LTE帧结构及资源概念
LTE

具体步骤:
如果B<40,要在传输块前加虚比特,使其满足 B=40。L=0,C=1,B’=B,不进行码块分割和 CRC校验 ; 如果 B<Z,则 L=0,C=1,B’=B,不进行码块分 割和 CRC校验 ; 如果 B>Z,则令L=24,C= B/(Z - L),B’=B+C*L
各码块的输出序列记为:cr 0 , cr1 , cr 2 , cr 3 ,...,cr K 1, K r 为第r 个码块的长度,计算原则如下: K r 有两种取值 K 和K 其中 K 是C K B 的最小K值。 由协议查表可得。 K 是 K K 的最大值。 K 和K 是表中相邻的K值 。 这样确保C个码块中包含的bit数目差别最小 。 C个码块中有个 C 码块长度为 K 的码块,其余 C 个 码块长度为 K ,和计算如下:
4.3.2Tubro编码
1/3 Turbo编码器的结构与TD基本相同,除了采用不同 的内交织器以外。网格终止方案也基本一样,编码器结 构图如下。
xk
1st constituent encoder
zk
ck
D
D
D
Output
Input
Turbo code internal interleaver
Output
0
5 ms
D
S
U
U
U
D
S
U
U
U
1
5 ms
D
S
U
U
D
D
S
U
U
D
2
5 ms
D
S
U
D
D
LTE帧结构及资源概念

LTE帧结构及资源概念LTE(Long Term Evolution)是一种无线通信标准,用于移动通信系统。
它采用了OFDM(Orthogonal Frequency Division Multiplexing)和MIMO(Multiple Input Multiple Output)等技术,可以提供高速、高效的无线数据传输。
在LTE中,帧结构和资源概念起着至关重要的作用,本文将对LTE帧结构和资源概念进行详细介绍。
首先,我们来了解LTE的帧结构。
在LTE中,帧是数据传输的基本单位,每个帧由多个子帧组成。
一个帧的时长为10毫秒,每毫秒包含10个子帧。
每个子帧的时长为1毫秒,并且可以进一步细分为14个符号。
一个子帧可以包含7个上行符号和7个下行符号,或者6个上行符号和6个下行符号。
由于每个符号的时长为71.4微秒,因此一个子帧的总时长为1毫秒。
LTE的帧结构可以进一步细分为不同的类型,如下行帧(Downlink Frame)和上行帧(Uplink Frame)。
在下行帧中,有两种类型的子帧:主子帧和辅子帧。
主子帧用于传输数据,而辅子帧用于端对端调度(例如进行系统信息广播)。
在一个下行帧中,通常有10个主子帧和4个辅子帧,总共14个子帧。
在上行帧中,也有两种类型的子帧:数据子帧和特殊子帧。
数据子帧用于传输上行数据,而特殊子帧用于发送参考信号或其他特定目的。
在一个上行帧中,通常有7个数据子帧和3个特殊子帧,总共10个子帧。
除了帧结构,资源概念也是LTE中的重要概念之一、在LTE中,资源是指用于无线通信的频段和时间段。
资源可以进一步细分为物理资源和逻辑资源。
物理资源是指用于无线传输的实际频率和时间资源。
在LTE中,物理资源主要包括RB(Resource Blocks)和符号。
RB是频域上的资源单元,用于划分频段。
每个RB包含12个子载波,每个子载波的带宽为15kHz。
符号是时间域上的资源单元,用于划分时间段。
LTE帧结构和协议讲解

LTE帧结构和协议讲解LTE(Long Term Evolution)是第四代无线通信技术,为了支持更高的数据速率、更低的时延和更好的系统能力而发展起来的。
LTE通过改进帧结构和引入新的协议来提高系统的性能和效率。
LTE的帧结构主要由基本帧和无线帧的形成方式组成。
在LTE中,基本帧是和无线帧对称的,对称的结构可以简化系统的设计和实现。
基本帧由10个子帧组成,每个子帧的持续时间为1ms。
每个子帧可以分为两个时隙,每个时隙的持续时间为0.5ms。
基本帧中的第0个子帧(SF)被用于广播或下行控制信令,而其他9个子帧(S1~S9)用于传输用户数据。
无线帧的形成方式可以分为FDD(Frequency Division Duplexing)和TDD(Time Division Duplexing)两种。
在FDD模式下,上行和下行数据在频域上互不干扰,通过频域上的分离来实现双工通信。
而在TDD模式下,上行和下行数据共享相同的频谱,在时间上交替进行传输。
FDD和TDD模式可以根据不同的需求选择使用,TDD模式具有更快的部署速度和更灵活的频谱分配,但FDD模式可以提供更好的容量和覆盖性能。
LTE的协议主要由控制平面和用户平面组成。
控制平面负责处理系统控制信令,如寻呼、鉴权和移动性管理等;用户平面负责处理用户数据的传输。
LTE的协议是基于分组交换的IP网络,通过优化分组交换的性能和效率来提高系统的吞吐量和容量。
LTE的控制平面使用RRC(Radio Resource Control)协议进行系统控制和管理。
RRC协议负责系统的连接建立、终端的移动性管理和系统的切换等功能。
RRC协议通过不同的消息和过程来实现这些功能,如RRC连接建立过程、RRC连接重建过程和RRC连接释放过程等。
RRC协议的主要目标是优化系统控制信令的传输,减少信令的时延和系统开销。
LTE的用户平面使用PDCP(Packet Data Convergence Protocol)协议进行用户数据的传输。
LTE物理层资源概念及信道

特殊子帧
关键技术 帧结构 物理信道 物理层过程
• TD-LTE特殊子帧继承了TD-SCDMA的特殊子 特殊子帧
帧设计思路,由DwPTS,GP和UpPTS组成。
配置
Normal CP
DwPTS
GP
UpPTS
• TD-LTE的特殊子帧可以有多种配置,用以改
0
变DwPTS,GP和UpPTS的长度。但无论如何
• TD-SCDMA的DwPTS无法传输数据,所以TD-LTE在这方面是有提高的。如果小区覆 盖距离和远距离同频干扰不构成限制因素(在这种情况下应该采用较大的GP配置), 推荐将DwPTS配置为能够传输数据
10
UpPTS
关键技术 帧结构 物理信道 物理层过程
• UpPTS可以发送短RACH(做随机接入用)和SRS(Sounding参考信号, 详细介绍见后)
解调出BCH
广播消息:MIB&SIB
•MIB在PBCH上传输, 包含了接入LTE系统所 需要的最基本的信息:
•下行系统带宽 •PHICH资源指示 •系统帧号(SFN) •CRC •使用mask的方式 •天线数目的信息等
问题:大家还记得PBCH信道的调 制方式吗?
• SIB在DL-SCH上传输,映射到物理信道PDSCH ,
0 1 2 3 4 5 6
TD-LTE上下行配比表
Switch-point periodicity
Subframe number 01234 5 6789
5 ms 5 ms 5 ms 10 ms 10 ms 10 ms 5 ms
D S UUU D SUUU D S UUD D SUUD D SUDD D SUDD D S UUU D DDDD D S UUD D DDDD D SUDD D DDDD D S UUU D SUUD
LTE_物理信道与传输信道

R0
R0
R1
R1
Two antenna ports
R0
R0
R1
R1
Not used for transmission on this antenan port
R0
R0
R1
R1
Reference symbols on this antenna port
R0
l 0
R0
l 5 l 0 l 5 l 0
主同步信号
辅同步信号
主同步信号
控制区域
数据区域
控制区域
数据区域
FS1,常规CP
FS2,常规CP
主/辅同步信号序列
主同步信号使用Zadoff-Chu序列 副同步信号使用的序列由两个长度为31的二进制序列通过交织级联产生,并且 使用由主同步信号序列决定的加扰序列进行加扰,长度为31的二进制序列以及加 扰序列都由m序列产生。
7 symbols
7 symbols
下行Unicast/MBSFN子帧
MBSFN传输时,控制区域1~3个符号 MBSFN传输时,控制区域1~2个符号
Nc subcarriers
LTE帧结构及物理层-讲解课件

TD-S类 似信道
PCCPCH
HS-SCCH
ADPCH N/A PRACH HS-SICH
PDSCH PUSCH
功能简介
MIB
•传输上下行数据调度信令 •上行功控命令 •寻呼消息调度授权信令 •RACH响应调度授权信令 传输控制信息HI(ACK/NACK)
指示PDCCH长度的信息 用户接入请求信息
传输上行用户的控制信息,包括 CQI, ACK/NAK反馈,调度请求等。
TD-SCDMA
特殊时隙
TD-LTE 子帧= 1ms = 30720Ts 10:2:2 = 21952Ts : 4384Ts : 4384Ts 3:9:2 = 6592Ts : 19744Ts : 4384Ts
1ms
TD-LTE
共存要求:上下行没有交叠(图中Tb > Ta)。则 TD-LTE的DwPTS必须小于0.85ms(26112Ts)。 可以采用10:2:2的配置
PRACH
PUSCH
Uplink Physical channels
• 逻辑信道定义传送信息的类型, 这些数据流是包括所有用户的数据。 • 传输信道是在对逻辑信道信息进行特定处理后再加上传输格式等指示信息后的数据流。 • 物理信道是将属于不同用户、不同功用的传输信道数据流分别按照相应的规则确定其 载频、 • 扰码、扩频码、开始结束时间等进行相关的操作, 并在最终调制为模拟射频信号发射出去; • 不同物理信道上的数据流分别属于不同的用户或者是不同的功用。
下行用户数据、RRC信令、SIB、 寻呼消息
上行用户数据、用户控制信息反 馈,包括CQI,PMI,RI
物理信道配置
关键技术 帧结构 物理信道 物理层过程
SCH配置
LTE帧结构

一、协1、UMPTb2 单板面板如下图1-1接口UMPT 面板接口含义如下表所示。
表1-1 UMPT 面板接口指示灯UMPT 面板上有3个状态指示灯,含义如下表所示。
表1-2 UMPT 状态指示灯议知识1. LTE帧结构及物理资源基本概念RE/RB/CCE/REG/RBG帧结构Type1:FDD(全双工和半双工)(FDD上下行数据在不同的频带里传输;使用成对频谱)每一个无线帧长度为10ms,由20个时隙构成,每一个时隙长度为T slot = 15630 x Ts = 0.5ms。
对于FDD,在每一个10ms中,有10个子帧可以用于下行传输,并且有10个子帧可以用于上行传输。
上下行传输在频域上进行分开。
帧结构Type2:TDD (TDD上下行数据可以在同一频带内传输;可使用非成对频谱)一个无线帧10ms,每个无线帧由两个半帧构成,每个半帧长度为5ms。
每一个半帧由8个常规时隙和DwPTS、GP和UpPTS三个特殊时隙构成,DwPTS和UpPTS的长度可配置,要求DwPTS、GP以及UpPTS的总长度为1ms。
DwPTS: Downlink Pilot Time SlotGP: Guard Period (GP越大说明小区覆盖半径越大)UpPTS: Uplink Pilot SlotTs = 1 / (15000x2048) sFrame 帧的长度:Tf = 307200 x Ts = 10msSubframe 子帧的长度:Tsubframe = 30720 x Ts = 1msSlot 时隙的长度:Tslot = 15360 x Ts = 0.5ms1 Sub-Carrier = 15 kHz;1 TTI = 1 ms => 1 sub-frame =>2 slots (0.5 ms *2) # for one user, min 2 RB allocation.1 RB = 12 sub-carriers during 1 slot (0.5 ms) =>12 * 15kHz = 180kHz (Bandwidth); => 12 * 7 symbols= 84 REs1RE = 1 sub-carrier x 1 symbol period (Each symbol is QPSK, 16QAM or 64QAM modulated.)LTE支持可变带宽:1.4MHz, 3, 5, 10, 15 和 20MHz一个小区最少使用6个RB, 即最少包含72个sub-carriers: 6 RB * 12 sub-carriers = 72 sub-carriers特殊帧格式7:DwPTS:GP:UpPTS => (21952Ts-32Ts) : 4384Ts : 4384Ts=> 10:2:2最小分配单位为:2192T⋅sConfigure TDD: 上下行配置(下图) + 特殊帧格式(上图) (e.g.: 2:71:7)=> 10ms转换周期:一个帧分成上下半帧,下半帧的特殊帧为DwPTS=1ms,用于DL传输(如上图3,4,5所示)RE:Resource Element,称为资源粒子,是上下行传输使用的最小资源单位。
LTE基础原理之帧结构

LTE特殊子帧
常规CP时特殊子帧的配置
特殊子帧 配置
0 1 2 3 4 5 6 7 8
Normal CP
DwPTS
GP
UpPTS
3
10
1
9
4
1
10
3
1
11
2
1
12
1
1
3
9
2
9
3
2
10
2
2
11
1
2
➢ 主同步信号PSS在DwPTS上进行传输, 位于特殊子帧的第三个OFDM符号
➢ 辅同步信号SSS在第一个子帧的第二个 slot的最后一个OFDM符号上传输;
7 symbols
Resource Grid (Example)
RB (12x7 RE)
RE
帧结构-II
TDD帧结构-上下行配置
10 ms
1ms
DL:UL=2:3
下行
5ms 周期 DL:UL=3:2
上行
DL:UL=4:1
DL:UL=5:5
10ms 周期
DL:UL=7:3 DL:UL=8:2 DL:UL=9:1
LTE帧结构
2015.2.4
TD-LTE帧结构 – 格式2
TDD帧结构 --- 帧结构类型2,适用于TDD
一个长度为10ms的无线帧由2个长度为5ms的半帧构成 每个半帧由5个长度为1ms的子帧构成 常规子帧:由两个长度为0.5ms的时隙构成 特殊子帧:由DwPTS、GP以及UpPTS构成 支持5ms和10ms DLUL切换点周期
➢ DwPTS上最多能传两个PDCCH OFDM符号(常规时隙能传最多3个)
➢ 只要DwPTS的符号数大于等于9,就 能传输数据(参照上页特殊子帧配置)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LTE帧结构及资源概念1.1 物理资源天线端口由用于该天线的参考信号来定义。
等于说,使用的参考信号是某一类逻辑端口的名字一个时隙下有7个OFDM符号(常规CP),LTE最基本的时间单位Ts,在LTE帧结构中都是基于这个基本单位的。
如一个无线帧307200Ts=10ms,一个时隙153600Ts。
Ts是LTE中OFDM 符号FFT大小为2048点的采样时间,即OFDM时域符号持续时间是2048Ts=1/15kHz。
下行参考信号简介及功能R9 中:CRS:(小区特定的参考信号,也叫公共参考信号)用于除了不基于码本的波束赋形技术之外的所有下行传输技术的信道估计和相关解调。
在天线端口{0}或{0,1}或{0,1,2,3}上传输。
UE-RS(DRS)(UE专用参考信号):用于不基于码本的波束赋形技术的信道估计和相关解调。
支持PDSCH的单天线端口传输,在天线端口5或7或8上传输。
在天线端口7或8上支持空间复用。
MBSFN(多播/组播单频网络)参考信号:用于MBSFN的信道估计和相关解调。
在天线端口{4}上传输。
PRS:主要用于定位。
在天线端口6上传输。
(是R9中新引入的参考信号)。
上行有两种参考信号:DMRS和SRS。
DMRS(解调参考信号)与PUSCH和PUCCH的发送相关联,用作求取信道估计矩阵,帮助这两个信道进行解调。
SRS(Sounding参考信号)独立发射,用作上行信道质量的估计与信道选择,计算上行信道的SINR。
二者区别:DMRS只在分配给UE的带宽上发送,SRS可以在整个带宽发送,SRS只是做上行信道的质量测量,比如接收功率和CQI等,不做信道估计和解调。
DMRS才是真正用于上行信道的信道估计和解调。
LTE使用天线端口来区分空间上的资源。
天线端口是从接收机的角度来定义的,即如果接收机需要区分资源在空间上的差别,就需要定义多个天线端口。
天线端口与实际的物理天线端口没有一一对应的关系。
由于目前LTE上行仅支持单射频链路的传输,不需要区分空间上的资源,所以上行还没有引入天线端口的概念目前LTE下行定义了三类天线端口,分别对应于天线端口序号0~5。
1.1.1物理资源概念RE:(Resource Element)为最小的资源单位,时域上为一个OFDM符号,频域上为一个子载波;RB:(Resource Block)为业务信道资。
源分配的资源单位,时域上为一个时隙(1slot=0.5ms),频域上为12个子载波(180Khz);一个RB=12*7=84RE,资源调度的最小单位是RB。
REG(Resource Element Group)为控制信道资源分配的资源单位,控制区域中RE集合,用于映射下行控制信道;每个REG中包含4个数据RECCE(Channel Control Element)为PDCCH信道资源分配的资源单位,有9个REG组成,每个REG包含4个RE(36RE),CCE从0开始编号;RBG(Resource Block Group)为业务信道资源分配的资源单位,有一组RB组成;分组的大小和系统的带宽有关PRB-(物理资源块)是时域和频域确定的空中接口资源。
实际系统资源分配时,分配的是VRB(虚拟资源块)。
VRB定义了资源的分配方式,大小和PRB一样,一个时隙(0.5ms)和12个子载波。
但是PRB的序号按频域物理位置顺序编号,VRB的序号是系统资源分配时指示的逻辑序号。
对于上行集中式频率分配时,VRB直接映射到PRB;而下行分布式频率分配时,VRB映射到不连续的PRB序号上。
每个用户的PDCCH只能占用1,2,4,8个CCE,称为聚合级别1.1.2 载波数目在LTE中可支持的信道带宽: 1.4MHz,3.0MHz,5MHz,10MHz,15MHz以及20MHz子载波间隔有两种:15kHz,用于单播(unicast)和多播(MBSFN)传输7.5kHz,仅仅可以应用于独立载波的MBSFN传输、LTE系统上下行的信道带宽可以不同☐下行信道带宽大小通过主广播信息(MIB)进行广播☐上行信道带宽大小通过系统信息(SIB)进行广播MIB和SIB1消息发送使用的信道都是不一样的,MIB是 PBCH信道,SIB是PDSCH信息,而且他们的调度周期也不相同,MIB是40ms,SIB1是80ms;MIB消息是在子帧0上发送,SIB1是在子帧5上发送,RB参数1.2帧结构1.2.1双工模式LTE支持两种双工模式:FDD(频分双工)和TDD(时分双工)。
FDD: 上行传输和下行传输在不同的载波频段上进行TDD: 上行传输和下行传输在相同的载波频段上进行基站/终端在不同的时间进行信道的发送/接收或者接收/发送因此,在eNODEB与UE 之间对时间同步比较严格。
H-FDD:上行传输和下行传输在不同的载波频段上进行基站/终端在不同的时间进行信道的发送/接收或者接收/发送H-FDD与FDD的差别在于终端不允许同时进行信号的发送与接收,即H-FDD基站与FDD基站相同,但是H-FDD终端相对FDD终端可以简化,只保留一套收发信机并节省双工器的成本。
FDD和TDD两种双工方式分配的频段不同,大小不同图表 1TDD支持的频段FDD支持的频段工信部规划给移动的频段A频段:2010M~2025M; D频段 :2570M~2620MF频段 :1880M~1920ME频段 2320M~2370M1.2.2 LTE幁结构LTE采用OFDM技术,子载波间隔Δf=15khz,每个OFDM符号为2048阶IFFT采样,则LTE中采用周期Ts=1/(2048*15000)=0.033us.LTE支持两种帧结构:Type1,适用于FDD,H-FDD;Type2,适用于TDD;FDD帧结构——帧结构类型1,适用于FDD与H- FDDType1帧结构:每个10ms无线幁,分为20个时隙,10个子幁。
每个子帧1ms,包含2个时隙,每个时隙0.5ms。
上,下行传输在不同的频率上同时进行。
一个常规时隙包括7个OFDM符号。
为了克服符号间干扰(ISI),需要加入CP。
CP的长度与覆盖半径有关,要求覆盖的范围越大,配置的CP长度就越长;通常在一般覆盖范围时,配置常规CP(normal CP)即可;但在要求广覆盖是就要配置增长的扩展CP(Extended CP)。
在下行方向有一种超长CP的配置。
子载波间隔是7.5khz,仅应用于独立载波MBSFN(多播广播同频网络)传输。
上行方向,没有子载波间隔7.5khz的时隙结构。
上,下行常规CP配置时隙结构:包含7个OFDM符号,其中第“0”个符号的CP和其它不同,长度160Ts,其余为144Ts(4.7us),有用符号周期是2048Ts(66.7Us)。
扩展CP配置时的时隙结构:包含6个OFDM符号,CP长度为512Ts(16.7u s),有用符号周期是2048Ts(66.7Us)。
支持MBSFN的独立载波的子载波间隔为7.5khz的时隙,仅有3个符号,CP为1024Ts (33.3us),有用符号的长度为4096Ts(133.3us)。
TDD幁结构帧结构类型2,适用于TDD。
一个长度为10ms的无线帧由2个长度为5ms的半帧构成,每个半帧由4个数据子帧和1个特殊子帧组成。
特殊子帧包含3个特殊时隙,分别是:DwPTS,GP,UpPTS,总长度为1ms,其中DwPTS和UpPTS这两个时隙长度可以配置,其中DwPTS 的长度为3-12个OFDM符号,UpPTS的长度为1-2个OFDM符号,相应的GP的长度为1-10个OFDM符号。
帧结构特点:●每个半帧由5个长度为1ms的子帧构成⏹常规子帧:由两个长度为0.5ms的时隙构成⏹特殊子帧:由DwPTS、GP以及UpPTS构成,长度为1ms●支持5ms和10ms DL→UL切换点周期⏹5ms DL→UL切换周期:特殊子帧在两个半帧中都存在⏹ 10ms DL→UL切换周期:特殊子帧只在第一个半帧中存在在TD-LTE的10ms帧结构中,上、下行子帧的分配策略是可以设置的。
每个子帧的第一个子帧固定的用作下行时隙发送系统广播信息,第二个子帧固定的用作特殊时隙,第三个子帧固定用作上行时隙。
后半帧的各子帧的上,下行是可变的,常规时隙和特殊时隙也是可变的。
预先分配第一和第六子帧的原因是他们包含了LTE的同步信号。
同步信号是通过每个小区的下行链路传输的,它的目的是用来初始小区搜索和邻近小区搜索。
特殊子幁:在TDD帧结构中,一个特殊子帧的大小是1ms,就是两个资源模块RB,一个RB占7个OFDM 符号,所以一个特殊子帧占14个OFDM符号DwPTS:(下行导频时隙)•主同步信号PSS在DwPTS上进行传输•DwPTS上最多能传两个PDCCH OFDM符号(正常时隙能传最多3个)•DwPTS也可用于传输PCFICH、PDCCH、PHICH、PDSCH和P-SCH等控制信道和控制信息。
其中,DwPTS时隙中下行控制信道的最大长度为两个符号,且主同步信道固定位于DwPTS的第三个符号。
小区物理ID由哪些参数决定(AB)A. PSSB. SSSC. CRSD. DRS•PSS(Primary Synchronization Signal)主同步信号频域上占系统带宽6个RB,指示一个物理小区组内的ID Physical-layer id:0,1,2(3个);SSS(Secondary Synchronization Signal)辅同步信号频域上占用6个RB,指示物理小区组号Physical-layer cell-id group:0~167(168个);RS(Reference Signal)参考信号,就是常说的“导频”信号。
下行参考信号有2个作用:1,下行信道质量测量;2,下行信道估计,用于UE端的相干检测和解调。
下行参考信号是以RE为单位的,即一个参考信号占用一个RE(资源粒子)。
这些参考信号可以分为两列:第1参考信号和第2参考信号。
第一参考信号位于每个0.5MS 时隙的第一个OFDM符号,第二参考信号位于每个时隙的倒数第三个OFDM符号。
第一参考信号位于第一个OFDM符号有助于下行控制信号被尽早解调。
在频域上,每6个子载波插入一个参考信号UpPTS:上行导频时隙•UpPTS可以发送短RACH(做随机接入用)和SRS(Sounding参考信号)•根据系统配置,是否发送短RACH或者SRS都可以用独立的开关控制•因为资源有限(最多仅占两个OFDM符号),UpPTS不能传输上行信令或数据GP:上下行保护时间,可以灵活配置,适应不同的小区覆盖半径。
GP越大,覆盖小区半径越大,最大可以支持100km 。