NTC热敏电阻(Negative Temperature Coefficient)是一种温度感应器件,其电阻值随温度的变化而变化。

NTC热敏电阻可以通过测量其电阻来得知环境温度,广泛应用于电子设备中的温度测量与控制。

本文将介绍NTC热敏电阻的选型方法与应用。

1.NTC热敏电阻选型方法(1)测量范围:首先需要确定所需测量的温度范围,不同的NTC热敏电阻有不同的温度范围适用性。

(2)精度要求:根据应用需求,确定所需的温度测量精度,一般来说,精度要求越高,选用的NTC热敏电阻越高档。

(3)响应时间:对于实时性要求较高的应用,需要考虑NTC热敏电阻的响应时间。

一般来说,响应时间越短,实时性越好。

(4)环境条件:NTC热敏电阻的环境条件也需要考虑,例如工作温度、湿度等。

(5)价格:最后要考虑的因素是价格,需根据预算确定选用的NTC 热敏电阻。

综合以上因素进行综合考量,可以选择适用的NTC热敏电阻。

2.NTC热敏电阻的应用(1)温度测量与控制:NTC热敏电阻可以直接作为温度传感器,通过测量其电阻值来得知环境温度。

在温度测量与控制系统中,NTC热敏电阻可以根据温度变化调节电路,实现对温度的控制。

(2)设备保护:NTC热敏电阻可以作为过热保护装置,用于检测电子设备或电路的温度,并当温度超过设定阈值时触发保护机制,保护设备免受过热损坏。

(3)温度补偿:NTC热敏电阻可以用于温度补偿,例如在温度对电路精度要求较高的仪器设备中,通过测量环境温度并进行补偿,提高整个系统的测量精度。

(4)温度控制与调节:NTC热敏电阻可以用于调节设备的温度,例如电热水器中,通过测量水温,并根据设定温度来控制加热功率,从而达到设定温度。

(5)气象观测:NTC热敏电阻可以用于气象观测中,例如温湿度计。

总之,NTC热敏电阻具有广泛的应用领域,从温度测量与控制到设备保护、温度补偿、温度调节等方面都有应用。

常用传感器在物理实验中的应用与选择

常用传感器在物理实验中的应用与选择

常用传感器在物理实验中的应用与选择在物理实验中,传感器是不可或缺的工具之一。

它们能够将物理量转化为电信号,并且在实验中提供准确的测量结果。

不同的物理实验需要使用不同类型的传感器,因此在实验中正确选择和应用常用传感器非常重要。

首先,温度传感器是物理实验中最常用的传感器之一。

它们可以测量物体的温度,并根据不同的工作原理将温度转化为电信号。

在实验中,我们可以使用热电偶传感器、热敏电阻或半导体温度传感器等不同类型的温度传感器。

选择合适的温度传感器取决于实验的需求,例如所测量的温度范围和精度要求。

对于高温实验,热电偶传感器是合适的选择,而半导体温度传感器则适用于低温实验。

其次,压力传感器在物理实验中也有广泛的应用。

它们可以测量物体的压力,并将其转化为电信号。

在实验中常见的压力传感器有压电传感器、微型压力传感器和电容式压力传感器等。

不同的压力传感器适用于不同的压力范围和应用需求。

例如,在流体力学实验中,我们常使用微型压力传感器来测量流体的压力,而在材料力学实验中,电容式压力传感器则能提供更高的压力测量精度。

除了温度和压力传感器,光传感器也是物理实验中常用的传感器之一。

它们可以测量物体的光强度和光谱,并将其转化为电信号。

在物理实验中常见的光传感器有光电二极管传感器、光电倍增管和光纤光谱传感器等。

不同类型的光传感器适用于不同的光学测量需求。

例如,在光谱分析实验中,光纤光谱传感器能够提供较高的光谱分辨率和灵敏度。

此外,加速度传感器也是物理实验中常用的传感器之一。

它们可以测量物体的加速度,并将其转化为电信号。

在力学实验中,加速度传感器常被用于测量物体的加速度和振动。

根据实验的需求,我们可以选择压电型加速度传感器、微机械加速度传感器或光纤光栅加速度传感器等不同类型的加速度传感器。

除了上述提及的传感器,还有许多其他常用传感器在物理实验中发挥着重要的作用。

例如,电流传感器、湿度传感器、位移传感器等。

每种传感器都有其特定的工作原理和应用领域。

温度传感器的应用场景和工作原理

温度传感器的应用场景和工作原理

温度传感器的应用场景和工作原理1. 引言温度传感器是一种用于测量环境或物体温度的设备,广泛应用于各个领域中。

本文将介绍温度传感器的应用场景和工作原理。

2. 温度传感器的应用场景以下是温度传感器的一些常见应用场景:•工业自动化:温度传感器在工业自动化过程中起到重要的作用。

它们可以用于监测和控制各种设备和系统的温度,保证其正常运行。

•HVAC系统:温度传感器在供暖、通风和空调系统中被广泛使用。

通过监测环境温度,传感器可以自动调整系统的操作,以提供舒适的室内环境。

•医疗设备:温度传感器在医疗设备中扮演着重要的角色。

例如,在体温计中使用的温度传感器可以精确地测量患者的体温。

•冷链物流:温度传感器在冷链物流过程中非常关键。

它们可以监测冷藏和冷冻货物的温度,确保其在运输和储存过程中的质量和安全。

•环境监测:温度传感器也被广泛应用于环境监测领域。

它们可以用于测量气候、土壤和水体的温度,以便进行环境研究和保护。

3. 温度传感器的工作原理温度传感器的工作原理基于热电效应、电阻变化、半导体和红外技术等。

•热电传感器:利用热电效应,将温度转化为电压信号。

热电传感器由两种不同金属材料组成,当两端温度不均匀时会产生电势差。

根据电势差的大小,可以计算出温度的值。

•电阻温度传感器:电阻温度传感器的原理是利用材料的电阻值随温度的变化而变化。

常见的电阻温度传感器包括铂电阻和热敏电阻。

通过测量电阻的变化,可以确定温度的数值。

•半导体温度传感器:半导体温度传感器使用了半导体材料的电学性质,当材料温度发生变化时,电阻或电压也会相应变化。

这种传感器具有快速响应、高准确性和较小的尺寸等优点。

•红外温度传感器:红外温度传感器通过测量物体辐射出的红外线来确定温度。

它们可以测量无接触物体的温度,适用于一些特殊环境或要求的应用场景。

4. 温度传感器的选择与注意事项在选择温度传感器时,需要考虑以下几个方面:•测量范围:根据实际需求确定传感器的测量范围。

温度传感器的使用方法

温度传感器的使用方法

温度传感器的使用方法首先,选择合适的温度传感器非常重要。

根据实际需要,可以选择不同类型的温度传感器,比如接触式温度传感器和非接触式温度传感器。

接触式温度传感器通常需要直接接触被测物体表面,可以测量物体表面的温度,而非接触式温度传感器则可以通过红外线等方式,远距离测量物体的温度。

在选择温度传感器时,需要考虑被测物体的特性、测量距离、测量精度等因素,选择合适的传感器型号。

其次,安装温度传感器也需要注意一些问题。

对于接触式温度传感器,需要保证传感器与被测物体表面完全接触,以确保测量准确。

而对于非接触式温度传感器,需要注意避免干扰物体,保持传感器与被测物体之间的清晰视野,以获得准确的测量数值。

此外,还需要注意传感器的安装位置,避免受到外部环境的影响,确保测量的准确性。

在使用温度传感器时,需要根据传感器的型号和规格,连接相应的测量仪器或控制系统。

在连接过程中,需要注意保持连接稳定,避免出现接触不良或者线路断开等问题,影响测量的准确性。

同时,还需要根据实际需要,设置传感器的测量范围和测量精度,以满足不同场景下的测量要求。

最后,使用温度传感器时,需要定期对传感器进行检查和校准。

通过定期的检查和校准,可以确保传感器的测量准确性,及时发现并解决传感器可能存在的问题,提高传感器的可靠性和稳定性。

同时,在使用过程中,还需要注意保护传感器,避免受到外部冲击或者损坏,延长传感器的使用寿命。

总之,温度传感器作为一种重要的测量设备,在各个领域都有着广泛的应用。

正确的选择、安装和使用方法,可以帮助我们更好地发挥温度传感器的作用,为生产和生活带来更多便利和安全。

希望本文的介绍能够对大家有所帮助,谢谢阅读!。

温度传感器的选用

温度传感器的选用

温度传感器的选用温度传感器是将环境温度转换成电气信号输出的装置,目前在工业、医疗、家庭等领域都有广泛的应用。

在选用温度传感器时,需要考虑到多个因素,如测量范围、精度、响应速度、可靠性、价格等。

本文将针对这些方面进行详细介绍。

1. 测量范围温度传感器的测量范围一般是指其可以测量的温度范围,通常用最低温度和最高温度来表示。

不同的温度传感器具有不同的测量范围,因此在选用时应该根据具体的应用需求来选择。

例如,医疗领域一般使用的体温计测量范围为32℃~42℃,而用于烘烤食品的温度计测量范围可能会更高。

2. 精度温度传感器的精度是指其测量结果与实际温度之间的偏差。

一般来说,精度越高的温度传感器价格越高。

在选用时需要考虑到实际应用的需要,决定是否需要高精度的温度传感器。

例如,在科研领域或者精密加工行业,需要高精度的温度测量数据,此时需要选用高精度的温度传感器。

3. 响应速度响应速度是指温度传感器从变化发生到输出信号的时间,也称为传感器的时间常数。

响应速度越快的温度传感器可以更及时地反映温度变化,但是价格也会更高。

在一些实时控制的场合(如车用空调),需要选用响应速度快的温度传感器以实现及时响应。

4. 可靠性可靠性是指温度传感器的稳定性和工作寿命。

温度传感器应该具有在长期使用中保持测量精度的能力。

另外,温度传感器也应具有抗干扰的能力,避免对外部环境因素(如电磁干扰)的影响。

在选择温度传感器时,应该考虑到它的可靠性,以避免在使用过程中出现意外情况,造成数据错误或设备故障。

5. 价格价格是温度传感器选用时需要考虑到的另一个因素。

不同品牌和型号的温度传感器价格差异巨大,需要根据实际情况和预算来选择。

在一些经济条件较为有限的应用场合,可以考虑选用价格较低但功能相对简单的温度传感器;而在一些对数据精度和稳定性要求较高的场合,则需要选用价格相对较高的高端温度传感器。

总之,在选用温度传感器时,应考虑到多个因素,如测量范围、精度、响应速度、可靠性、价格等。

温度传感器的选型

温度传感器的选型

温度传感器的选型温度是工业生产须掌控的一个关键参数,对于工业生产的产品质量、设备以及人身安全有直接的影响。

选择温度检测仪表不应盲目要求测量的精度高、范围大以及自动化程度高等,而应结合工业生产中的实在工艺、被测介质的实际以及经济性等因素全盘考虑。

需要遵从的原则是检测仪表测量温度的上下限应当大于被测介质温度的波动范围、测量精度符合生产工艺技术要求、使用方式充足测量人员察看需要、便于日常检修以及维护工作,并在此基础上,尽可能选择价经济实惠的检测仪表。

按使用方式选择:假如只是就地显示,通常可以选择液体玻璃、双金属以及压力式温度计等。

假如不但需要具备测量温度的功能,还要求具备当被测温度接近限值的时候能够报警,应当选择附加报警装置的液体玻璃、双金属以及压力式温度计等。

假如要求远距离显示的话,可以选择热电阻、热电偶或者温度变送器等。

按测量范围要求选择:被测量介质的温度是选择适合的检测仪表的一个关键的依据。

假如是测量常温,可以选择热电偶温度计、热电阻温度计、压力式测度计以及双金属温度计等。

有机液体玻璃温度计的特点是其指示液为红色,有利于读数,但是无法带电接点,所以在测量温度低于100℃的介质而且不需要发送信号的时候,可以优先选择有机液体玻璃温度计。

双金属温度计的重要优点是其刻度比较清楚、耐振以及无水银等,所以当被测介质的温度低于300℃的时候,选择双金属温度计。

假如被测介质的稳定低于150℃的时候,可以选择铜热电阻;假如被测介质的温度在300℃到600℃的范围之内,可以选择镍铬—考铜热电偶,然而由于考铜合金丝简单被氧化,所以用于测量超出500℃的蒸汽温度的时候,选择镍铬—镍硅热电偶,假如被测介质的温度在600℃到1000℃的时候可以选择镍铬—镍硅热电偶;假如被测介质的温度在1000℃到1300℃的时候应选择铂铑—铂热电偶。

假如被测介质的温度高,可以选择辐射式高温计或者红外线式高温计。

按测量精度需要选择:假如要求的测量精度高,可以选择铂热电阻、铂铑—铂热电偶或者是铂铑—铂铑热电偶。

温度传感器如何选型?选择温度传感器需要注意哪些?

温度传感器如何选型?选择温度传感器需要注意哪些?

温度传感器如何选型?选择温度传感器需要注意哪些?温度传感器是电路中一个比较常见的元器件,同时温度传感器的种类也是五花八门,那么种类繁多的温度传感器应该怎么挑选呢?选择温度传感器时又需要注意什么呢?温度传感器温度传感器是指能感受温度并转换成可用输出信号的传感器。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

温度传感器的种类接触式接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。

温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。

温度传感器一般测量精度较高。

在一定的测温范围内,温度计也可测量物体内部的温度分布。

但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。

它们广泛应用于工业、农业、商业等部门。

在日常生活中人们也常常使用这些温度计。

随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。

低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。

利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

非接触式它的敏感元件与被测对象互不接触,又称非接触式测温仪表。

这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。

最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。

温度传感器辐。

温度传感器通常应用的场合和环境有哪些?

温度传感器通常应用的场合和环境有哪些?
温度传感器能应用在各大行业领域中,在不同的行业中温度传感器的选择和使用都是不同的。温度传感器有装配式温度传感器、铠装式温度传感器、隔爆式温度传感器、耐磨防腐温度传感器,依据现场的具体情况来选择合适的温度传感器才能保证测量温度的稳定性和精确性。那么不同的温度传感器都应用在什么样的场合和环境才是最好的呢?
1. 隔爆式温度传感器在工业生产过程中应用很广。因有的生产现场存在各种易燃易爆等化学气体,因普通工业温度传感器不能保证因产品的内部产生的静电等火花而不引起外部环境爆炸,故无法保证安全。隔爆型温度传感器的接线盒(外壳)在设计上采用防爆特殊结构。接线盒用高强度铝合金压铸而成,并具有足够的内部空间,壁厚和机械强度,橡胶密封圈的稳定性均符合国家防爆标准。所以当接线盒内部爆炸性混合气体发生爆炸时,其内压不会破坏接线盒,热能不能向外扩散引起传爆,确保外部环境安全。特别在化工生产中,由于生产现场常伴有各种各样的易燃易爆等化学气体或蒸汽。如果使用普通温度传感器将非常不安全,极易引起环境气体爆炸。在这种场合,必须使用隔爆式温度传感器作为温度传感器。所以隔爆型热电偶适用于存在易燃易爆性气体环境中使用。
3. 装配式温度传感器的不锈钢外保护管,不但本身已具有一定的抗腐蚀性能和足够的机械强度,而且还可以在保护管表面再喷涂或包结一层F46或聚四氟乙稀抗强腐蚀材料。可保证感温元件能安全地使用在各种场合和强腐蚀介质中。所以装配式温度传感器是测温范围最广,适应环境最普遍,最基本的常规温度传感器,是直接用于测量,调节温度的传感器。和显示或调节仪表配套,对生产或工作过程的各种状态,各种介质的温度进行测量控制或调节。广泛应用生产和科研各个领域。
2. 耐磨和防腐温度传感器就是在普通装配式温度传感器的金属管表面涂上一层耐磨材料或防腐材料。也可以直接选用本身就具有耐磨或抗腐蚀性能的材料做保护管。金属管表面涂上的耐磨材料一般有氧化铝,钛化钨,钛化铝等。防腐材料一般有喷涂F46或包结聚四氟乙烯(在金属管表面先包一层聚四氟乙烯生料,然后烧结而成)。耐磨和防腐温度传感器的基本结构,热电性能和主要技术指标和普通装配式温度传感器相同。其型号的表记方法也基本一致,只是加N表示耐磨,加F表示防腐。分别适用于被测介质对保护套管有磨损或有腐蚀的环境。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度传感器的选择与应用分析(武汉理工大学)摘要:现代检测技术已经应用到各行各业中,而温度传感器又是其中必不可少的部分。

温度传感器的应用越来越频繁,促使温度传感器的技术进步,它的种类也越来越多,不同的温度传感器拥有不同的参数,满足于不同的条件。

但如何选择一个物美价廉又满足于实际应用条件就成了一个很困惑的问题。

本文旨在介绍几种常用的温度传感器的特性并简单介绍应该如何选择一个合适的温度传感器。

关键词:温度传感器,传感器特性,传感器应用引言:利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。

这些呈现规律性变化的物理性质主要有体。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类温度测量传感器,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。

1.接触式温度传感器接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计即温度传感器。

温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。

一般测量精度较高。

在一定的测温范围内,温度计也可测量物体内部的温度分布。

但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。

它们广泛应用于工业、农业、商业等部门。

在日常生活中人们也常常使用这些温度计。

随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。

低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。

利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

2非接触式温度传感器它的敏感元件与被测对象互不接触,又称非接触式测温仪表。

这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。

最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。

辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。

各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。

只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。

如欲测定物体的真实温度,则必须进行材料表面发射率的修正。

而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。

在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。

在这些具体情况下,物体表面发射率的测量是相当困难的。

对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。

附加辐射的影响能提高被测表面的有效辐射和有效发射系数。

利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。

最为典型的附加反射镜是半球反射镜。

球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。

至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。

通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。

在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。

非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。

对于1800℃以上的高温,主要采用非接触测温方法。

随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

3热电偶温度传感器当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回温度传感器路中就有电流产生,即回路中存在的电动势称为热电动势。

这种由于温度不同而产生电动势的现象称为塞贝克效应。

与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。

两种不同导体或半导体的组合称为热电偶。

热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。

接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。

温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。

无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。

当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。

并规定在冷端,当电流由A流向B时,称A 为正极,B为负极。

实验表明,当△V很小时,△V与△T成正比关系。

定义△V 对△T的微分热电势为热电势率,又称塞贝克系数。

塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差种类目前,国际电工委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E型、J型、K型、N型、B型、R型和S型。

4热电阻传感器材料特性导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。

纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。

②电阻率高,热容量小,反应速度快。

③材料的复现性和工艺性好,价格低。

热敏电阻温度特性④在测温范围内化学物理特性稳定。

目前,在工业中应用最广的铂和铜,并已制作成标准测温热电阻。

铂电阻铂电阻与温度之间的关系接近于线性,在0~630.74℃范围内可用下式表示Rt=R0(1+At+Bt2)在-190~0℃范围内为Rt=R0(1+At+Bt2十Ct3) 。

式中:RO、Rt为温度0°及t°时铂电阻的电阻值,t为任意温度,A、B、C为温度系数,由实验确定,A=3.9684×10-3/℃,B=-5.847×10-7/℃2,C=-4.22×10-l2/℃3。

由公式可看出,当R0值不同时,在同样温度下,其Rt值也不同。

铜电阻在测温精度要求不高,且测温范围比较小的情况下,可采用铜电阻做成热电阻材料代替铂电阻。

在-50~150℃的温度范围内,铜电阻与温度成线性关系,其电阻与温度关系的表达式为Rt=R0(1+At)(2-3)式中,A=4.25×10-3~4.28×10-3℃为铜电阻的温度系数。

模拟温度传感器传统的模拟温度传感器,如热电偶、热敏电阻和RTDS对温度的监控,在一些温度范围内线性不好,需要进行冷端补偿或引线补偿;热惯性大,响应时间慢。

集成模拟温度传感器与之相比,具有灵敏度高、线性度好、响应速度快等优点,而且它还将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,有实际尺寸小、使用方便等优点。

常见的模拟温度传感器有LM3911、LM335、LM45、AD22103电压输出型、AD590电流输出型。

这里主要介绍该类器件的几个典型。

AD590温度传感器AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,输出电流223μA(-50℃)~423μA(+150℃),灵敏度为1μA/℃。

当在电路中串接采样电阻R时,R两端的电压可作为喻出电压。

注意R的阻值不能取得太大,以保证AD590两端电压不低于3V。

AD590输出电流信号传输距离可达到1km以上。

作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。

适用于多点温度测量和远距离温度测量的控制。

LM135/235/335温度传感器LM135/235/335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,工作特性类似于齐纳稳压管。

该系列器件灵敏度为10mV/K,具有小于1Ω的动态阻抗,工作电流范围从400μA到5mA,精度为1℃,LM135的温度范围为-55℃~+150℃,LM235的温度范围为-40℃~+125℃,LM335为-40℃~+100℃。

封装形式有TO-46、TO-92、SO-8。

该系列器件广泛应用于温度测量、温差测量以及温度补偿系统中。

5逻辑输出型温度传感器在许多应用中,我们并不需要严格测量温度值,只关心温度是否超出了一个设定范围,一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、空调、加热器或其它控制设备,此时可选用逻辑输出式温度传感器。

LM56、MAX6501-MAX6504、MAX6509/6510是其典型代表。

LM56温度开关:LM56是NS公司生产的高精度低压温度开关,内置1.25V参考电压输出端。

最大只能带50μA的负载。

电源电压从2.7~10V,工作电流最大230μA,内置传感器的灵敏度为 6.2mV/℃,传感器输出电压为 6.2mV/℃×T+395mVMAX6501/02/03/04温度监控开关:MAX6501/02/03/04是具有逻辑输出和SOT-23封装的温度监视器件开关,它的设计非常简单:用户选择一种接近于自己需要的控制的温度门限(由厂方预设在-45℃到+115℃,预设值间隔为10℃)。

直接将其接入电路即可使用,无需任何外部元件。

其中MAX6501/MAX6503为漏极开路低电平报警输出,MAX6502/MAX6504为推/拉式高电平报警输出,MAX6501/MAX6503提供热温度预置门限(35℃到+115℃),当温度高于预置门限时报警;MAX6502/MAX6504提供冷温度预置门限(-45℃到+15℃),当温度低于预置门限时报警。

对于需要一个简单的温度超限报警而又空间有限的应用如笔记本电脑、蜂窝移动电话等应用来说是非常理想的,该器件的典型温度误差是±0.5℃,最大±4℃,滞回温度可通过引脚选择为2℃或10℃,以避免温度接近门限值时输出不稳定。

相关文档
最新文档