用SAS分析定光照下太阳能电池在不加论文

合集下载

光照强度对太阳能电池特性影响的研究

光照强度对太阳能电池特性影响的研究

光照强度对太阳能电池特性影响的研究太阳能电池是运用太阳光转换成电能的新型可再生能源装置,被越来越多的人所重视。

它具有节约能源、环境友好、可再生能源及其他优点。

本文以光照强度对太阳能电池特性影响的研究为研究主题,重点探讨了光照强度对太阳能电池特性影响的研究现状及其发展趋势。

太阳能电池是利用太阳出发的可见光或者紫外光转换成电能的一种新型可再生能源装置,能够有效的利用太阳辐射来转换为电能。

现阶段太阳能电池的研究多关注晶体硅(Si)太阳能电池、多晶硅(mc-Si)太阳能电池以及薄膜硅太阳能电池。

其中,晶体硅太阳能电池具有高效率、转换效率高、能量利用率高等优点,晶体硅太阳能电池的器件特性可以指定和控制,多晶硅太阳能电池具有成本低、成型容易以及器件特性可稳定等优点,而薄膜硅太阳能电池具有结构简单、器件特性可靠性好以及制作成本低的特点。

由于太阳能电池的种类繁多具有不同的特点,因此,学者需要研究光照强度对太阳能电池特性的影响,以提高太阳能电池的性能,从而获得更多的电能。

研究表明,光照强度对太阳能电池特性有较大的影响。

随着光照强度的增加,太阳能电池的结构会发生变化,从而导致出口端电压和电流的变化。

光照强度越大,所得到的出口电压和电流均会增加,从而使太阳能电池的性能得到提升,能够获得更多的电能。

此外,光照强度还会影响太阳能电池的发电效率,当光照强度达到一定值时,太阳能电池的发电效率会达到最高值。

在光照强度对太阳能电池特性影响的研究方面,国内外学者们也进行了大量的研究,但是也存在一些研究空白,如如何进一步提高太阳能电池的性能、如何提高太阳能电池的发电效率等。

而未来的研究可以在此基础上进一步完善。

本文介绍了光照强度对太阳能电池特性影响的研究现状及其发展趋势,提出了一些改进建议,明确了光照强度对太阳能电池特性影响的研究方向,以期更好地发挥现有太阳能电池器件的性能优势。

综上所述,太阳能电池在可再生能源中具有重要地位,而光照强度对太阳能电池特性影响的研究也可以改进和完善太阳能电池的性能,从而获得更多的电能。

Thermodynamic analysis of solar cells

Thermodynamic analysis of solar cells

Thermodynamic analysis of solar cells 太阳能电池的热力学分析随着全球环境问题的日益严重,越来越多的人开始意识到使用可再生能源的重要性。

在各种可再生能源中,太阳能是最主要的一种。

太阳能电池是将太阳能转化为电能的器件,在不断地被改进和优化。

本文将对太阳能电池的热力学性质进行分析。

一、太阳能电池的基本原理太阳能电池是一种半导体器件,使用光伏效应将太阳能转化为电能。

当光照射到太阳能电池上时,会激发半导体中的自由电子,这些自由电子会在电场的作用下流动,形成电流,从而产生电能。

太阳能电池的基本原理可以用以下方程式表示:P = η × A × I × V其中,P表示太阳能电池的输出功率,单位为瓦特;η表示太阳能电池的转换效率;A表示太阳能电池的光敏面积,单位为平方米;I表示太阳能电池的电流,单位为安培;V表示太阳能电池的电压,单位为伏特。

从这个方程式中我们可以看到,太阳能电池的转换效率η非常重要,影响着太阳能电池的输出功率。

二、太阳能电池的热力学性质在太阳能电池中,电能的产生离不开热力学性质。

太阳能电池中的一个关键参数就是开路电压(Voc)和短路电流(Isc)。

太阳能电池的光伏效应是一个光-电转换的热力学过程,光子的能量被半导体中的电子吸收后会使电子变成激发态。

如果没有电子和空穴的复合,激发态电子会一直停留在氧化还原势的高能端,从而导致空间电荷区崩溃,电子向空穴区移动,导致电流的产生。

太阳能电池的热力学性质与其所用的半导体材料密切相关。

虽然不同类型的太阳能电池所使用的材料各有特点,但是它们都有一个共同的特征:在某一个电场强度下,会产生一定比例的电荷分离。

这个比例就是太阳能电池的转换效率。

三、太阳能电池的效率限制虽然太阳能电池的热力学性质看起来很理想,但是实际上,太阳能电池的效率还受到了很多限制。

其中最主要的限制就是热力学第二定律。

热力学第二定律规定,任何一种热机在工作时都会产生一定数量的热量流失。

关于太阳能电池的英文文献

关于太阳能电池的英文文献

Recyclable organic solar cells on cellulose nanocrystal substratesYinhua Zhou 1,Canek Fuentes-Hernandez 1,Talha M.Khan 1,Jen-Chieh Liu 2,James Hsu 1,Jae Won Shim 1,Amir Dindar 1,Jeffrey P.Youngblood 2,Robert J.Moon 2,3&Bernard Kippelen 11Center for Organic Photonics and Electronics (COPE),School of Electrical and Computer Engineering,Georgia Institute ofTechnology,Atlanta,GA 30332,2School of Materials Engineering,Purdue University,West Lafayette,IN 47907,3U.S.Forest Service,Forest Products Laboratory,Madison,WI 53726.Solar energy is potentially the largest source of renewable energy at our disposal,but significant advances are required to make photovoltaic technologies economically viable and,from a life-cycle perspective,environmentally friendly,and consequently scalable.Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant,renewable,and sustainable.Here,we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC)substrates.The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%.In addition,we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature,opening the door for a truly recyclable solar cell technology.Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable,scalable,and environmentally-friendly energy production.Organic solar cells are an attractive technology because of their potential for low-cost fabrication,light weight,and good mechanical flexibility 1–5.Over the last decade,the power conversion efficiency (PCE)of champion small-area organic solar cells has improved from values around 3.5%up to 10.6%6.Despitehaving low PCEs and short lifetimes,recent cost-analysis studies suggest that organic solar cells could become competitive with other solar cell technologies if modules with PCE of 5%and a 5year lifetime could be produced 7,8.Polyethylene terephthalate (PET)9–11,polyethylene naphthalate (PEN)12,or polyethersulfone (PES)1,have been used for the demonstration of flexible organic solar cells.However,from a life-cycle perspective,these petroleum-based substrates are expensive and environmentally less attractive than easily recyclable or biodegradable substrates.Substrate materials which could be synthesized from renewable feedstocks,such as wood,at a low cost,are particularly attractive for the realization of a sustainable solar cell technology.Paper is considered an interesting substrate for organic solar cells,because it is inexpensive,low-weight,flexible and it can be recycled.Solution-processed polymer solar cells have been fabricated recently on paper sub-strates 13–15,but have shown limited performance because of the high surface roughness and porosity of paper substrates 13.Even with the use of thick (several to tens of m m)planarization layers,solar cells on paper showed low performance with maximum PCE values in the range between 0.4–1.4%14,15.Furthermore,the use of thick planarization layers increases the device complexity,cost and may further compromise the recyclability and biodegradability of such devices.Cellulose nanomaterials (CN)are cellulose-based nanoparticles that have good mechanical properties,high aspect ratio,low density,low thermal expansion,surfaces that can be readily chemically functionalized,low toxicity,are inherently renewable/sustainable,and have the potential to be produced in industrial-size quant-ities 16–s have been studied for a wide variety of potential applications,including reinforcement phases in polymer composites,protective coatings,barrier/filter membrane systems,antimicrobial films,network struc-tures for tissue engineering,and substrates for flexible electronics.Two general classes of CNs that can be extracted from plants,are cellulose nanocrystals (CNC,3–10nm wide by 50–500nm in length,Fig.1a)and cellulose nanofibers (CNF,4–20nm wide by .1m m in length).Neat and polymer composite films produced from CNCs and CNFs are attractive as substrates for organic electronic devices,and organic solar cells in particular,because they combine low density (1–1.5g/cm 3)with high tensile strength (30–240MPa),high elastic modulus (6–30GPa)and low coefficient of thermal expansion (CTE,2–25ppm/K)20,24–Cs are also found to be thermally stable up to 210u C,and after processing optimization,up to 350u C;hence,they are compatible withSUBJECT AREAS:SOLAR CELLSELECTRICAL AND ELECTRONICENGINEERINGELECTRONIC DEVICESELECTRONIC PROPERTIES ANDMATERIALSReceived23January 2013Accepted 11March 2013Published 25March 2013Correspondence and requests for materials should be addressed to B.K.(kippelen@ece.)the processing of organic semiconductors 27.Recently,polymer solar cells have been fabricated on CNF substrates.However,these devices exhibited poor performance (with a maximum PCE of 0.4%)and poor rectification,mainly because of the relatively rough surface of the CNF substrates (with a surface height variation of 40nm)22.In this work,we report on polymer solar cells on free-standing transparent CNC substrates with much lower surface roughness compared with the CNF-based films.The solar cells are fabricated with Ag/polymer surface modification as the bottom electrode and MoO 3/Ag as the top electrode without the need of aqueous solution.The solar cells show a large rectification in the dark and an average PCE of 2.7%and an average fill factor of 0.54under illumination.The performance of these polymer solar cells is shown to be limited primarily by the transmittance of the thin Ag layer used as the semi-transparent bottom electrode.Importantly,the polymer solar cells fabricated on CNC substrates are found to be easily recycled at room temperature by simply immersing them in water,where the CNC substrate is redispersed.The dissolution of the substrate in water leads to a separation of the rest of the components of the solar cell in the form of a thin polymer solar cell membrane comprised of the synthetic organic photoactive layer and the metal layers.These mem-branes can be easily filtered out of the water solution,and the organic and metal components can then be separated by immersing the membrane into an organic solvent in which the photoactive layer can be dissolved,leaving behind the metal and oxide electrode that can be filtered out of the solution.ResultsProperties of CNC substrates .Fig.1b illustrates the high optical transparency of the CNC film that is necessary for incident sun-light to pass through the substrate.The optical transparency is great-ly improved in thinner films as shown in Fig.S1in the supplementary information (SI).The limited transmittance of CNC films is believed to be due to scattering,not absorption,caused by the random distri-bution of CNCs (a few hundred nanometers long,Fig.1a)in the film,which causes refractive index inhomogeneities over areas with dimensions that are of the same order of magnitude of the wave-length of visible light.Scattering spreads the incident light into a large solid angle,reducing the intensity (energy per solid angle)reaching a detector and thus resulting in a reduced transmittance.However,when a solar cell is fabricated on a CNC substrate,after light passes through the substrate,even those components that arescattered far away from the sample normal can reach the active layer,where they can be absorbed and contribute to the current generated by the solar cell.Fig.1c shows the surface morphology of a CNC substrate.Averaged over three locations,the root-mean-square (RMS)value of the surface roughness is 1.860.6nm.The very smooth surface eliminates the need for any surface planariza-tion.To fabricate polymer solar cells on the CNC substrates,a transparent or semitransparent electrode is needed for light to reach the photoactive layer.For the bottom electrode (i.e.in contact with the CNC substrate),a semitransparent 20-nm thick Ag layer was deposited by vacuum thermal evaporation on a CNC substrate and was found to be conductive (i.e.above percolation).Ag films deposited simultaneously on bare glass were found to be below the percolation threshold due to wetting limitations,and con-sequently nonconductive.Based on our recent discovery 1,we modi-fied the Ag film using a thin layer of ethoxylated polyethylenimine (PEIE)to turn silver into an efficient electron-collecting electrode.For the top electrode,MoO 3/Ag was evaporated onto the photo-active layer of [poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b:4,5-b 9]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl]:phenyl-C 61-butyric acid methyl ester](PBD-TTT-C:PCBM,Fig.2b)to collect holes.The device geometry is shown in Fig.2a.It should be noted that the spin-coating of PEIE from a 2-methoxyethanol solution did not damage the CNC substrates.The latter were also found to allow the spin-coating of the PBDTTT-C:PCBM photoactive layer from a chlorobenzene:1,8-diiodooctane (9753,v/v)solution.A fabricated solar cell is shown in Fig.2c.The high and specular reflectivity of the Ag top electrode further demonstrates the surface smoothness of the CNC substrates and the uniformity of the active layer on the CNC substrates.Performance of solar cells on CNC substrates .Fig.2d shows the current density-voltage (J –V )characteristic of a solar cell fabricated on a CNC substrate in the dark and under illumination.In the dark,the device shows low reverse saturation current and large rectification ratio of 103at 61V (Fig.2e).This indicates few pin holes and a large work function contrast between Ag/PEIE and MoO 3/Ag.Under 95mW/cm 2of AM 1.5G illumination,the devices show V OC 50.6560.01V,J SC 57.560.1mA/cm 2,and FF 50.5460.01,yielding PCE 52.760.1%,averaged over 3devices.Although this is still modest performance compared to state-of-the-art devices,it represents a significantimprovementFigure 1|(a)A transmission electron microscopy (TEM)image of isolated CNCs which comprise the film used as the substrate for solar cells;(b)a picture of the CNC film on top of paper to demonstrate its transparency;(c)an atomic force microscopy image of the surface of a CNC film.over previously demonstrated organic solar cells on paper-like or CNF substrates 14,22.Furthermore,we recently reported that devices with a structure:Glass/ITO/PEIE/PBDTTT-C:PCBM/MoO 3/Ag yield values of V OC 50.6860.01V,J SC 516.160.4mA/cm 2,FF 50.6160.01,and PCE 56.660.2%,averaged over 5devices 1.Remarkably,the V OC and FF of the solar cells on a CNC substrate are not that different to the ones obtained on a glass/ITO substrate.This is in contrast to previous realizations of polymer solar cells on paper-like substrates,wherein the electrical performance of the solar cells,namely the V OC and FF values,were found to be significantly lower than those on devices fabricated on glass or plastic substrates 13,14,22.Hence,the lower PCE value obtained,is mainly attributed to the smaller J SC value on solar cells processed on CNC/Ag substrates as compared to the J SC value obtained on glass/ITO substrates.This is caused by the lower transmittance of both the CNC substrates compared to glass,and of the 20-nm-thick Ag electrode compared to ITO 28.The ability to tune CNC substrates (composition,orien-tation,interfaces,etc.)should allow further optimization of its optical and mechanical properties.Likewise,if the Ag film (bottom elec-trode)can be replaced with a higher transmittance material (e.g.metal-oxide or conducting polymer)further improvements in the performance level of these polymer solar cells fabricated on CNC substrates can be achieved,and possibly comparable to devices fabricated on glass or petroleum-based flexible substrates.Recyclability of solar cells on CNC substrates .Recyclability of the CNC substrates and solar cells was tested by immersing them into distilled water.Fig.S2displays time-lapse images that illustrate the dissolution of the CNC substrates in water.The CNC film quicklyswells after being immersed into water and completely disintegrates within 30min.The redispersed CNC turns into a solid residue on the petri dish after the water has evaporated.This residue can potentially be recovered and recycled.As for the solar cell,the CNC substrate also swells rapidly producing clear warping of the photoactive layer and electrodes (insets of Fig.S2)until they turn into a free-standing film or membrane.This allows for the full separation of the solar cell components (substrate,organic and inorganic materials)at room temperature by using a filter paper.A video illustrating the process whereby the materials of a solar cell can be easily recovered is available in the SI.Fig.3a displays vials containing the solutions and the final residue on the filter paper to illustrate the final products of this recycling process.The process is described as follows:a solar cell was immersed into the vial containing distilled water until the CNC substrate disintegrated (shaking accelerates the disintegration to less than 10min)and the solid residues were filtered from the liquid using a filter paper.The resulting distilled water waste appears as a milky dispersion of CNCs in water,shown in vial #1in Fig.3a.Distilled water is shown as a clear liquid in vial #0in Fig.3a as a visual reference.The photoactive layer was then separated from the electrodes by rinsing the solid residues on the filter paper with chlorobenzene.This process resulted in a green-colored solution of a mixture of chlorobenzene and PBDTTT-C:PCBM,as shown in vial #2in Fig.3a.A second rinse with chlorobenzene revealed that most of the active layer could be dissolved during the first rinse,as illustrated by the clear color of the vial #3in Fig.3a.The solid waste left in the filter paper shown in #4in Fig.3a,therefore,corresponds primarily to the Ag and MoO 3used as electrodes on the solar cell.In this way,organic solar cells fabricated onCNCFigure 2|(a)Device structure of solar cells on CNC substrates:CNC/Ag/PEIE/PBDTTT-C:PCBM/MoO 3/Ag;(b)Chemical structure ofPBDTTT-C and PCBM;(c)a picture of a fabricated solar cell;(d)J–V characteristics of the solar cell on CNC substrate in the dark (thin black line)and under 95mW/cm 2of AM1.5illumination (thick red line);(e)the J–V characteristics on a semi-logarithmic scale in the dark (thin black line)and under illumination (thick red line).substrates can be easily separated into their major components using a minimal amount of solvents and energy.Furthermore,solar cells on CNC substrates that were exposed to low temperature flame (to burn off the polymer components),produced ashes from which the metal components could be recovered.Fig.3b displays images of solar cells burning and rapidly reducing into ashes.While burning may not be an ideal way to dispose of the devices,the ability to burn them,leaving a residue of ashes,is dramatically different than what could be obtained using glass or plastic substrates.DiscussionEfficient and recyclable polymer solar cells fabricated on free-stand-ing cellulose nanocrystal substrates have been demonstrated here.The cellulose nanocrystal substrates are optically transparent enab-ling light to go through,and have a low surface roughness (RMS value of 1.8nm)which is critical for the thin polymer solar cells to work nicely with very low reverse leakage current and large rectifica-tion ratio in the dark.Furthermore,the cellulose nanocrystal sub-strates allow the deposition of polymers using coating techniques from non-aqueous solutions.The polymer solar cells on cellulose nanocrystal substrates reached a power conversion efficiency of 2.7%,an unprecedented level of performance for polymer solar cell fabricated on recyclable substrates derived from renewable feed-stocks.The power conversion efficiency of these solar cells was found to be primarily limited by the low transmittance of the Ag bottom electrode.Optimization of the optical properties of the bottom elec-trode should lead to significant future improvements on the power conversion efficiency,for instance,by reducing the thickness of the Ag layer and by introducing a layer with a high reflective index material between the substrate and the Ag layer 29or by depositing a transparent metal-oxide electrode.If this is realized,polymer solarcells with a power conversion efficiency that is similar to that of solar cells fabricated on glass or petroleum-based plastic substrates should be achievable.We have shown that these solar cells can be easily separated into their major components using low-energy processes at room temperature,opening the door for a truly fully recyclable solar cell technology.Efficient and easily recyclable polymer solar cells on cellulose nanocrystal substrates could be an ideal technology for sustainable,scalable and environmentally-friendly energy pro-duction and could have an overreaching impact for the sustainability of printed electronics.MethodsPreparation and characterization of CNC samples .CNCs were produced at USDA Forest Service-Forest Products Laboratory (Madison,WI)following procedures described by Beck-Candanedo et al.30CNC suspensions were produced by sulfuric acid hydrolysis of softwood pulp (64%sulfuric acid,8to 1acid to pulp weight ratio,45u C,60minutes)followed by quenching with deionized water,centrifuge rinsing,washing,and then dialysis for about a week to remove remaining acid.Thesuspension was then ultrasonicated to disperse the CNCs via mechanical agitation and centrifuged a final time for macroparticle removal.Films were prepared by blending 1.65wt.%CNC suspension (30g)with 1wt.%glycerol solution (4.95g)for 24hours.Glycerol (Aldrich)was added to make the films more flexible for handling.The homogeneous glycerol/CNC water suspension was then poured into plastic 80mm diameter plastic petri dishes and allowed to dry at 23u C and 30%–40%relative humidity.The dried CNC/glycerol films were detached from petri dishes and cut into 2.5cm 32.5cm glycerol/CNC substrates.Note that the addition glycerol isconsistent with renewable and biodegrade theme of the CNC film and it is non-toxic and is a byproduct of biodiesel production.The optical transmittance of CNC substrates was measured using a spectroscopic ellipsometer apparatus (M-2000UI,J.A.Woollam Co.).The surface roughness of the CNC samples was measured under atmospheric conditions using atomic force microscopy (Dimension 3100,Veeco)equipped with a NanoScope III controller.Fabrication and characterization of solar cells on CNC substrates .First,the CNC films were attached to rigid glass substrates with a piece of curedpolydimethylsiloxane (PDMS).Then,a 20-nm thick Ag film was deposited on halfofFigure 3|(a)Vials (#0-3)and filter paper (#4)illustrating the separation of solar cells into their major components by immersion in water and chlorobenzene.Vial #0:distilled water;Vial #1:CNC redispersed in distilled water after solar cells were immersed into water;Vial #2:solution of photoactive layer in chlorobenzene obtained by rinsing the solid waste left after the immersion into water;Vial #3:solution generated by the second rinsing the solid waste with chlorobenzene;#4:solid residues left on the filter paper after the second rinsing with chlorobenzene.The inset is a close-up of the solid waste left on the filter paper showing residues of Ag and MoO 3.(b)Time lapse sequence of three frames illustrating the ignition of solar cells on CNC substrates:#1:an image of a solar cell before burning;#2:while burning;#3:after burning.Burning lasted less than 2s.the CNC substrates through a shadow mask,using a vacuum thermal evaporation system(SPECTROS,Kurt J.Lesker).Then,the polymer modification layer,PEIE (423475,Mw570,000g/mol,from Sigma-Aldrich)was deposited on Ag by spin-coating at a speed of4000rpm for1minute from a0.4wt.%2-methoxyethanol (284467,99.8%anhydrous,from Sigma-Aldrich Co.)solution and annealed on a hot plate at80u C for5minutes.The average thickness of the PEIE is estimated to be 10nm,from measurements by spectroscopic ellipsometry on independent films deposited on Si substrates1.After the substrates cooled down for10minutes,a layer of PBDTTT-C(Solarmer Materials Inc):PCBM(151.5by weight,Nano-C Inc.)was spin-coated on the substrates as the photoactive layer from a mixture of chlorobenzene:1,8-diiodooctane(9753,v/v)solution with a total concentration of 25mg/ml at a speed of1000rpm and10000rpm/s acceleration for1minute.The thickness of the photoactive layer was90nm.All the processing was done in aN2-filled glove box.Samples were transferred into the vacuum thermal evaporation system(SPECTROS,Kurt J.Lesker)and the top electrode of MoO3/Ag(15nm/150nm)was deposited to finish the device fabrication.Currentdensity-voltage(J–V)characteristics of the solar cells were measured inside theN2-filled glove box by using a source meter(2400,Keithley Instruments,Cleveland, OH)controlled by a LabVIEW program.To test the solar cell properties under illumination,a calibrated300W Oriel solar simulator(91160,Newport)with an intensity of95mW/cm2was used as the light source.Recycling and combustion of solar cells.A piece of CNC sample and a piece of solar cell on CNC substrate were immersed into distilled water in a glass petri dish until the CNC were redispersed at room temperature.Another piece of solar cell on a CNC substrate was immersed in distilled water in a vial.The solution was filtered using a P5 Filter paper(Fisher Scientific).The solid waste in the filter was rinsed with chlorobenzene and the waste collected in a vial.Chlorobenzene rinsing was repeated for the second time.For the combustion test,a piece of CNC sample and a piece of solar cell on CNC were ignited using a commercial lighter and burned inside a fume hood.1.Zhou,Y.H.et al.A Universal Method to Produce Low-Work Function Electrodesfor Organic Electronics.Science336,327–332(2012).2.Kippelen,B.&Bredas,anic photovoltaics.Energy Environ.Sci.2,251–261(2009).3.He,Z.et al.Enhanced power-conversion efficiency in polymer solar cells using aninverted device structure.Nat.Photon.6,593–597(2012).4.Brabec,C.J.et al.Polymer-fullerene bulk-heterojunction solar cells.Adv.Mater.22,3839–3856(2010).5.Sondergaard,R.,Hosel,M.,Angmo,D.,Larsen-Olsen,T.T.&Krebs,F.C.Roll-to-roll fabrication of polymer solar cells.Mater.Today15,36–49(2012).6.You,J.et al.A polymer tandem solar cell with10.6%power conversion efficiency.mun.4,1446(2013).7.Azzopardi,B.et al.Economic assessment of solar electricity production fromorganic-based photovoltaic modules in a domestic environment.Energy Environ.Sci.4,3741–3753(2011).8.Espinosa,N.,Garcia-Valverde,R.&Krebs,F.C.Life-cycle analysis of productintegrated polymer solar cells.Energy Environ.Sci.4,1547–1557(2011).9.Zhou,Y.et al.Investigation on polymer anode design for flexible polymer solarcells.Appl.Phys.Lett.92,233308(2008).10.Formica,N.et al.Highly stable Ag–Ni based transparent electrodes on PETsubstrates for flexible organic solar cells.Sol.Energy Mater.Sol.Cells107,63–68 (2012).11.Krebs,F.C.Polymer solar cell modules prepared using roll-to-roll methods:Knife-over-edge coating,slot-die coating and screen printing.Sol.Energy Mater.Sol.Cells93,465–475(2009).12.Wang,J.-C.et al.Highly efficient flexible inverted organic solar cells using atomiclayer deposited ZnO as electron selective layer.J.Mater.Chem.20,862–866 (2010).13.Wang,F.,Chen,Z.,Xiao,L.,Qu,B.&Gong,Q.Papery solar cells based ondielectric/metal hybrid transparent cathode.Sol.Energy Mater.Sol.Cells94, 1270–1274(2010).14.Kim,T.-S.et al.Solution-processible polymer solar cells fabricated on a paperysubstrate.Phys.Status Solidi RRL6,13–15(2012).15.Hu¨bler,A.et al.Printed Paper Photovoltaic Cells.Adv.Energy Mater.1,1018–1022(2011).16.Vartiainen,J.et al.Health and environmental safety aspects of friction grindingand spray drying of microfibrillated cellulose.Cellulose18,775–786(2011).17.Lin,N.,Huang,J.&Dufresne,A.Preparation,properties and applications ofpolysaccharide nanocrystals in advanced functional nanomaterials:a review.Nanoscale4,3274–3294(2012).voine,N.,Desloges,I.,Dufresne,A.&Bras,J.Microfibrillated cellulose–Itsbarrier properties and applications in cellulosic materials:A review.Carbohydr.Polym.90,735–764(2012).19.Habibi,Y.,Lucia,L.A.&Rojas,O.J.Cellulose Nanocrystals:Chemistry,Self-Assembly,and Applications.Chem.Rev.110,3479–3500(2010).20.Moon,R.J.,Martini,A.,Nairn,J.,Simonsen,J.&Youngblood,J.Cellulosenanomaterials review:structure,properties and nanocomposites.Chem.Soc.Rev.40,3941–3994(2011).21.Klemm,D.et al.Nanocelluloses:A New Family of Nature-Based Materials.Angew.Chem.Int.Ed.50,5438–5466(2011).22.Hu,L.et al.Transparent and conductive paper from nanocellulose fibers.EnergyEnviron.Sci.6,513–518(2013).23.Siro´,I.&Plackett,D.Microfibrillated cellulose and new nanocomposite materials:a review.Cellulose17,459–494(2010).24.Nogi,M.,Iwamoto,S.,Nakagaito,A.N.&Yano,H.Optically TransparentNanofiber Paper.Adv.Mater.21,1595–1598(2009).25.Fukuzumi,H.,Saito,T.,Iwata,T.,Kumamoto,Y.&Isogai,A.Transparent andHigh Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation.Biomacromolecules10,162–165(2008).26.Kim,J.,Yun,S.&Ounaies,Z.Discovery of cellulose as a smart material.Macromolecules39,4202–4206(2006).27.Yu,H.et al.Facile extraction of thermally stable cellulose nanocrystals with a highyield of93%through hydrochloric acid hydrolysis under hydrothermalconditions.J.Mater.Chem.A1,3938–3944(2013).28.Hsu,J.et al.Linear and nonlinear optical properties of Ag/Au bilayer thin films.Opt.Express20,8629–8640(2012).29.Salinas,J.-F.et al.Optical Design of Transparent Thin Metal Electrodes toEnhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells.Adv.Mater.24,6362–6367(2012).30.Beck-Candanedo,S.,Roman,M.&Gray,D.G.Effect of Reaction Conditions onthe Properties and Behavior of Wood Cellulose Nanocrystal Suspensions.Biomacromolecules6,1048–1054(2005).AcknowledgementsThis research was funded in part through the Center for Interface Science:Solar Electric Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy, Office of Science,Office of Basic Energy Sciences under Award Number DE-SC0001084 (Y.Z.,J.S.,C.F.,A.D.),by the Air Force Office of Scientific Research(Grant No.FA9550-09-1-0418)(J.H.),by the Office of Naval Research(Grant No.N00014-04-1-0313) (T.K.,B.K.),and the US Department of Agriculture–Forest Service(Grant No.12-JV-11111122-098).Funding for CNC substrate processing was provided byUSDA-Forest Service(Grant No.11-JV-11111129-118)(R.J.M.,J.P.Y.,J.L.).The authors thank Rick Reiner and Alan Rudie from the U.S.Forest Service-Forest Products Laboratory (FPL)for providing CNC materials.Author contributionsB.K.,C.F.,R.J.M.and J.P.Y.conceived this project.Y.Z.,T.K.and J.S.designed and fabricated the solar cells.J.L.fabricated the CNC films.J.H.and A.D.collected the data of transmittance and surface morphology of the films.Y.Z.and C.F.performed the recycling experiments of solar cells.Y.Z.and C.F.wrote the draft of the manuscript,and all authors contributed to the edits of the manuscript.Additional informationSupplementary information accompanies this paper at / scientificreportsCompeting financial interests:The authors declare no competing financial interests. License:This work is licensed under a Creative CommonsAttribution-NonCommercial-NoDerivs3.0Unported License.To view a copy of this license,visit /licenses/by-nc-nd/3.0/How to cite this article:Zhou,Y.H.et al.Recyclable organic solar cells on cellulose nanocrystal substrates.Sci.Rep.3,1536;DOI:10.1038/srep01536(2013).。

太阳能电池原理范文

太阳能电池原理范文

太阳能电池原理范文太阳能电池是一种将太阳光能转化为电能的装置。

它是一种半导体器件,根据光伏效应原理工作。

在晴朗的阳光下,太阳光照射到太阳能电池表面,产生电子与空穴对。

通过合适的导线和电路布置,可以将产生的直流电能转化为有用的电能。

太阳能电池的基本结构通常是由两个半导体层构成,其中一个层被掺杂为p型,另一个层被掺杂为n型。

半导体的掺杂可以通过在原始材料中添加杂质元素来实现。

掺杂后的半导体中将产生多数载流子和少数载流子。

以p型层为例,它有许多绝缘层的正空穴,以及从n层移动过来的负电子。

当太阳能照射到太阳能电池的表面时,光子与半导体原子发生相互作用。

如果光子的能量大于半导体材料对能量吸收的门槛,光子将被吸收,将其能量传给被吸收的电子。

被激发的电子获得足够的能量以克服能带间隙并跃迁到导带。

这个过程使得原来的电子能带上留下空穴,从而产生一个电子-空穴对。

由于p型层具有许多正空穴,而n型层具有许多自由电子,新产生的电子和空穴将被电场力推到不同的区域,形成势差。

这个势差会引起电流的流动。

若将正极与p型层连接,负极与n型层连接,并将电路与电池连接,电流就会开始流动。

在太阳能电池中,不同的材料用于构成p型和n型层。

常用的材料包括硅、硒化铟、硫化镉等。

其中,硅是最广泛使用的材料,因为它具有稳定性好、物理性质可控且成本低廉等优点。

为了提高太阳能电池的效率,科学家和工程师们致力于改进太阳能电池的设计和制造工艺。

一种改善效率的方法是通过将多个太阳能电池组装在一起,形成太阳能电池组或太阳能电池阵列。

这种阵列可以在更广泛的光敏面积上接收太阳能,并提供更多的电能。

太阳能电池作为一种可再生能源的转换器,具有广泛的应用前景。

它可以用于为家庭和工业提供电力,也可以用于卫星和空间探测器等航天器的能源供应。

随着科学技术的不断发展,我们有望看到更高效、更持久、更美观的太阳能电池问世,进一步推动可再生能源的发展和利用。

GaAs基InAs量点太阳能电池的制备与特性分析的开题报告

GaAs基InAs量点太阳能电池的制备与特性分析的开题报告

GaAs基InAs量点太阳能电池的制备与特性分析的开题报告一、研究背景和意义太阳能电池是目前比较热门的能源利用技术之一,具有广泛的应用前景。

合理利用太阳能是解决能源问题、保护环境的有效途径。

与此同时,为了提高太阳能电池的光电转化效率,也需要不断的进行研究和开发新的材料和结构。

一种新型的太阳能电池结构是采用量子点作为吸收材料,这种结构具有高效率、多谱段吸收的特点。

如采用InAs量子点,在GaAs基底上生长制备成GaAs基InAs量子点太阳能电池,不仅能够实现太阳能电池在更多波段的吸收,还能提高光电转换效率。

因此,研究GaAs基InAs量子点太阳能电池的制备与特性分析,对于提高太阳能电池的能量转换效率和推动太阳能电池的商业化应用具有重要意义。

二、研究目的和内容本研究的主要目的是制备GaAs基InAs量子点太阳能电池,并对其进行特性分析。

具体研究内容包括:1.利用分子束外延在GaAs基底上制备InAs量子点。

2.通过光致发射光谱、吸收光谱、电学性质等手段对制备的InAs量子点进行表征。

3.利用金属有机化合物气相外延法制备GaAs基InAs量子点太阳能电池。

4.对制备的太阳能电池进行性能测试,如开路电压、短路电流、填充因子、转换效率等。

5.通过分析实验结果,探究影响GaAs基InAs量子点太阳能电池性能的主要因素,为优化太阳能电池结构和提高能量转化效率提供实验依据。

三、研究方法和技术路线本研究主要采用以下方法和技术:1.分子束外延制备InAs量子点。

采用高真空的气相沉积技术,加热固体InAs源产生蒸汽,在GaAs基底上形成InAs量子点。

中途涉及到GaAs表面处理、气体准备、样品转子控制等方面的技术。

2.采用光致发射光谱、吸收光谱等光电性质表征技术,对制备的InAs量子点进行表征。

其中光致发射光谱可以得到量子点的能带结构、电子、空穴等性质,吸收光谱可以反映量子点的吸收特性和吸收峰。

需要掌握激光器、光学离子探针、样品制备等技术。

太阳能电池论文

太阳能电池论文

太阳能电池材料研究进展能源是人类社会生存和发展的重要物质基础,是现代文明的三大支柱之一。

特别是在当今世界,人类社会发展日益加速,无论是在工业,农业,还是第三产业服务业,高新技术产业,都是处于人类历史上空前发展最快的一个阶段。

社会的发展提高了人类的生活水平,大大加强了社会生产力,同时对能源(如煤,石油)的需求和使用也大幅提高,从汽车内燃机到家用用电器,无不需要能源去运作。

目前人类开发的主要能源是石油,煤炭和天然气等化石能源,然而这些能源的一方面储量有限,按照现在的开采速度,再有50年将濒临枯竭,另一方面,化石资源造成的全球生态环境破坏日益严重,间接上对人类的发展也造成了不良的影响。

因此,发展新能源是一件迫在眉睫的事。

新能源又称非常规能源。

是指传统能源之外的各种能源形式。

指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

新能源的各种形式都是直接或者间接地来自于太阳或地球内部深处所产生的热能,相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。

太阳能作为一种干净的可再生新能源,一直受到人们青睐,虽然太阳的辐射能量中只有约二十亿分之一到达地球大气层,但却是地球光和热的来源,因此,关于太阳能的应用研究一直受到科研人员和国家关注。

太阳能电池的发展历程太阳能的应用很主要的一项是利用太阳能发电,即太阳能电池。

太阳能电池的研究在很早以前就已经开始。

光照射到材料上所引起的“光起电力”行为,早在19世纪的时候就已经发现了。

1839年,光生伏特效应第一次由法国物理学家A.E.Becquerel发现。

1849年术语“光-伏”才出现在英语中。

1883年第一块太阳电池由Charles Fritts制备成功。

Charles用锗半导体上覆上一层极薄的金层形成半导体金属结,器件只有1%的效率。

到了1930年代,照相机的曝光计广泛地使用光起电力行为原理。

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验1. 无光照时,测量太阳能电池的伏安特性曲线;2. 有光照时,测量电池在不同负载电阻下,I 对U 变化关系,画出U I -曲线图;并测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率m ax P 及填充因子FF ;3. 测量太阳能电池的短路电流SC I 、开路电压OC U 与光照度L 的关系,求出它们的近似函数关系。

【实验仪器】白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干【实验原理】太阳光照在半导体p-n 结上,形成新的空穴-电子对,在p-n 结电场的作用下,空穴由n 区流向p 区,电子由p 区流向n 区,接通电路后就形成电流。

这就是光伏效应太阳能电池的工作原理。

在没有光照时, 可将太阳能电池视为一个二极管,其正向偏压U 与通过的电流I 的关系为⎪⎪⎭⎫⎝⎛-=10nKT qU e I I (1) 其中0I 是二极管的反向饱和电流,n 是理想二极管参数,理论值为1。

K 是玻尔兹曼常量,q 为电子的电荷量,T 为热力学温度。

(可令nKTq=β)由半导体理论知,二极管主要是由如图所示的能隙为V C E E -的半导体所构成。

C E 为半导体导电带,V E 为半导体价电带。

当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。

电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。

图1 光伏效应示意图太阳能电池的基本技术参数除短路电流SC I 和开路电压OC U 外, 还有最大输出功率m ax P 和填充因子FF 。

最大输出功率m ax P 也就是IU 的最大值。

填充因子FF 定义为OCSC U I P FF max=(2)FF 是代表太阳能电池性能优劣的一个重要参数。

FF 值越大,说明太阳能电池对光的利用率越高。

【实验内容及步骤】 1.在没有光源(全黑)的条件下,测量单晶硅太阳能电池正向偏压时的U I -特性(直流偏压从V 0.30-) (1)连接电路图。

光照下太阳电池结品质因子解析的新方法

光照下太阳电池结品质因子解析的新方法

光照下太阳电池结品质因子解析的新方法
贾全喜;刘恩科
【期刊名称】《固体电子学研究与进展》
【年(卷),期】1989(9)3
【摘要】本文给出一种描述太阳电池在光照条件下其结品质因子的解析表示式。

根据这种表示,高效率太阳电池的结品质因子仅利用电池的四个输出参数
(V_(oc),I_(sc),V_m和I_m)便可确定。

使用这种方法对所研制的n^+p,MIS/IL和MINP太阳电池的结品质因子分别进行测算,并与已有的测算方法所得结果进行比较,结果表明,此方法具有计算简单,测试方便,数值准确等优点。

【总页数】6页(P298-303)
【关键词】太阳电池;结晶质因子;光照
【作者】贾全喜;刘恩科
【作者单位】西安交通大学电子工程系
【正文语种】中文
【中图分类】TM914.4
【相关文献】
1.1 MeV电子辐照下晶格匹配与晶格失配GaInP/GaInAs/Ge三结太阳电池辐射效应研究 [J], 李占行;艾尔肯·阿不都瓦衣提;玛丽娅·黑尼;方亮;高伟;高慧;孟宪松;郭旗
2.硅微纳复合陷光结构的制备r及在异质结太阳电池中的应用研究 [J], 王奉友;郜
艳波;庞振宇;杨景海
3.三结太阳电池在非均匀光照下光斑强度和覆盖比率的优化研究 [J], 梁齐兵;舒碧芬;孙丽娟;张奇淄;陈明彪
4.高注量1 MeV电子辐照下InGaAs单结太阳电池退化规律与机制 [J], 慎小宝; 陆书龙; 李豫东; 玛丽娅·黑尼; 赵晓凡; 莫敏·赛来; 许焱; 雷琪琪; 艾尔肯·阿不都瓦衣提; 郭旗
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用SAS 分析定光照下太阳能电池在不加
偏压时伏安特性数据
引言:太阳能的利用和太阳能电池特性研究是21世纪新型能源开发的重点
课题。

目前硅太阳能电池应用领域除人造卫星和宇宙飞船外,已大量用于民用领域:如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。

太阳能是一种清洁、“绿色”能源,因此,世界各国十分重视对太阳能电池的研究和利用。

本实验的目的主要是探讨太阳能电池的基本特性,太阳能电池能够吸收光的能量,并将所吸收的光子能量转换为电能。

而SAS 系统-----从大量数据中提炼出有用信息的全面解决方案,有利于我们更好的研究。

SAS 系统以其卓越的数据处理能力,为数据仓库(Data Warehouse)、数据挖掘(Data Mining)、 在线分析(OLAP)、决策支持(Decision Support)、支持Web 技术(Web Enablement)等应用提供了全 面的解决方案。

SAS 系统能帮助您克服如下障碍: (1) 分散繁杂的数据来源 (2) 经验各异的使用人员 (3) 多种业务的不同需求 (4) 各种各样的硬件设备
1. 所以利用SAS 的功能分析在恒定光照下太阳能电池不加偏压的伏安特性和恒定光照下太阳能电池不加偏压的输出功率与负载电阻的关系。

从图中求得它的
短路电流(SC I )、开路电压(OC U )、最大输出功率m P 及填充因子FF ,
)]U I /(P FF [O C SC m ∙=。

填充因子是代表太阳能电池性能优劣的一个重要参数。

在实验中测量到的数据: 表二 一定光照下的电池的伏安特性测量
R/Ω U/V I/mA P/mW 200 0.20 1.00 0.20 300 0.30 1.00 0.30 400 0.40 1.00 0.40 600 0.60 1.00 0.60 800 0.80 0.99 0.79 1000 0.99 0.99 0.98 1200 1.17 0.98 1.15 1400 1.35 0.96 1.30 1600 1.52 0.95 1.44
1800 1.68 0.94 1.57
2000 1.83 0.91 1.67
2200 1.96 0.89 1.74
2400 2.08 0.87 1.80
2600 2.17 0.83 1.81
2800 2.25 0.80 1.81
3000 2.32 0.77 1.79
3200 2.37 0.74 1.75
3400 2.43 0.71 1.74
3600 2.48 0.69 1.71
3800 2.52 0.66 1.67
4000 2.55 0.64 1.63
4400 2.63 0.60 1.57
4600 2.65 0.58 1.53
4800 2.68 0.56 1.50
5000 2.70 0.54 1.46
5500 2.75 0.50 1.38
6000 2.78 0.46 1.29
6500 2.81 0.43 1.21
7000 2.84 0.41 1.15
7500 2.86 0.38 1.09
8000 2.88 0.36 1.04
8500 2.90 0.34 0.99
9000 2.90 0.32 0.93
10000 2.92 0.29 0.85
20000 3.02 0.15 0.46
30000 3.06 0.10 0.31
40000 3.08 0.08 0.24
50000 3.09 0.06 0.19
60000 3.09 0.05 0.16
70000 3.10 0.04 0.14
80000 3.10 0.04 0.12
90000 3.10 0.03 0.11
利用sas的数据采集模块进行数据采集,将以上的数据输到sas的数据库里去。

利用图形报表的功能,将这一些数据进行绘图,先做出I~U 图形,先进行描点做出来的图形如下:
再对各个点,进行线性拟合,如下:
同理得到:P~R图形如下:
从中得到了,I~U,P~R 的简单的关系。

再从编程的模块中调出上面的数据,进行分析求解。

从菜单中‡“Analyze -Fit(YX)” •用U
作为自变量,用I 作为因变量进行分析如下:

R
作为自变量,用
P
作为因变量进行分析如下:
















2. †‚从以上的分析中得到:从图中求得它的短路电流SC I =1.02mA,开路电压OC U =3.16V
最大输出功率m P =18.5Mw,所以填充因子)]U I /(P FF [O C SC m ∙==5.74。

相关文档
最新文档