四川省宜宾三中2018-2019学年高二上学期12月月考数学试卷(理科)Word版含解析

合集下载

四川省宜宾第三中学高三数学12月月考试题文

四川省宜宾第三中学高三数学12月月考试题文

四川省宜宾第三中学高三数学12月月考试题文满分:150分 时间:120分钟第I 卷一.选择题:1、设集合2{|10}A x x =->,2{|log 0}B x x =>,则A B =( )A .{|1}x x >B .{|0}x x >C .{|1}x x <-D .{|11}x x x <->或2、若复数z 满足71i zi =+ (i 为虚数单位),则复数z 的虚部为 (A)1(B)-1(C)i(D)-i3、函数21()23f x x x =-+-的定义域是A.[]3,1-B.()3,1-C.(][),31,-∞-+∞D.()(),31,-∞-+∞4、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()A .172B .192C .10D .12 5、已知命题121:≤≤x p ,命题0)1)((:≤---a x a x q ,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是 A .]21,0[B .]1,21[C .]21,31[D .]1,31(6、已知x , y 满足不等式组⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,则y x z +=的最大值为A .8B .10C .12D .147、要计算2016131211+⋅⋅⋅+++的结果,下面程序框图中的判断框内可以填() A .2016<n B .2016>n C .2016≤n D .2016≥n8、把函数sin()6y x π=+图象上各点的横坐标缩小到原来的12(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴为( )A.2x π=-B.4x π=-C.8x π=D.4x π=9、某四棱锥的三视图如图所示(单位:cm),则该四棱锥的表面积是()A .2)7313(cm +B .2)3412(cm +C .2)7318(cm +D .2(93235)cm ++10、已知△ABC 是边长为1的等边三角形,点D 、E 分别是边AB 、BC 的中点,连接DE 并延长到点F ,使得EF DE 2=,则=⋅BC AF A .85- B .81 C .41 D .81111、已知正实数a ,b 满足321=+ba ,则()()21++b a 的最小值是() A .163B .950C .499D .6 12、定义域为(0,)+∞的连续可导函数()f x ,若满足以下两个条件:①()f x 的导函数'()y f x =没有零点,②对(0,)x ∀∈+∞,都有12(()log )3f f x x +=.则关于x 方程()2f x x =+有( )个解.A .2B .1C .0D .以上答案均不正确第Ⅱ卷二.填空题:13、曲线2()3f x x x=+在点(1,(1))f 处的切线方程为____________ 14、定义在R 上的函数()f x 满足()()20f x f x ++=,(4)()f x f x -=.现有以下三种叙述:①8是函数()f x 的一个周期;②()f x 的图象关于直线2x =对称;③()f x 是偶函数.其中正确的是15、在平面直角坐标系xoy 中,过点)0,4(-M 的直线l 与圆5)1(:22=+-y x C 相交于B A ,两点.若点A 恰好是线段MB 的中点,则直线l 的方程为_________.16、已知函数1()3(3)ln f x mx m x x=--+,若对任意的(4,5)m ∈,12,[1,3]x x ∈,恒有12(ln 3)3ln 3|()()|a m f x f x -->-成立,则实数a 的取值范围是.三.解答题:17.已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(1)设1n n b a =+,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S .18、已知函数)0(cos 2sin )(>+=m x x m x f 的最大值为2.(1)求函数()f x 在[0,]π上的单调递减区间;(2)△ABC 中,B A B f A f sin sin 64)4()4(=-+-ππ,角A 、B 、C 所对的边分别是a 、b 、c,且C=60︒,c=3,求△ABC 的面积.19、如图,已知四边形ABCD 和BCEG 均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=2π,平面ABCD⊥平面BCEG ,BC=CD=CE=2AD=2BG=2。

四川省宜宾市第三中学校高二月月考数学理试题缺答案

四川省宜宾市第三中学校高二月月考数学理试题缺答案

高2018级高二上期半期考试试题数学(理科)一、选择题(共50分,每小题5分)1.直线0632=-+y x 在x 轴上的截距是A.2B.3C.-2D.-32.已知点)1,(a 到直线x-y+1=0的距离为2,则a 的值为A .1B .-1C .2D .±2 3.抛物线y x =2的焦点坐标是A .(41,0)B .(21,0)C .(0,41)D .(0,81) 4.已知直线023=-++m y mx 与直线02)2(=+++y m x 平行,则实数m 的值为A .3B .1C .-3或1D .-1或35.已知双曲线22x a -42y =1的右焦点为(4,0),则该双曲线的离心率等于 A.552 B .332 C .54 D.436.若对任意的实数k ,直线)1(2-=+x k y 恒经过定点M ,则M 的坐标是A .(1,2)B .(1, 2-)C .(1-,2)D .(1,2--) 7.椭圆)0(12222>>=+b a b y a x 的两个焦点F 1,F 2,点M 在椭圆上,且211F F MF ⊥,310||1=MF ,3142=MF ,则离心率e 等于 A . 66 B .65 C .36 D .35 8.已知椭圆22184x y +=的弦AB 的中点坐标为)1,2(M ,则直线AB 的方程为 A .03=-+y x B .01=++y x C .064=-+y x D .01=--y x9.二面角的棱上有B A 、两点,直线BD AC ,分别在这个二面角的两个半平面内,且都垂直于AB .已知4=AB ,6=AC ,8=BD ,412=CD 则该二面角的大小为A . 150°B . 45°C . 60°D . 120°10.已知0>>b a ,椭圆1C 的方程为12222=+b y a x ,双曲线2C 的方程为22221x y a b-=,1C 与2C的离心率之积为322,则2C 的渐近线方程为 A.03=±y x B.03=±y x C.02=±y x D.02=±y x11.已知椭圆12222=+by a x )0(>>b a 上一点A 关于原点的对称点为B ,F 为其右焦点,若BF AF ⊥,设α=∠ABF ,且⎥⎦⎤⎢⎣⎡∈4,6ππα,则该椭圆离心率e 的取值范围为 A.]36,13[- B. )1,22[ C.]1-3,22[ D.]36,23[ 12的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的右上方,则该椭圆离心率的取值范围为二、填空题(共20分,每小题5分)13.直线023:1=-+y x l 与直线083:2=++y x l 的距离是__________.14.双曲线方程为1222=-y x ,则它的右焦点坐标为__________.15.设抛物线2y =2px (p >0)的焦点为F ,点A (0,4).若线段FA 的中点B 在抛物线上,则B到该抛物线准线的距离为________.16.已知圆C :222(62)4560x y m x my m m +---+-=,直线l 经过点)2,1(,若对任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为________.三、解答题(17题10分,其余各12分,共70分) 17.经过椭圆1222=+y x 的左焦点1F 作倾斜角为045的直线l ,与椭圆交于A 、B 两点,求AB 的长.18.已知△ABC 的顶点坐标分别为)5,1(-A ,)1,2(--B ,)3,8(C ,M 是BC 的中点.(1)求AB 边所在直线的方程;(2)求以线段AM 为直径的圆的标准方程.19.如图,四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD⊥底面ABCD .(1)证明:PA⊥BD;(2)若PD=2AD ,求二面角A ﹣PB ﹣C 的余弦值.20.已知点(0,2)A -,椭圆2222:1(0)x y E a b a b+=>>的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.21.如图,在直三棱柱111C B A ABC -中,平面⊥BC A 1侧面11A ABB ,且21==AB AA .(1)求证:BC AB ⊥;(2)若直线AC 与平面BC A 1所成的角为6π,请问在线段C A 1上是否存在点E ,使得二面角C BE A --的大小为32π,请说明理由.22.椭圆C :),0,0(12222>>=+b a b y a x 过点)0,2(M ,且右焦点为)0,1(F ,过点)0,21(N 的直线l 与椭圆C 相交于A ,B 两点,设点),8(m P ,记PN PB PA ,,得斜率分别为1k ,2k ,3k .(1)求椭圆C 的方程;(2)探讨是否存在λ,使得都成立?对于R m k k k k ∈=-11213λ如果存在,请求出λ值;如果不存在请说明理由.。

珙县高级中学2018-2019学年上学期高二数学12月月考试题含解析

珙县高级中学2018-2019学年上学期高二数学12月月考试题含解析

珙县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .42. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)3. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=04. 已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=5. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x6. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .7. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .8. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0) 9. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .10.已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用. 11.在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30° 12.下列命题的说法错误的是( )A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”二、填空题13.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .14.已知函数f (x )=恰有两个零点,则a 的取值范围是 .15.若函数f (x )=,则f (7)+f (log 36)= .16.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .17.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .18.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .三、解答题19.已知椭圆C :+=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.20.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值.21.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.22.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈时,求f(x)取得最大值和最小值时的x的值.23.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD.(1)求证:A′C∥平面BDE;(2)求体积V A′﹣ABCD与V E﹣ABD的比值.24.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.珙县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e=,e2=时取等号.即取得最大值且为.1故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.2.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.3. 【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2, 故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.4. 【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log 3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线, 故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.5. 【答案】A 【解析】试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性. 6. 【答案】 D【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;① 又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C的实轴长为2m,焦距为2n,2则2m=|AF|﹣|AF1|=y﹣x=2,2n=2c=2,2∴双曲线C2的离心率e===.故选D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.7.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题8.【答案】A【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,则函数f(x)过定点(1,5).故选A.9.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B 10.【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .11.【答案】A【解析】解:根据余弦定理可知cosA=∵a 2=b 2+bc+c 2, ∴bc=﹣(b 2+c 2﹣a 2)∴cosA=﹣∴A=120° 故选A12.【答案】A【解析】解:A .复合命题p ∧q 为假命题,则p ,q 至少有一个命题为假命题,因此不正确; B .由x 2﹣3x+2=0,解得x=1,2,因此“x=1”是“x 2﹣3x+2=0”的充分不必要条件,正确; C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0,正确;D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”,正确. 故选:A .二、填空题13.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 14.【答案】 (﹣3,0) .【解析】解:由题意,a ≥0时,x <0,y=2x 3﹣ax 2﹣1,y ′=6x 2﹣2ax >0恒成立, f (x )在(0,+∞)上至多一个零点; x ≥0,函数y=|x ﹣3|+a 无零点, ∴a ≥0,不符合题意;﹣3<a <0时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a的取值范围是(﹣3,0).故答案为(﹣3,0).15.【答案】5.【解析】解:∵f(x)=,∴f(7)=log39=2,f(log36)=+1=,∴f(7)+f(log36)=2+3=5.故答案为:5.16.【答案】(x﹣1)2+(y+1)2=5.【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a)2+(1﹣b)2=r2;②又直线x﹣y+1=0截圆所得的弦长为,且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,即r2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x﹣1)2+(y+1)2=5.故答案为:(x﹣1)2+(y+1)2=5.17.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:918.【答案】5.【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.三、解答题19.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.20.【答案】【解析】解:(1)ρ2﹣4ρcos(θ﹣)+6=0,展开为:ρ2﹣4×ρ(cosθ+sinθ)+6=0.化为:x2+y2﹣4x﹣4y+6=0.(2)由x2+y2﹣4x﹣4y+6=0可得:(x﹣2)2+(y﹣2)2=2.圆心C(2,2),半径r=.|OP|==2.∴线段OP的最大值为2+=3.最小值为2﹣=.21.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b 1+2b 2+3b 3+…+nb n =a n ,得b 1=a 1=1.n ≥2时,由b 1+2b 2+3b 3+…+nb n =a n ① b 1+2b 2+3b 3+…+(n ﹣1)b n ﹣1=a n ﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.22.【答案】【解析】解:(Ⅰ)f (x )的定义域为(﹣∞,+∞),f ′(x )=1+a ﹣2x ﹣3x 2,由f ′(x )=0,得x 1=,x 2=,x 1<x 2,∴由f ′(x )<0得x <,x >;由f ′(x )>0得<x <;故f (x )在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a >0,∴x 1<0,x 2>0,∵x ∈,当时,即a ≥4①当a ≥4时,x 2≥1,由(Ⅰ)知,f (x )在上单调递增,∴f (x )在x=0和x=1处分别取得最小值和最大值. ②当0<a <4时,x 2<1,由(Ⅰ)知,f (x )在单调递增,在上单调递减,因此f (x )在x=x 2=处取得最大值,又f (0)=1,f (1)=a ,∴当0<a <1时,f (x )在x=1处取得最小值; 当a=1时,f (x )在x=0和x=1处取得最小值; 当1<a <4时,f (x )在x=0处取得最小值.23.【答案】【解析】(1)证明:设BD 交AC 于M ,连接ME . ∵ABCD 为正方形,∴M 为AC 中点,又∵E 为A ′A 的中点, ∴ME 为△A ′AC 的中位线, ∴ME ∥A ′C .又∵ME ⊂平面BDE ,A ′C ⊄平面BDE , ∴A ′C ∥平面BDE .(2)解:∵V E ﹣ABD ====V A ′﹣ABCD .∴V A ′﹣ABCD :V E ﹣ABD =4:1.24.【答案】【解析】解:(Ⅰ)∵椭圆C :+=1(a >b >0)的短轴长为2,且离心率e=,∴,解得a 2=4,b 2=3,∴椭圆C 的方程为=1.(Ⅱ)设直线MN 的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t 2+4)y 2+6ty ﹣9=0,∴,,设M (x 1,y 1),N (x 2,y 2),又F 1(﹣1,0),F 2(1,0),则直线F 1M :,令x=4,得P (4,),同理,Q (4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.。

珙县高中2018-2019学年上学期高二数学12月月考试题含解析

珙县高中2018-2019学年上学期高二数学12月月考试题含解析

珙县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数f (x )=有且只有一个零点时,a 的取值范围是( )A .a ≤0B .0<a <C .<a <1D .a ≤0或a >12. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈 B .5立方丈 C .6立方丈 D .8立方丈3. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a4. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17C .T 5=T 12D .T 8=T 115. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称6. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A .B .C .1D .7. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件8. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .729. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形10.∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>011.已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .二、填空题13.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.14.多面体的三视图如图所示,则该多面体体积为(单位cm ) .15.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.16.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是17.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m .18.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .三、解答题19.圆锥底面半径为1cm ,其中有一个内接正方体,求这个内接正方体的棱长.20.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论; (Ⅲ)当时,证明:存在,使得.21.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.22.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.23.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=成立,且f(1)=1,当0<x<2时,f(x)>0.(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.24.已知等差数列满足:=2,且,成等比数列。

四川省宜宾市第三中学校2018-2019学年高三上学期第三次月考试卷数学含答案

四川省宜宾市第三中学校2018-2019学年高三上学期第三次月考试卷数学含答案

四川省宜宾市第三中学校2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .15B .C .15D .15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 2. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力. 3. 设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<4. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 5. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014 C .2015 D .20161111] 6. 已知函数,,若,则( )A1 B2 C3 D-17. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3 8. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A.该几何体体积为 B.该几何体体积可能为 C.该几何体表面积应为+ D .该几何体唯一9. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=10.正方体1111D ABC A B C D - 中,,E F 分别为1,AB B C 的中点,则EF 与平面ABCD 所成角的正切值为( )A . BC.12 D11.已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( ) A .πB.C.D.12.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110B.15C.310D.25二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.函数2()cos sin ((,))6f x x x x ππ=+∈的值域是__________.14.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.16.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .三、解答题(本大共6小题,共70分。

宜宾县第三中学校2018-2019学年上学期高二数学12月月考试题含解析

宜宾县第三中学校2018-2019学年上学期高二数学12月月考试题含解析

宜宾县第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=2. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .24253. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称4. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )A .{x|x ≥0}B .{x|x ≤1}C .{﹣1,0,1}D .R5. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)6. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%7. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( ) A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}8. “a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件. A .充分不必要 B .必要不充分C .充要D .既不充分也不必要9. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,﹣4)C .(4,﹣2)D .(4,2)10.下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件11.下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α12.执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .35二、填空题13.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .14.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g(x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .15.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.16.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b .17.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21x g x =-,则((2))f g = ,[()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.18.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .三、解答题19.设p :关于x 的不等式a x >1的解集是{x|x <0};q :函数的定义域为R .若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.20.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.21.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差.22.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.23.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.24.已知函数f(x)=(ax2+x﹣1)e x,其中e是自然对数的底数,a∈R.(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若,求f(x)的单调区间;(Ⅲ)若a=﹣1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围.宜宾县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C .2. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 3. 【答案】C【解析】解:∵f (﹣x )=﹣+x=﹣f (x )∴是奇函数,所以f (x )的图象关于原点对称故选C .4. 【答案】A【解析】解:由A={x|x ≥0},且A ∩B=B ,所以B ⊆A . A 、{x|x ≥0}={x|x ≥0}=A ,故本选项正确;B 、{x|x ≤1,x ∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C 、若B={﹣1,0,1},则A ∩B={0,1}≠B ,故本选项错误;D、给出的集合是R,不合题意,故本选项错误.故选:A.【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.5.【答案】C【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].∴当x=3时,f(x)min=﹣2.当x=5时,.∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].故选:C.6.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.7.【答案】A【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},∴C U A={2,4},∵B={0,1,4},∴(C U A)∪B={0,1,2,4}.故选:A.【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.8.【答案】A【解析】解:若方程y2=ax表示的曲线为抛物线,则a≠0.∴“a>0”是“方程y2=ax表示的曲线为抛物线”的充分不必要条件.故选A.【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础.9.【答案】C【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,故在复平面内,z对应的点的坐标是(4,﹣2),故选C.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.10.【答案】C【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C,故选:C.【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.11.【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交.故选:B.【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.12.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C二、填空题13.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 14.【答案】 1 .【解析】解:∵x 为实数,[x]表示不超过x 的最大整数, ∴如图,当x ∈[0,1)时,画出函数f (x )=x ﹣[x]的图象,再左右扩展知f (x )为周期函数. 结合图象得到函数f (x )=x ﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.15.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.16.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2=.17.【答案】2,[1,)-+∞.【解析】18.【答案】.【解析】解:∵tanβ=,α,β均为锐角,∴tan(α﹣β)===,解得:tanα=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.三、解答题19.【答案】【解析】解:∵关于x的不等式a x>1的解集是{x|x<0},∴0<a<1;故命题p为真时,0<a<1;∵函数的定义域为R,∴⇒a≥,由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,当p真q假时,则⇒0<a<;当q真p假时,则⇒a≥1,综上实数a的取值范围是(0,)∪[1,+∞).20.【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.21.【答案】【解析】(本小题满分12分)解:(Ⅰ)设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,则,解得,,,…由于,故n=55.…(Ⅱ)由(Ⅰ)知,一个报考学生的体重超过60公斤的概率为:p=,由题意知X服从二项分布,即:X~B(3,),…∴P(X=k)=,k=0,1,2,3,∴EX==,DX==.…【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.22.【答案】【解析】解:如图,点P所在的区域为长方形ABCD的内部(含边界),满足(x﹣2)2+(y﹣2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).(1)当x,y∈Z时,满足﹣2≤x≤2,﹣2≤y≤2的点有25个,满足x,y∈Z,且(x﹣2)2+(y﹣2)2≤4的点有6个,依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);∴所求的概率P=.(2)当x,y∈R时,满足﹣2≤x≤2,﹣2≤y≤2的面积为:4×4=16,满足(x﹣2)2+(y﹣2)2≤4,且﹣2≤x≤2,﹣2≤y≤2的面积为:=π,∴所求的概率P==.【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.23.【答案】【解析】证明:(Ⅰ)由b n=,且a n+1=a n+,得,∴,下面用数学归纳法证明:0<b n<1.①由a1=∈(0,1),知0<b1<1,②假设0<b k<1,则,∵0<b k<1,∴,则0<b k+1<1.综上,当n∈N*时,b n∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n ≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题.24.【答案】【解析】解:(Ⅰ)∵a=0,∴f (x )=(x ﹣1)e x ,f ′(x )=e x +(x ﹣1)e x =xe x,∴曲线f (x )在点(1,f (1))处的切线斜率为k=f (1)=e . 又∵f (1)=0,∴所求切线方程为y=e (x ﹣1),即.ex ﹣y ﹣4=0(Ⅱ)f ′(x )=(2ax+1)e x +(ax 2+x ﹣1)e x =[ax 2+(2a+1)x]e x =[x (ax+2a+1)]e x,①若a=﹣,f ′(x )=﹣x 2e x ≤0,∴f (x )的单调递减区间为(﹣∞,+∞),②若a <﹣,当x <﹣或x >0时,f ′(x )<0;当﹣<x <0时,f ′(x )>0.∴f (x )的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0]. (Ⅲ)当a=﹣1时,由(Ⅱ)③知,f (x )=(﹣x 2+x ﹣1)e x在(﹣∞,﹣1)上单调递减,在[﹣1,0]单调递增,在[0,+∞)上单调递减,∴f (x )在x=﹣1处取得极小值f (﹣1)=﹣,在x=0处取得极大值f (0)=﹣1,由,得g′(x)=2x2+2x.当x<﹣1或x>0时,g′(x)>0;当﹣1<x<0时,g′(x)<0.∴g(x)在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.故g(x)在x=﹣1处取得极大值,在x=0处取得极小值g(0)=m,∵数f(x)与函数g(x)的图象仅有1个公共点,∴g(﹣1)<f(﹣1)或g(0)>f(0),即..【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.。

宜宾县二中2018-2019学年上学期高二数学12月月考试题含解析

宜宾县二中2018-2019学年上学期高二数学12月月考试题含解析

宜宾县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行2. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④3. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D . 4. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()5. 下列函数在其定义域内既是奇函数又是增函数的是( ) A .B .C .D .6. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.7. 如图,该程序运行后输出的结果为( )A .7B .15C .31D .638. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,59. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+110.已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18 C .24 D .3611.直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .12.若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( )A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]二、填空题13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .14.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .15.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.16.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .17.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为.18.设复数z满足z(2﹣3i)=6+4i(i为虚数单位),则z的模为.三、解答题19.已知函数f(x)=e﹣x(x2+ax)在点(0,f(0))处的切线斜率为2.(Ⅰ)求实数a的值;(Ⅱ)设g(x)=﹣x(x﹣t﹣)(t∈R),若g(x)≥f(x)对x∈[0,1]恒成立,求t的取值范围;(Ⅲ)已知数列{a n}满足a1=1,a n+1=(1+)a n,求证:当n≥2,n∈N时f()+f()+L+f()<n•()(e为自然对数的底数,e≈2.71828).20.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.21.已知椭圆C:22221x ya b+=(0a b>>),点3(1,)2在椭圆C上,且椭圆C的离心率为12.(1)求椭圆C的方程;(2)过椭圆C的右焦点F的直线与椭圆C交于P,Q两点,A为椭圆C的右顶点,直线PA,QA分别交直线:4x =于M 、N 两点,求证:FM FN ⊥.22.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .(Ⅰ)求线段AD 的长;(Ⅱ)比较∠ADC 和∠ABC 的大小.23.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足: ①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n]. 则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.24.在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2:=1.(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.宜宾县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,故选D.【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.2.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D3.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.4.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.5.【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B6.【答案】B7.【答案】如图,该程序运行后输出的结果为()D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2;判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3;判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4;判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5;判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5.故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.8.【答案】D【解析】试题分析:分析题意可知:对应法则为31y x =+,则应有42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩(1)或42313331a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩(2),由于*a N ∈,所以(1)式无解,解(2)式得:25a k =⎧⎨=⎩。

珙县民族中学2018-2019学年上学期高二数学12月月考试题含解析

珙县民族中学2018-2019学年上学期高二数学12月月考试题含解析

珙县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 2. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条3. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80 D .S 21=844. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <05. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A .B .C .D .6. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6 C .2 D .3﹣a7. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( ) A .命题p 一定是假命题 B .命题q 一定是假命题C .命题q 一定是真命题D .命题q 是真命题或假命题8. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 9.已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6π B 、3πC 、56π D 、23π 10.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个 11.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A .10 13B .12.5 12C .12.5 13D .10 1512.设P是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13二、填空题13.计算:×5﹣1= .14.经过A (﹣3,1),且平行于y 轴的直线方程为 .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.16.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为.17.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是.18.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.三、解答题19.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.20.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f (0)+f (1)+f (2)+…+f (2015)的值.21.已知二次函数f (x )=x 2+2bx+c (b ,c ∈R ).(1)若函数y=f (x )的零点为﹣1和1,求实数b ,c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b 的取值范围.22.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100. (1)求数列{a n },{b n }的通项公式(2)当d >1时,记c n =,求数列{c n }的前n 项和T n .23.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.24.一艘客轮在航海中遇险,发出求救信号.在遇险地点A 南偏西45方向10海里的B 处有一艘海 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向 一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; (2)若最短时间内两船在C 处相遇,如图,在ABC ∆中,求角B 的正弦值.珙县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 2. 【答案】C【解析】解:假设存在过点P (﹣2,2)的直线l ,使它与两坐标轴围成的三角形的面积为8,设直线l 的方程为:,则.即2a ﹣2b=ab直线l 与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l 的方程为:,即x ﹣y+4=0, 即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.3. 【答案】【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.S 19=19a 1+19×18d2=19(a 1+9d )=76,同理S 20,S 21均不恒为常数,故选B.4.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.5.【答案】B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x值为∴=,其中k∈Z取k=1,得φ=因此,f(x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.6.【答案】A【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12,故选:A.7.【答案】D【解析】解:∵命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又∵命题“非p”也是假命题,∴命题p为真命题.故命题q 为可真可假. 故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.8. 【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算. 9. 【答案】D【解析】:()sin )(tan f x a x x x ϕϕ==-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=-对称轴为112212min522,2,663x k x k x x πππππ∴=-+=+∴+=10.【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{,,a b b ⊆ C.考点:集合间的关系.11.【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可∴中位数是13故选:C.【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.12.【答案】A【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,∴|PF2|=2×13﹣|PF1|=26﹣4=22.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.二、填空题13.【答案】9.【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.14.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.15.【答案】6【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.16.【答案】12【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.17.【答案】.【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况∴所求概率为=.故答案为:.18.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.三、解答题19.【答案】【解析】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.20.【答案】【解析】(1)证明:∵f(x+2)=﹣f(x),∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),∴y=f(x)是周期函数,且T=4是其一个周期.(2)令x∈[﹣2,0],则﹣x∈[0,2],∴f(﹣x)=﹣2x﹣x2,又f(﹣x)=﹣f(x),∴在x∈[﹣2,0],f(x)=2x+x2,∴x∈[2,4],那么x﹣4∈[﹣2,0],那么f(x﹣4)=2(x﹣4)+(x﹣4)2=x2﹣6x+8,由于f(x)的周期是4,所以f(x)=f(x﹣4)=x2﹣6x+8,∴当x∈[2,4]时,f(x)=x2﹣6x+8.(3)当x∈[0,2]时,f(x)=2x﹣x2.∴f(0)=0,f(1)=1,当x∈[2,4]时,f(x)=x2﹣6x+8,∴f(2)=0,f(3)=﹣1,f(4)=0∴f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,∵y=f(x)是周期函数,且T=4是其一个周期.∴2016=4×504∴f(0)+f(1)+f(2)+…+f(2015)=504×[f(0)+f(1)+f(2)+f(3)]=504×0=0,即求f(0)+f(1)+f(2)+…+f(2015)=0.【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用.21.【答案】【解析】解:(1)∵﹣1,1是函数y=f(x)的零点,∴,解得b=0,c=﹣1.(2)∵f(1)=1+2b+c=0,所以c=﹣1﹣2b.令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x﹣b﹣1,∵关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,∴,即.解得<b<,即实数b的取值范围为(,).【点评】本题考查了二次函数根与系数得关系,零点的存在性定理,属于中档题.22.【答案】【解析】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.23.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.24.【答案】(1)23小时;(2【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=,10AB =,9AC t =,21BC t =. 由余弦定理得:2222cos BC AB AC AB AC BAC =+-∠, 所以2221(21)10(9)2109()2t t t =+-⨯⨯⨯-,化简得2369100t t --=,解得23t =或512t =-(舍去). 所以,海难搜救艇追上客轮所需时间为23小时.(2)由2963AC =⨯=,221143BC =⨯=.在ABC ∆中,由正弦定理得6sin 6sin1202sin 141414AC BAC B BC ⨯∠====. 所以角B . 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省宜宾三中2018-2019学年高二上学期12月月考数学试卷(理科)一、选择题(每题5分,共60分,每题只有一个正确答案)1.直线的倾斜角为( )A .30°B .60°C .120°D .150°2.椭圆的焦距是( )A .B .C .1D .23.阅读程序框图,运行相应的程序,则输出i 的值为( ) A .3B .4C .5D .64.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为M 1,众数为M 2,平均值为,则( )A .M 1=M 2=B .M 1=M 2<C .M 1<M 2<D .M 2<M 1<5.两个圆C 1:x 2+y 2+2x+2y ﹣2=0与C 2:x 2+y 2﹣4x ﹣2y+1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条6.已知点A (1,2,2)、B (1,﹣3,1),点C 在yOz 平面上,且点C 到点A 、B 的距离相等,则点C 的坐示可以为( )A .(0,1,﹣1)B .(0,﹣1,6)C .(0,1,﹣6)D .(0,1,6) 7.原点在圆C :x 2+y 2+2y+a ﹣2=0外,则a 的取值范围是( ) A .a >2B .2<a <3C .a <2D .0<a <28.已知椭圆+=1,则以点M (﹣1,1)为中点的弦所在直线方程为( )A .3x ﹣4y+7=0B .3x+4y ﹣1=0C .4x ﹣3y+7=0D .4x+3y+1=09.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A .B .C .D .10.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线l ′点C ,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .11.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x+y ≤”的概率,P 2为事件“xy ≤”的概率,则( )A .p 1<p 2<B .C .p 2<D .12.已知抛物线C :y 2=8x 的焦点为F ,点M (﹣2,2),过点F 且斜率为k 的直线与C 交于A ,B 两点,若,则k=( )A .B .C .D .2二、填空.(每题5分,共20分)13.直线l 1:y=kx ﹣1与直线l 2:x+y ﹣1=0的交点位于第一象限则k 的范围为 . 14.甲、乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是: 甲:0、1、0、2、2、0、3、1、2、4; 乙:2、3、1、1、0、2、1、1、0、1; 则机床性能较好的为 . 15.如图程序输出的结果是 .16.若椭圆,和椭圆的焦点相同,且a1>a2;给出如下四个结论:其中,所有正确结论的序号为①椭圆C1和椭圆C2一定没有公共点;②;③④a1﹣a2<b1﹣b2.三.解答题17.已知两条直线l1:(a﹣1)x+2y+1=0,l2:x+ay+1=0,求满足下列条件的a值:(1)l1∥l2(2)l1⊥l2.18.已知某中学联盟举行了一次“盟校质量调研考试”活动.为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为100分,得分取正整数,抽取学生的分数均在[50,100]之内)作为样本(样本容量为n)进行统计.按照[50,60],[60,70],[70,80],[80,90],[90,100]的分组作出频率分布直方图(图1),并作出样本分数的茎叶图(图2)(茎叶图中仅列出了得分在[50,60],[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;(Ⅱ)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“省级学科基础知识竞赛”,求所抽取的2名学生中恰有一人得分在[90,100]内的概率.19.如图,棱锥P﹣ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)求二面角B﹣PC﹣D的余弦值;(Ⅲ)求以C为顶点,△PBD为底面的棱锥C﹣PBD的高.20.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:若由资料可知y对x呈线性相关关系,试求:(1)线性回归方程;(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?参考公式: =, =﹣, =x+.21.已知圆O:x2+y2=4和点M(1,a).(Ⅰ)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程.(Ⅱ)a=,过点M作圆O的两条弦AC,BD互相垂直,求|AC|+|BD|的最大值.22.如图,已知椭圆=1(a >b >0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F 1,F 2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D . (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF 1、PF 2的斜率分别为k 1、k 2,证明k 1•k 2=1;(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.四川省宜宾三中2018-2019学年高二上学期12月月考数学试卷(理科)参考答案与试题解析一、选择题(每题5分,共60分,每题只有一个正确答案)1.直线的倾斜角为()A.30°B.60°C.120°D.150°【考点】直线的倾斜角.【分析】根据题意,设该直线的倾斜角为θ,由直线的方程求出该直线的斜率,则有tanθ=﹣,结合θ的范围,分析可得θ的值,即可得答案.【解答】解:设该直线的倾斜角为θ,则0°≤θ<180°,直线的斜率k=﹣,则有tanθ=﹣,又由0°≤θ<180°,则θ=150°;故选:D.2.椭圆的焦距是()A.B.C.1 D.2【考点】椭圆的简单性质.【分析】根据题意,由椭圆的标准方程可得a、b的值,计算可得c的值,进而由焦距定义计算可得答案.【解答】解:根据题意,椭圆的标准方程为:,则a2=5,b2=4,则c==1,则其焦距2c=2;故选:D .3.阅读程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .6【考点】程序框图.【分析】通过程序框图的要求,写出前四次循环的结果得到输出的值. 【解答】解:该程序框图是循环结构 经第一次循环得到i=1,a=2; 经第二次循环得到i=2,a=5; 经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4 故选B4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为M 1,众数为M 2,平均值为,则( )A .M 1=M 2=B .M 1=M 2<C .M 1<M 2<D .M 2<M 1< 【考点】频率分布直方图.【分析】由频率图求出众数、中位数和平均数,比较即可. 【解答】解:由图知,众数是M 2=5; 中位数是第15个数与第16个数的平均值,由图知将数据从大到小排第15 个数是5,第16个数是6,所以中位数是M 1==5.5;平均数是=×(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈6;∴M 2<M 1<. 故选:D .5.两个圆C 1:x 2+y 2+2x+2y ﹣2=0与C 2:x 2+y 2﹣4x ﹣2y+1=0的公切线有且仅有( ) A .1条 B .2条 C .3条 D .4条 【考点】圆的切线方程.【分析】先求两圆的圆心和半径,判定两圆的位置关系,即可判定公切线的条数. 【解答】解:两圆的圆心分别是(﹣1,﹣1),(2,1),半径分别是2,2两圆圆心距离:,说明两圆相交,因而公切线只有两条. 故选B .6.已知点A (1,2,2)、B (1,﹣3,1),点C 在yOz 平面上,且点C 到点A 、B 的距离相等,则点C 的坐示可以为( )A .(0,1,﹣1)B .(0,﹣1,6)C .(0,1,﹣6)D .(0,1,6) 【考点】空间两点间的距离公式;空间中的点的坐标. 【分析】直接利用空间距离公式验证即可.【解答】解:点A (1,2,2)、B (1,﹣3,1),点C 在yOz 平面上,且点C 到点A 、B 的距离相等,如果C (0,1,﹣1),可得|AC|==;|BC|==,选项A不满足题意.对于B:可得|AC|==;|BC|==,选项B不满足题意;对于C,可得|AC|==;|BC|==,选项C不满足题意;对于D,可得|AC|==;|BC|==,选项D不满足题意;故选:C.7.原点在圆C:x2+y2+2y+a﹣2=0外,则a的取值范围是()A.a>2 B.2<a<3 C.a<2 D.0<a<2【考点】直线与圆的位置关系.【分析】根据二次方程表示圆的条件,以及圆心到原点的距离大于半径,列出不等式组,综合可得实数a的取值范围.【解答】解:∵圆x2+y2+2y+a﹣2=0,即x2+(y+1)2=3﹣a,∴3﹣a>0,即a<3.∵原点(0,0)在圆x2+y2+2y+a﹣2=0的外部,∴a﹣2>0,∴a>2.综上可得,2<a<3,故选:B.8.已知椭圆+=1,则以点M(﹣1,1)为中点的弦所在直线方程为()A.3x﹣4y+7=0 B.3x+4y﹣1=0 C.4x﹣3y+7=0 D.4x+3y+1=0【考点】直线与圆锥曲线的关系.【分析】因为是一个选择题,可采用“点差法”,即先设弦的两端点为A(x1,y1),B(x2,y2),分别代入椭圆方程后作差,可求出直线的斜率,再结合过点M,写出点斜式方程.【解答】解:设弦的两个端点为A(x1,y1),B(x2,y2),∴=1,,两式相减得,∴,①又∵M(﹣1,1)为AB的中点,∴x1+x2=﹣2,y1+y2=2代入①式得,即kAB=,∴直线AB方程为,即3x﹣4y+7=0.故选A9.已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.【考点】抛物线的简单性质;双曲线的简单性质.【分析】利用双曲线的渐近线的方程可得=,再利用抛物线的准线x=﹣6=﹣c及c2=a2+b2即可得出.【解答】解:∵双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,∴=,∵双曲线的一个焦点在抛物线y2=24x的准线x=﹣6上,∴c=6.联立,解得.∴此双曲线的方程为,故选D.10.如图所示,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线l′点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6x C.y2=3x D.【考点】抛物线的简单性质.【分析】分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,则抛物线方程可得.【解答】解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴=求得p=,因此抛物线方程为y 2=3x . 故选C .11.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x+y ≤”的概率,P 2为事件“xy ≤”的概率,则( )A .p 1<p 2<B .C .p 2<D .【考点】几何概型.【分析】分别求出事件“x+y ≤”和事件“xy ≤”对应的区域,然后求出面积,利用几何概型公式求出概率,比较大小.【解答】解:由题意,事件“x+y ≤”表示的区域如图阴影三角形,p 1=;满足事件“xy ≤”的区域如图阴影部分所以p 2===>;所以;故选:B .12.已知抛物线C :y 2=8x 的焦点为F ,点M (﹣2,2),过点F 且斜率为k 的直线与C 交于A ,B 两点,若,则k=( )A .B .C .D .2【考点】抛物线的简单性质;平面向量数量积的运算.【分析】斜率k 存在,设直线AB 为y=k (x ﹣2),代入抛物线方程,利用=(x 1+2,y 1﹣2)•(x 2+2,y 2﹣2)=0,即可求出k 的值. 【解答】解:由抛物线C :y 2=8x 得焦点(2,0), 由题意可知:斜率k 存在,设直线AB 为y=k (x ﹣2), 代入抛物线方程,得到k 2x 2﹣(4k 2+8)x+4k 2=0,△>0, 设A (x 1,y 1),B (x 2,y 2).∴x 1+x 2=4+,x 1x 2=4.∴y 1+y 2=,y 1y 2=﹣16,又=0,∴=(x 1+2,y 1﹣2)•(x 2+2,y 2﹣2)==0∴k=2.故选:D .二、填空.(每题5分,共20分)13.直线l 1:y=kx ﹣1与直线l 2:x+y ﹣1=0的交点位于第一象限则k 的范围为 (1,+∞) . 【考点】两条直线的交点坐标.【分析】联立,k ≠﹣1,解得交点.根据直线l 1:y=kx ﹣1与直线l 2:x+y ﹣1=0的交点位于第一象限,即可得出.【解答】解:联立,k ≠﹣1,解得y=,x=.∵直线l 1:y=kx ﹣1与直线l 2:x+y ﹣1=0的交点位于第一象限,∴>0,>0.解得:k >1.则k 的范围为(1,+∞). 故答案为:(1,+∞).14.甲、乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是: 甲:0、1、0、2、2、0、3、1、2、4; 乙:2、3、1、1、0、2、1、1、0、1; 则机床性能较好的为 乙 . 【考点】极差、方差与标准差.【分析】分别求出甲、乙两机床每天出次品数的平均数和方差,由此能求出机床性能较好的为乙.【解答】解:甲机床每天出次品数的平均数为:=(0+1+0+2+2+0+3+1+2+4)=1.5,方差=[(0﹣1.5)2×3+(1﹣1.5)2×2+(2﹣2.5)2×3+(3﹣1.5)2+(4﹣1.5)2]=1.625.乙机床每天出次品数的平均数为:=(2+3+1+1+0+2+1+1+0+1)=1.2,方差= [(2﹣1.2)2×2+(3﹣1.2)2+(1﹣1.2)2×5+(0﹣1.2)2×2]=0.76,∵>,>,∴机床性能较好的为乙.故答案为:乙.15.如图程序输出的结果是2500 .【考点】伪代码.【分析】分析程序语言,得出该程序是累加并输出S=1+3+…+99的值.【解答】解:分析程序中各变量、各语句的作用,根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1+3+5+…+99的值,且S=1+3+5+…+99=2500.故答案为:2500.16.若椭圆,和椭圆的焦点相同,且a1>a2;给出如下四个结论:其中,所有正确结论的序号为①③①椭圆C1和椭圆C2一定没有公共点;②;③④a1﹣a2<b1﹣b2.【考点】椭圆的简单性质.【分析】由条件可知两椭圆的焦点均在x 轴上,且a 12﹣b 12=a 22﹣b 22,由a 1>a 2,可得b 1>b 2,即可判断①③;举例若椭圆C 1:+=1,椭圆C 2:+y 2=1.即可判断②④.【解答】解:由题意可得两椭圆的焦点均在x 轴上,且a 12﹣b 12=a 22﹣b 22, 即有a 12﹣a 22=b 12﹣b 22,故③正确; 由a 1>a 2,可得b 1>b 2,由椭圆的对称性可得椭圆C 1和椭圆C 2一定没有公共点,故①正确;若椭圆C 1:+=1,椭圆C 2:+y 2=1.满足题意,但a 1﹣a 2=6﹣5=1,b 1﹣b 2=2﹣1=1, 即有a 1﹣a 2=b 1﹣b 2.故④错误;由=,=2,即有<,故②错误.故答案为:①③. 三.解答题17.已知两条直线l 1:(a ﹣1)x+2y+1=0,l 2:x+ay+1=0,求满足下列条件的a 值: (1)l 1∥l 2 (2)l 1⊥l 2.【考点】直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【分析】(1)根据两直线平行关系,得,即可求出a 的值.(2)根据两直线垂直的关系,即(a ﹣1)+2a=0,即可求出a 的值.【解答】解:(1)由题意,,∴a=﹣1;(2)∵(a ﹣1)+2a=0,∴a=.18.已知某中学联盟举行了一次“盟校质量调研考试”活动.为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为100分,得分取正整数,抽取学生的分数均在[50,100]之内)作为样本(样本容量为n)进行统计.按照[50,60],[60,70],[70,80],[80,90],[90,100]的分组作出频率分布直方图(图1),并作出样本分数的茎叶图(图2)(茎叶图中仅列出了得分在[50,60],[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;(Ⅱ)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“省级学科基础知识竞赛”,求所抽取的2名学生中恰有一人得分在[90,100]内的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由样本容量和频数频率的关系易得答案;(Ⅱ)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2,列举法易得.【解答】解:(Ⅰ)由题意可知,样本容量,,…x=0.100﹣0.004﹣0.010﹣0.016﹣0.040=0.030.(Ⅱ)由题意可知,分数在[80,90]内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2,抽取2名学生的所有情况有21种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2).其中2名同学的分数恰有一人在[90,100]内的情况有10种,∴所抽取的2名学生中恰有一人得分在[90,100]内的概率.19.如图,棱锥P ﹣ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=2,BD=.(Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)求二面角B ﹣PC ﹣D 的余弦值;(Ⅲ)求以C 为顶点,△PBD 为底面的棱锥C ﹣PBD 的高.【考点】二面角的平面角及求法;直线与平面垂直的判定;点、线、面间的距离计算. 【分析】(Ⅰ)由已知条件推导出BD ⊥AC ,BD ⊥PA ,由此能证明BD ⊥平面PAC . (Ⅱ)建立空间直角坐标系,利用向量法能求出二面角B ﹣PD ﹣C 的余弦值.(III )设△PBD 为底面的棱锥C ﹣PBD 的高为h ,由V P ﹣BDC =V C ﹣PBD ,能求出△PBD 为底面的棱锥C ﹣PBD 的高.【解答】证明:(Ⅰ)在Rt △BAD 中,AD=2,BD=2,∴AB=2,ABCD 为正方形,∴BD ⊥AC . ∵PA ⊥平面ABCD ,∴BD ⊥PA .∵AC ⊂平面PAC ,PA ⊂平面PAC ,AC ∩PA=A , ∴BD ⊥平面PAC .…解:(Ⅱ)如图建立空间直角坐标系,则B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),∴=(﹣2,2,0),=(0,2,﹣2),=(2,0,0),设平面PCD 的法向量=(x ,y ,z ),则,取y=1,得=(0,1,1),高平面PBD 的法向量,则,取a=1,得=(1,1,1),∵cos <>===,∴二面角B ﹣PD ﹣C 的余弦值为.(Ⅲ)∵AB=AD=PA=2,AB ,AD ,AP 两两垂直,∴PB=PD=BD=,∴=2,设△PBD 为底面的棱锥C ﹣PBD 的高为h ,由V P ﹣BDC =V C ﹣PBD ,得,∴h===.∴△PBD 为底面的棱锥C ﹣PBD 的高为.20.假设关于某设备的使用年限x (年)和所支出的维修费用y (万元)有如表的统计资料:若由资料可知y 对x 呈线性相关关系,试求: (1)线性回归方程;(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?参考公式: =, =﹣, =x+.【考点】线性回归方程.【分析】(1)根据所给的数据,做出变量x,y的平均数,根据最小二乘法做出线性回归方程的系数,写出线性回归方程;(2)当自变量为20时,代入线性回归方程,求出维修费用,这是一个预报值.【解答】解:(1)由题意知=4, =5, ==1.23,=5﹣4×1.23=0.08,∴=1.23x+0.08(2)当自变量x=12时,预报维修费用是y=1.23×12+0.08=14.84(万元),即估计使用12年时,维修费用是14.84万元.21.已知圆O:x2+y2=4和点M(1,a).(Ⅰ)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程.(Ⅱ)a=,过点M作圆O的两条弦AC,BD互相垂直,求|AC|+|BD|的最大值.【考点】直线和圆的方程的应用.【分析】(Ⅰ)要求过点M的切线方程,关键是求出切点坐标,由M点也在圆上,故满足圆的方程,则易求M点坐标,然后代入圆的切线方程,整理即可得到答案.(Ⅱ)由于直线AC、BD均过M点,故可以考虑设两个直线的方程为点斜式方程,但由于点斜式方程不能表示斜率不存在的情况,故要先讨论斜率不存在和斜率为0的情况,然后利用弦长公式,及基本不等式进行求解.【解答】解:(Ⅰ)由条件知点M在圆O上,∴1+a2=4∴a=±当a=时,点M为(1,),k=,k切线=﹣OM此时切线方程为:y﹣=﹣(x﹣1)即:x+y﹣4=0=﹣,k切线=当a=﹣时,点M为(1,﹣),kOM此时切线方程为:y+=(x﹣1)即:x ﹣y ﹣4=0∴所求的切线方程为:x+y ﹣4=0或x ﹣y ﹣4=0(Ⅱ)当AC 的斜率为0或不存在时,可求得AC+BD=2(+) 当AC 的斜率存在且不为0时,设直线AC 的方程为y ﹣=k (x ﹣1),直线BD 的方程为y ﹣=﹣(x ﹣1),由弦长公式l=2可得:AC=2BD=2∵AC 2+BD 2=4(+)=20∴(AC+BD )2=AC 2+BD 2+2AC ×BD ≤2(AC 2+BD 2)=40故AC+BD ≤2即AC+BD 的最大值为222.如图,已知椭圆=1(a >b >0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F 1,F 2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D .(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF 1、PF 2的斜率分别为k 1、k 2,证明k 1•k 2=1;(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.【考点】圆锥曲线的综合;直线与圆锥曲线的综合问题.【分析】(Ⅰ)由题意知,椭圆离心率为=,及椭圆的定义得到又2a+2c=,解方程组即可求得椭圆的方程,等轴双曲线的顶点是该椭圆的焦点可求得该双曲线的方程; (Ⅱ)设点P (x 0,y 0),根据斜率公式求得k 1、k 2,把点P (x 0,y 0)在双曲线上,即可证明结果;(Ⅲ)设直线AB 的方程为y=k (x+2),则可求出直线CD 的方程为y=(x ﹣2),联立直线和椭圆方程,利用韦达定理,即可求得|AB|,|CD|,代入|AB|+|CD|=λ|AB|•|CD|,求得λ的值.【解答】解:(Ⅰ)由题意知,椭圆离心率为=,得,又2a+2c=,所以可解得,c=2,所以b 2=a 2﹣c 2=4,所以椭圆的标准方程为; 所以椭圆的焦点坐标为(±2,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为.(Ⅱ)设点P (x 0,y 0),则k 1=,k 2=,∴k 1•k 2==,又点P (x 0,y 0)在双曲线上,∴,即y 02=x 02﹣4,∴k 1•k 2==1.(Ⅲ)假设存在常数λ,使得得|AB|+|CD|=λ|AB|•|CD|恒成立, 则由(II )知k 1•k 2=1,∴设直线AB 的方程为y=k (x+2),则直线CD 的方程为y=(x ﹣2),由方程组消y 得:(2k 2+1)x 2+8k 2x+8k 2﹣8=0,设A (x 1,y 1),B (x 2,y 2),则由韦达定理得,,∴AB==,同理可得CD===, ∵|AB|+|CD|=λ|AB|•|CD|,∴λ==﹣==,∴存在常数λ=,使得|AB|+|CD|=λ|AB|•|CD|恒成立.。

相关文档
最新文档