Comment on Anisotropic s-wave superconductivity in MgB_2
原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用

第 30 卷第 1 期分析测试技术与仪器Volume 30 Number 1 2024年1月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Jan. 2024大型仪器功能开发(53 ~ 57)原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用蔡 蕊,万 鹏,徐 强,吕天明,孙智广(大连理工大学分析测试中心,辽宁大连 116024)摘要:微纳加工过程中,常有样品需要进行聚焦离子束(FIB)溅射、切割,扫描电子显微镜(SEM)以及原子力显微镜(AFM)表征,而这三类仪器都需要将样品固定在样品台上才可测试,固定不佳会影响表征结果. 但固定好的样品在不同仪器之间转移、拆卸、再固定的过程中极易受到破坏. 基于以上问题,设计了AFM-SEM-FIB样品共定位系统,可实现样品在此三种仪器之间的无损转移及共定位,避免珍贵样品破坏及目标丢失,以及解决AFM扫描无法控制方向、迅速调整位点等问题. 在微纳表征中有优异的表现,系统已被开发成产品并量产销售.关键词:共定位系统;原子力显微镜;扫描电子显微镜;聚焦离子束;微纳表征中图分类号:O657;TH742 文献标志码:B 文章编号:1006-3757(2024)01-0053-05DOI:10.16495/j.1006-3757.2024.01.009Development and Application of Atomic Force Microscope-Scanning Electron Microscope Co-positioning Characterization SystemCAI Rui, WAN Peng, XU Qiang, LV Tianming, SUN Zhiguang(Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, Liaoning China)Abstract:In the process of micro-nano machining, samples often need to be sputtered and cut by focused ion beam (FIB), and characterized by scanning electron microscope (SEM) and atomic force microscope (AFM). Samples need to be fixed on the sample table before tested by these three instruments. However, poor fixation will affect the characterization results, but the firmly fixed samples are easy to be destroyed in the process of transfer, disassembly and re-fixation between different instruments. Based on the above problems, the AFM-SEM-FIB sample co-positioning system was designed, which could realize non-destructive transfer and co-positioning of samples between the three instruments, and avoid the precious samples destruction and loss of targets. And the problems were solved that AFM scanning cannot control the direction and quickly adjust the location. With excellent performance in micro-nano characterization, the system has been developed into products and sold in large quantities.Key words:co-positioning system;atomic force microscope;scanning electron microscope;focused ion beam;micro-nano characterization收稿日期:2023−11−15; 修订日期:2023−12−19.基金项目:大连理工大学大型设备开发改造项目(SYSWX202205)[Dalian University of Technology, Large-Scale Instrument Function Development Technology Innovation Project (SYSWX202205)]作者简介:蔡蕊(1984−),女,博士,主要从事微区表征研究工作,Email:***************.cn通信作者:徐强(1978−),女,高级工程师,主要从事分子光谱及管理工作,Email:****************.cn.原子力显微镜(atomic force microscope,AFM)[1]是亚微米、纳米级形貌[2],纳米磁学[3]、电学[4]、力学[5]、生物学[6]研究领域必要的表征手段[7-8]. 但在微纳极窄样品表征时,AFM的探针只沿固定方向扫描,无法调整所需角度. 若样品放置的方向不正,受针尖性状、力学性质等影响[9],不但无法得到高质量扫描图像,而且还为后期谱图的处理(拉平基线)制造困难. 除此以外,在纳米力学摩擦力测试中,对于各向异性样品的摩擦力测试,需要样品在特定的方向上进行[10]. 而现有的AFM,尤其是生物型AFM,在对微纳极窄型等需要以一定方向呈现的样品进行扫描时,无法迅速、可控的变换样品方向,移动远距离的扫描位点.在微纳加工时,常使用聚焦离子束(focused ion beam,FIB)对样品表面原子进行剥离,以完成微纳米级表面形貌加工,加工后需要使用AFM进行形貌表征[11],或者转移到其他扫描电子显微镜(SEM)观察,以精准测量尺寸等. 而这三类仪器在测试过程中,都需要将样品固定于样品台上,保证在测试中不会移动(均为纳米级形貌表征,微小移动也会影响溅射、成像的精准度)才可进行测试. 而样品一般比较脆弱,从导电胶上取下再向不同仪器的样品台上转移时十分容易损坏样品,导致直接碎裂或者镊子用力夹持导致碎渣崩到样品表面,影响成像效果,如图1所示.为解决以上现有技术的缺点和不足之处,本设计计划提供一种AFM、SEM和FIB的样品共定位系统,其可实现仪器间样品无损转移,并通过参照点的辅助定位找到测试位点,建立起三个重要表征仪器之间的桥梁,还可实现AFM扫描方向可控、迅速调整位点等功能.1 试验部分1.1 仪器与试剂共定位系统(自主研制);原子力显微镜Nanowizard 4XP(美国Bruker公司);超高分辨场发射扫描电子显微镜7900F(JEOL日本电子株式会社);聚焦离子束Helios G4 UX(美国赛默飞世尔科技有限公司);光刻图案化后的样品(自制);FIB溅射后的沟槽样品(自制);探针SNL-10(美国Bruker公司).崩到表面的硅片渣取下时, 样品损伤碎渣、杂物, 严重影响形貌表征导致图1 样品由于拆卸造成的损坏及对AFM形貌表征的影响Fig. 1 Damage of sample caused by disassembly and its effect on AFM morphology characterization1.2 试验方法1.2.1 共定位系统的研发装置功能:(1)在AFM检测过程中,固定、快速移动样品(扫描位点),转换样品方向. (2)FIB、SEM和AFM的样品共定位系统:AFM、FIB、SEM 样品台适配模块,具有辅助定位点(与操作系统XY 坐标关联,实现定位),样品固定在该模块上,将模块放入固定器的卡槽中,即可用于AFM扫描. 将该模块从卡槽拆卸下来,即可直接作为SEM和FIB 样品台,带着固定好的样品进行检测,避免样品在不同仪器样品台间的拆卸转移过程中受到破坏.装置构造及用途:(1)转盘A,转盘下方的圆形凸起可嵌入底盘F的圆形镂空,且紧密接触,有一定阻尼,可转动,但不易打滑. 包括:两根长方形夹棍C,每根夹棍靠两根弹簧轴B固定到转盘两侧,两根夹棍C可依靠弹簧B的推力夹紧样品或样品托盘D,防止滑动. 把手螺丝E,与底盘F保持水平位置,拧松把手螺丝E可作为转动转盘A的把手,拧紧把手螺丝E,螺丝的另一端抵住底盘F的边缘,可固定好转盘. 用于调整样品的角度. 脚柱槽H-3用于放置脚柱H-2. (2)底盘F,铁质或者铝制,可吸附在AFM的载物台上(依靠磁力或吸力),底盘F 中心有圆形镂空,可将转盘A嵌入,底盘F和转盘A的接触位置有一定阻尼,可转动,但不易打滑. 形状可根据实际调节,不限制. (3)FIB、SEM样品台适配模块H,因考虑到SEM不可用带有磁性的样54分析测试技术与仪器第 30 卷品台,因此模块H为铝制. 模块H包括类圆形样品台H-1和脚柱H-2,脚柱H-2取下时为防止丢失可置于转盘A上的脚柱槽H-3中,使用时取出. 样品固定在该模块的类圆形样品台H-1上,将该类圆形样品台H-1对准位置放入样品托盘D的凹槽D-1中,两边由夹棍C夹住,用于AFM的扫描,通过转动转盘A、沿着夹棍C方向推拉样品托盘D改变角度和位置. (4)样品托盘D,长方形. 带两种尺寸的凹槽. 凹槽D-1:尺寸与普通市售载玻片尺寸吻合.尺寸微小、比较薄的样品可以先固定在载玻片上,再将载玻片置于此凹槽内,载玻片、样品托盘D被夹棍固定住,有阻尼,但可以拖动,可沿着夹棍C的方向移动样品,迅速更换扫描位置. 凹槽D-2:尺寸与FIB、SEM样品台适配模块H中类圆形样品台H-1形状一致,可放置该类圆形样品台H-1,夹棍C 夹住后,随样品托盘D移动. 如图2所示.类圆形样品台H-1取下后可直接作为SEM样品台使用. 底部中央有螺纹孔,脚柱H-2的螺纹和尺寸与SEM内用于固定样品台的螺纹柱尺寸一致,可通用. 将该模块的类圆形样品台H-1从样品托盘D的凹槽D-1中拆卸下来,即可直接拧在SEM样品台固定位置,作为SEM样品台直接用于测试,具有辅助定位点(与操作系统XY坐标关联,实现定位). 类圆形样品台H-1拧上与之匹配的脚柱H-2,即可作为FIB样品台,用于FIB的溅射等操作. 该适配模块H的尺寸适用于大部分品牌的FIB和SEM仪器,或根据SEM、FIB所需具体的尺寸制作.脚柱H-2尺寸较小,为防止丢失,不使用时可放置于转盘A上的特定脚柱槽H-3内保存. 该适配模块H无需将固定好的样品取下来转移到另外的样品台上,可避免样品在不同仪器样品台的拆卸转移过程中受到破坏,具有保护测试样品、便捷、实用性强等优点.1.2.2 微纳表面形貌表征方法AFM形貌表征条件:将微纳图案化样品或由FIB溅射的沟槽样品置于自主研制的共定位系统上,导电胶粘牢,且保证水平. 顶置10X光镜XY坐标协助定位. 使用Quantitative Imaging(QI)模式,Setpoint为 0.3 V,Zlength为 200 nm,Zspeed为 77µm/s. SEM形貌表征测试加速电压为10 kV.底盘 F 俯视图把手螺丝 E转盘 A脚柱 H-2/脚柱槽 H-3脚柱 H-2类圆形样品台 H-1类圆形样品台 H-1弹簧 B夹棍 C样品托盘 D FIB、SEM 样品台适配模块 H图2 共定位系统整体及分解图Fig. 2 Overall and decomposition diagrams of co-positioning system2 应用案例-微纳加工材料表征中的应用效果以光刻图案化后的样品为案例,对设计的共定位系统进行应用. 极紫外光刻材料的研发一直是半导体芯片产业的瓶颈之一[12],开发新型极紫外光刻胶材料具有重大的战略意义. 光刻胶膜表面形貌和粗糙度是评价光刻胶质量的重要指标[13-16]. 图案化的光刻有机膜,需要使用AFM和SEM表征证实其在电子束光刻和极紫外光刻测试中的表现. 使用本文设计的共定位系统,可以很好实现该样品在SEM、FIB和AFM之间的转换和样品定位,并且在AFM 表征中轻松实现方向调整和样品快速移位.如图3所示,光刻图案化后的样品(自制)需要先在SEM或FIB上进行电子束光刻蚀,刻蚀完毕后,在AFM上进行粗糙度测试以及3D成像. 使用所设计的共定位系统中的适配模块H作为样品台,实现了样品在三种仪器间的自由切换,无需拆卸,避免了样品损伤,还可以使用共定位功能,锁定目标区域分别进行SEM、AFM成像,操作便捷,节省了大量时间. 除此之外,以沟槽样品(自制)作为样本,使用AFM测试其沟槽的尺寸时,调整溅射的参数第 1 期蔡蕊,等:原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用55后,需要先在FIB 上完成溅射,再置于AFM 上成像和测量. 若沟槽放置倾斜,会使计算存在偏差或成像出现瑕疵. 因此需要将沟槽角度调整于合适方向.如图4所示,使用所设计的适配模块H 固定样品,先后进行了FIB 和AFM 测试,利用所设计的共定位系统使得操作简便,并且测试结果优异.图4 固定于FIB 、SEM 样品台适配模块H 的类圆形样品台H-1上的FIB 溅射后的沟槽样品,需要测试其沟槽尺寸(a )经AFM 表征,发现沟槽方向倾斜,(b )经转盘调整角度后,摆正方向Fig. 4 Groove samples after FIB sputtering fixed on disk-like sample stage H-1 of FIB and SEM sample tablesadaptation module H, tested size of groove(a) groove direction was tilted after AFM characterization,(b) groove positioned in right direction after adjusting angleof turntable3 结论与现有的技术相比,所设计的共定位系统可建立AFM 、SEM 和FIB 三大形貌表征仪器之间的桥梁,不但可以保护珍贵样品不被损坏,还可大幅提高样品测试效率以及效果. 另外,其快速移位和变换方向功能可大幅提升方向依赖形貌、磁学、摩擦力等测试的成功率和图像效果,并且提升原有载物台的样品测试范围和速度,方便快捷,实用性强.参考文献:Binnig G, Quate C F, Gerber C. Atomic force micro-scope [J ]. Physical Review Letters ,1986,56 (9):930-933.[ 1 ]Kim Y J, Son K, Choi I C, et al. Exploring nanomech-anical behavior of silicon nanowires: AFM bending versus nanoindentation [J ]. Advanced Functional Ma-terials ,2011,21 (2):279-286.[ 2 ]Meng X H, Zhang H, Song J M, et al. Publisher cor-rection: broad modulus range nanomechanical map-ping by magnetic-drive soft probes [J ]. Nature Com-munications ,2018,9 (1):1-2.[ 3 ]Wang M H, Zhao Y P, Jiang X Q, et al. Rational selec-tion of the polymeric structure for interface engineer-ing of perovskite solar cells [J ]. Joule ,2022,6 (5):1032-1048.[ 4 ]Xia F N, Wang H, Xiao D, et al. Two-dimensional ma-terial nanophotonics [J ]. Nature Photonics ,2014,8(12):899-907.[ 5 ]骆芸尔, 高珊, 伊艺, 等. 脱氧核糖核酸变性和损伤的原子力显微镜液相观察[J ]. 分析测试技术与仪器,2022,28(3):241-246. [LUO Yuner, GAO Shan, YI Yi, et al. Study on denaturation and damage of[ 6 ]SEMAFMAFM-3DSEMAFM5 μm5 μm5 μm8 nmYZ 0X 30 nmAFM-3D30 nmY ZX 20 nm45.3 nm20.5 nm0 nm0 nm1 μm图3 图案化微纳有机膜表面SEM 、AFM 表征Fig. 3 Characterization of SEM and AFM on surface of patterned micro-nano organic films56分析测试技术与仪器第 30 卷deoxyribonucleic acid in liquid phase using atomic force microscopy [J ]. Analysis and Testing Techno-logy and Instruments ,2022,28 (3):241-246.]Deng W, Zhang X J, Wang L, et al. Wafer-scale pre-cise patterning of organic single-crystal nanowire ar-rays via a photolithography-assisted spin-coating method [J ]. Advanced Materials ,2015,27 (45):7305-7312.[ 7 ]Garcia R, Knoll A W, Riedo E. Advanced scanningprobe lithography [J ]. Nature Nanotechnology ,2014,9(8):577-587.[ 8 ]Li P P, Ju P F, Ji L, et al. Toward robust macroscalesuperlubricity on engineering steel substrate [J ]. Ad-vanced Materials (Deerfield Beach, Fla),2020,32(36):e2002039.[ 9 ]Ling X, Lee Y H, Lin Y X, et al. Role of the seedingpromoter in MoS 2 growth by chemical vapor depos-ition [J ]. Nano Letters ,2014,14 (2):464-472.[ 10 ]He Y, Yan Y D, Geng Y Q, et al. Fabrication of none-ridge nanogrooves with large-radius probe on PMMA thin-film using AFM tip-based dynamic plowing litho-graphy approach [J ]. Journal of Manufacturing Pro-[ 11 ]cesses ,2017,29 :204-210.Liu J S, Guo H J, Li M, et al. Photolithography-as-sisted precise patterning of nanocracks for ultrasensit-ive strain sensors [J ]. Journal of Materials Chemistry A ,2021,9 (7):4262-4272.[ 12 ]Yogesh M, Moinuddin M G, Chauhan M, et al. Or-ganoiodine functionality bearing resists for electron-beam and helium ion beam lithography: complex and sub-16 nm patterning [J ]. ACS Applied Electronic Ma-terials ,2021,3 (5):1996-2004.[ 13 ]Cao Z, Li Y Q, Liu F. Grouping design method withreal ray tracing model for extreme ultraviolet litho-graphic objective [J ]. Optical Engineering ,2013,52 (12):125102.[ 14 ]Tan W, Ji H R, Mo Y, et al. Automatic design of anextreme ultraviolet lithography objective system based on the Seidel aberration theory [J ]. Applied Optics ,2022,61 (29):8633-8640.[ 15 ]Li Y Q, Kinoshita H, Watanabe T, et al. Illuminationsystem design for a three-aspherical-mirror projection camera for extreme-ultraviolet lithography [J ]. Ap-plied Optics ,2000,39 (19):3253-3260.[ 16 ]第 1 期蔡蕊,等:原子力显微镜-扫描电子显微镜共定位表征系统的研发与应用57。
Heavy fermion d-wave superconductivity a X-boson approach

a r X i v :c o n d -m a t /0311118v 1 [c o n d -m a t .s u p r -c o n ] 5 N o v 2003Heavy fermion d wave superconductivity:a X-boson approachLizardo H.C.M.Nunes a M.S.Figueira a E.V.L.de Melllo aa Institutode F´ısica da Universidade Federal FluminenseAv.Litorˆa nea s/n,24210-340Niter´o i,Rio de Janeiro,Brasil.C.P.100.0931.IntroductionRecently,we have used the X-boson method [1]to study the superconducting phase diagram of the PAM in the U →∞,where U is the on-site Coulomb repulsion,in the presence of an attractive interaction between the localized f -electrons,H = k ,σǫk ,σc †k ,σc k ,σ+ k ,σE f X k ,σσ+k ,σV (X †k ,0σc k ,σ+c †k ,σX k ,0σ)+k ,k ′W k ,k ′b †k b k ′,(1)where we only considered site independent localenergies E f,j,σ=E f,σand a constant hybridiza-tion V =V j,σ,k .The operator b †k =X †k ,0σX †−k ,0⋆We acknowledge the financial support from the Rio de Janeiro State Research Foundation (F APERJ)and Na-tional Research Council (CNPq).higher values of T c ,what suggests that the Kondo behavior of the system favors superconductivity in the X-boson approach.Nevertheless,as charge carriers are added to the system the superconduc-tivity was found both for configurations where the system presented intermediate valence (IV)and heavy fermion (HF)behavior and we have recov-ered the three characteristic regimes of the PAM:Kondo,IV and magnetic.This behavior which can-not be found for the same model by the slave-boson treatment [3],since it breaks down when the f -occupation number N f →1.Despite the fact that the model was primar-ily designed to the study of the heavy fermion compounds,theoretical descriptions of the su-perconducting phases based on two-band models have application for a large variety of systems and the model could fit into the description of the high temperature superconductors compounds (HTSC)[4]or into the new two-band supercon-ductor MgB 2.Meanwhile,unconventional super-conductors may exhibit different pair symmetries.For instance,HTSC cuprates appears to present d x 2−y 2superconductivity for some compounds and s -wave for others while for the HF compounds the crystallographic anisotropies and strong spin-orbit coupling make the task of determining the pairPreprint submitted to Elsevier Science2February 2008symmetry very difficult,athough d-wave model is still one of the leading candidates to describe superconductivity in UPt3[5].In this paper we employ the X-boson approach to compare the results for the superconducting phase diagram of an isotropic s-wave superconduc-tor with the results provided by a d x2−y2super-conductor.2.The MethodThe X-boson approach consists of introducing the variational parameter R=1− σ<Xσσ>, which modifies the Green’s functions(GF)so that it minimizes an adequate thermodynamic poten-tial while being forced to satisfy the“complete-ness”relation n0+nσ+n[6] A.C.Hewson,J.Phys.C:Solid State Phys.10,4973(1977).3。
超材料翻译

Naturematerials LETTERSPublished online : 18 APRIL 2010| DOI:10.1038/NMAT2747A single-layer wide-angle negative-index metamaterial at visible frequencies在可见光频率的一种单层广角负折射率超材料Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition.基于亚波长结构而非化学结构,超材料也叫人工电磁材料。
Negative-index materials(NIMs) are a special class of metamaterials characterized by an effective negative index that give rise to such unusual wave behavior as backwards phase propagation and negative refraction.负折射率材料(NIMs)是一类具有有效负折射率的特殊超材料,能够产生逆向传播和负折射的不同寻常的波行为。
These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking.这些非凡的性能使得有有趣的功能,如子衍射成像和隐蔽伪装So far ,NIMs have been realized through layering of resonant structures,such as spilt-ring resonators ,and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization.到目前,负折射率材料(NIMs)已经通过谐振结构层实现,例如开环谐振器,而且在较窄范围的红外频率内的入射角和偏振也可以证明。
光催化中表面等离子体与半导体间的电子转移与能量转移

光催化中表面等离子体与半导体间的电子转移与能量转移吴世康【摘要】近年来,表面等离子诱导的光催化反应由于可在阳光激发下通过电子转移、电荷分离进行选择性光氧化还原反应,引起了有机化学与环境科学界的广泛关注.本文在近年有关文献的基础上对等离子光催化领域一些基础性问题进行探讨,如贵金属-纳米颗粒的可见光激发、LSPR的生成、贵金属与半导体材料间的电子转移、贵金属纳米颗粒与半导体间的等离子诱导共振能量转移(PIRET),以及等离子光催化体系的结构和组成等,这些方面对体系光催化能力的影响.%Recently,the plasmon-induced surface photo-catalytic reaction attracts more and more attention in the area of organic chemistry and the environmental sciences,because it can improve the photo-oxidation and reduction andthe selectivity of reaction by electron-transfer and energy-transfer processes under excitation of sun-light.Some fundamental problems in the field of plasmon photo-catalyst have been discussed in this paper on the base of the recent international literatures.The discussed topics include:the LSPR formation under excitation of noble-metallic nano-particles by visible light and the electron-transfer between noble-metal and semi-conductor;the plasmon induced resonance energy transfer (PIRET) between plasmon particle and semiconductor;and the effect of structure and components of plasmon catalyst on the catalytic ability of catalysts.【期刊名称】《影像科学与光化学》【年(卷),期】2018(036)001【总页数】13页(P1-13)【关键词】局域的等离子共振(LSPR);等离子光催化;电子转移;等离子诱导的共振能量转移(PIRET);二氧化钛【作者】吴世康【作者单位】中国科学院理化技术研究所,北京100190【正文语种】中文纳米尺寸的等离子体可特征性地导致入射光的局域和浓缩,从而形成一类新型的光源、热源、载流子源等,这种特征使近年来对等离子的研究取得了巨大的进展[1]。
211178253_解调电路相位自动对齐系统设计与实现

现代电子技术Modern Electronics Technique2023年5月1日第46卷第9期May 2023Vol.46No.90引言引力波信号是一种极其微弱的信号,在空间中探测引力波是一件极其具有挑战性的任务,而在空间引力波探测项目中,能否实现超高精度的电容位移传感直接影响到项目的顺利实施[1⁃3]。
目前在电容位移传感中通常采用的是模拟传感电路,如图1所示[4],解调电路是整条测量链路中的关键一环,其去除噪声的能力限制电容位移传感的性能[5]。
当前主流的方案是运放型电子开关解调电路,该方案能在噪声背景中提取低频信号信息,并在很大程度上压制噪声。
但在测量链路中,输入信号和解调电路相位自动对齐系统设计与实现薛科,于涛,汪龙祺,隋延林,陈泳锟,陈禹竺,刘鑫(中国科学院长春光学精密机械与物理研究所,吉林长春130033)摘要:在空间引力波探测项目中,能否实现高精度电容位移传感技术直接关系到项目的核心指标实现。
在电容位移传感链路中,解调电路去除噪声能力限制整条链路性能,其中,参考信号与输入信号之间的相位差影响电路去除噪声能力。
为了最大限度地提高系统的信噪比,针对当前研究的局限性,提出一种解调电路相位自动对齐系统。
首先,介绍了整个系统的构成;其次,对基于动量下降法的相位对齐方法进行详细介绍,参考信号相位自动移动,移动的步长根据动量梯度下降法动态调整;然后,提出对相敏检测器的波形进行检测;接着结合两个方法提出解调电路相位自动对齐系统,提高了系统的可靠性和抗干扰性;最后用标定平台模拟电容位移传感中的电容差,将文中提出的方法与遍历相位对齐法进行比较,发现该方法能够准确地对齐相位,性能平均提升0.136%,同时在示波器上观察信号相位已经准确对齐。
关键词:引力波探测;电容位移传感;微弱信号;解调电路;相敏检波;动量梯度下降法;波形检测;系统设计中图分类号:TN710⁃34;TP29文献标识码:A文章编号:1004⁃373X (2023)09⁃0163⁃05Design and implementation of phase automatic alignment system for demodulation circuitXUE Ke ,YU Tao ,WANG Longqi ,SUI Yanlin ,CHEN Yongkun ,CHEN Yuzhu ,LIU Xin(Changchun Institute of Optics ,Fine Mechanics and Physics ,Chinese Academy of Sciences ,Changchun 130033,China )Abstract :In the space gravitational wave detection project ,the realization of high ⁃precision capacitive displacement sensing technology is directly related to the realization of the core indicators of the project.In the space gravitational wave detection project ,the realization of high precision capacitive displacement sensing technology is directly related to the realizationof the core indicators of the project.In capacitive displacement sensing link ,the demodulation circuit′s noise removal ability limits the performance of the whole link ,where the phase difference between the reference signal and the input signal affects the circuit′s noise removal ability.Aiming at the limitation of current research ,in order to maximize the SNR of the system ,a demodulation circuit phase automatic alignment system is proposed.Firstly ,the constitution of the whole system is introduced.The phase alignment method based on momentum descent method is introduced in detail.The phase of the reference signal moves automatically ,and the moving step is adjusted dynamically according to the momentum gradient descent method.Then ,the waveform of phase sensitive detector is detected.Then the phase automatic alignment system of demodulation circuit is proposed by combining the two methods ,which improves the reliability and anti ⁃interference of the system.The calibration platform is used to simulate the capacitance difference in capacitance displacement sensing.The proposed method is compared with the ergodic phase alignment method.It is found that the proposed method can accurately align the phase with an averageperformance improvement of 0.136%.Keywords :gravitational wave detection ;capacitive displacement sensing ;weak signal ;demodulation circuit ;phasesensitive detection ;momentum gradient descent method ;waveform detection ;system designDOI :10.16652/j.issn.1004⁃373x.2023.09.030引用格式:薛科,于涛,汪龙祺,等.解调电路相位自动对齐系统设计与实现[J].现代电子技术,2023,46(9):163⁃167.收稿日期:2022⁃10⁃19修回日期:2022⁃11⁃04基金项目:国家重点研发计划课题(2020YFC2200604)163现代电子技术2023年第46卷参考信号存在相移,且相移大小不可确定[6]。
各向异性超材料设计及其光电特性

各向异性超材料设计及其光电特性各向异性超材料(Anisotropic metamaterials)是一种具有特殊光学性质的新型材料。
它们可以通过调变其结构和组分来实现对电磁波的精确控制,从而使其具备许多传统材料所不具备的特性和功能。
本文将着重讨论各向异性超材料的设计原理,并探讨其在光电领域的应用。
首先,我们来了解一下各向异性超材料的设计原理。
各向异性超材料是通过构筑具有特定的空间结构和周期性分布的微观元胞来实现的。
这些微观元胞的尺寸通常远小于光波的波长,因此可以被视为均匀介质,而不受尺寸限制的宏观规律。
通过设计微观元胞的结构和组分,可以实现对电磁波的传播速度、极化方向以及传播路径等参数的精确控制。
这种精确控制使得各向异性超材料具备了许多传统材料所无法达到的特殊性质。
其次,各向异性超材料在光电领域有着广泛的应用。
其中一个重要应用是光学透镜的设计。
传统光学透镜的成像能力受到衍射极限的限制,而采用各向异性超材料作为透镜材料可以克服这一限制。
各向异性超材料透镜可以通过调控其折射率来实现对光的聚焦和偏折,从而实现超分辨率成像。
这种超分辨率成像在生物医学、半导体芯片制造等领域有着重要应用价值。
此外,在光电通信领域中,各向异性超材料也具备很大的潜力。
由于各向异性超材料对光波的控制能力,可以实现超高速光的拆解和重构。
这种能力可以用于光时钟信号的传输和处理,大大提高光电通信系统的数据传输速率和容量。
各向异性超材料的应用还包括光电设备中的光波导、光开关等组件的设计和制造。
此外,各向异性超材料还可以用于太阳能电池的提效。
各向异性超材料可以通过设计其光学功率因子和透射谱,实现对太阳辐射光的高效吸收和转换。
这种高效的太阳能转换技术将为可再生能源领域的进一步发展提供强有力的支持。
然而,各向异性超材料的设计和制备并不是一项容易的任务。
首先,需要精确把握各向异性超材料的微观结构和组分与其宏观性质之间的关系。
其次,制备具有所需微观结构的各向异性超材料也是一项挑战。
Method for retrieving effective properties of locally resonant acoustic metamaterials

德国Elma超声波清洗系统说明书

made ingermanyQ From manual to fully automatic systems,optimised for fine and ultra-fine cleaning with multi-frequency in 5 tank sizes Q Individually extendible system with option of interface to the clean room (optionally also available with enclosure and laminar flow technology) Q Optional side-ultrasound for complex component geometry Q Various drying systems for different material requirementsUltrasonic Cleaning SystemsTechnical dataUltrasonic Cleaning Re-definedAdvantages and benefitsQ Modular system set-up with 5 tank sizesQ Multi-frequency technology with 25/45 kHz or 37/130 kHzQ For fine and ultra-fine cleaningwith rounded tank corners and special pipeworkQ Optional side-ultrasound technology for special component geometryQ Different drying systems (hot-air, infra-red and vacuum drying) for different material requirementsQ Compact system design with easy-to-clean surfaces Q Integrated ancillaries such as filters, oil separators, etc. Q IPC control with intuitive operating concept Q Equipped with floor tank as standardQ Extremely service and maintenance friendly thanks to the compact system design with easily accessible andswiftly replaceable componentsx tra line 2 is at home in the following industries.The right cleaning system for the task at handDesigned for fine and ultra-fine cleaning tasks, the x tra line 2 can be flexibly deployed and extended due to the modular sys-tem concept (building block system) at any time. Different tank sizes can even be easily accommodated in one system, so that individualised systems are conceptualised.The compact, closed system design enables easy system maintenance. Ancillaries for bath care, such as oil separators, filter units or similar, are positioned inside the system in order to save space. Removable back elements facilitate the easy maintenance and servicing of the x tra line 2. All of the pipework can therefore also be easily accessed.With the new transport robot, the conversion speed is increased by up to 20 %. Furthermore, the following baskets and carriers can be used with the transport robot: Q Normal baskets in transport mode, Q Horizontal turning devices for bulk materials baskets, Q Vertical rotation devices for fixed parts, such as optical lenses, as well asQ Lift rotation devices for positioned components in carriers.Q Production of medical technology and precision optics, Q In the aerospace industry, Q Pharmaceutical industry, Q Manufacture of watches and jewellery, Q Electronics and metalworking industry, and much more.Service, ancillaries and accessories for x tra line 2 systems Individually aligned to your requirementsDifferent parts can be cleaned using the different basket types. Whether it is bulk materials or individually positioned parts, baskets/carriers with different mesh sizes or with coated contact surfaces, the transport of parts is individually tailored to customer requirements and the cleaning process.With bath care, filtration and disposal ancillaries of the x tra line 2, the contamination is easily collected and separated. For example oil, in concentrated form, is collected and can be disposed of in an environmentally-friendly way.Not only is this good for the environment, but it also saves money.Our modular system (building block principle) allows the integration of many of the ancillaries at the rear of the system. Due to the fact that these components can be easily inserted and replaced - through modular, exchange technology - maintenance and servicing periods are reduced to a minimum. Thereby, the system is back in action again very quickly.Another advantage of the x tra line 2 is the small amount of space required by these systems. Due to the integration of individual ancillaries such as oil sepa-rators, filters, etc., the systems require up to 30 % less space and have a neat, structured and easy-to-maintain appearance.So each x tra line 2 cleaning system can be easily integrated into existing production processes.Baskets and carriersThe x tra line 2 offers a comprehensive range of accessories precisely chosen to meet individual customer requirements. Automatic filling/emptying of the tanks, metering systems with automatic filling level control as well as measurement and status monitoring of the media used contribute to ensuring that the optimised cleaning processes remain safe and stable. This provides consistent and reproducible cleaning results for validation purposes.System ancillaries for bath care, filtration and disposalService and maintenance friendly designWith an x tra line 2 cleaning system, the first steps into professional precision cleaning are easy. For smaller quantities, a manual sys-tem, EASY x tra line 2, is the most suitable. If the system capacity is too small, it can be extended at any time thanks to the modular design, or supplemented by various ancillaries.Q In case of low throughputQ Easily extendible process, at any timeQ Throughput-optimised with transport robots and conveyor belts Q Process-safe, as IPC controlledQ Consistently high cleaning qualityQ With enclosureQ in order to meet highest cleaning requirements, Q for noise reduction and Q as interface to clean roomQ Enhanced by semi-automatic handling system for the movement of heavy partsQ User-friendly and ergonomically optimised operationx tra line 2The modular system that adapts to requirementsThus it is quite easy to adapt - even afterwards - to changing conditions and increasing requirements in terms of parts cleaning. Different transport systems such as the pneumatic handling system or the automatic transport system for heavy parts provide high throughput with the required level of process safety.Elma Schmidbauer GmbH · Gottlieb-Daimler-Straße 17 · D-78224 Singen (Germany) · Tel. +49 7731 882-0 · Fax +49 7731 882-266 · The Elma process laboratoryPerfect cleaning results are the measure of all things. In order to achieve these, the focus lies on designing the right sequence of individual process steps.This is where the Elma service concept comes in. Together with our customers, we individually develop a tailor-made cleaning process in the Elma process laboratory. Equipped with state-of-the-art technology, our laboratory carries out cleaning tests for customers on a daily basis and checks these results for the re-quired cleanliness level.Take advantage of our many years of experience and knowledge, and let us design your process solution!S u b j e c t t o t e c h n i c a l a n d o p t i c a l c h a n g e s . · x t r a l i n e 2_E N _11_17Tailor-cut Elma ServiceThe all-round carefree package for your cleaning systemThe Elma Service ConceptFrom process development through to system qualification, commissioning and assembly on site - for our customers we are a reliable and experienced partner for cleaning technology at their side. The worldwide network of Elma sales and service partners ensures that the supply of replacement parts, repair works and maintenance are carried out quickly and efficiently. The re-qualification of your system is also possible at any time. Our customers‘ systems are therefore always swiftly available for operation, contributing to theirsuccess.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /0204545v 1 [c o n d -m a t .s u p r -c o n ] 25 A p r 2002
Comment on “Anisotropic s -wave superconductivity in MgB 2”
Todor M.Mishonov,1,2,∗Evgeni S.Penev,2and Joseph O.Indekeu 1,†
1
Laboratorium voor Vaste-Stoffysica en Magnetisme,Katholieke Universiteit Leuven,
Celestijnenlaan 200D,B-3001Leuven,Belgium 2
Department of Theoretical Physics,Faculty of Physics,
Sofia University “St.Kliment Ohridski”,5J.Bourchier Blvd.,Bg-1164Sofia,Bulgaria An analytical result for renormalization of the jump of the heat capacity ∆C/C N by the anisotropy of the order parameter is derived in the framework of the model proposed by Haas and Maki [Phys.Rev.B 65,020502(R)(2001)],for both prolate and oblate anisotropy.The graph of ∆C/C N versus the ratio of the gaps on the equator and the pole,∆e /∆p ,of the Fermi surface allows a direct determination of the gap anisotropy parameter ∆e /∆p using data from specific heat measurements.
PACS numbers:74.20.Rp,74.25.Bt,74.70.Ad
In a recent Rapid Communication,Haas and Maki 1discuss a model for the gap anisotropy in MgB 2,a mate-rial which has attracted a lot of attention from condensed matter physicists in the past two years.A central issue in this work is to propose an analytic model for analyz-ing the thermodynamic behavior.Assuming a spherical Fermi surface a simple gap anisotropy function is sug-gested,∆(k )∝1+az 2,where z =cos θ,and θis the polar angle.This angular dependence is a natural linear combination of spherical harmonics (Legendre polynomi-als P 0(z )and P 2(z )),and can therefore be interpreted in terms of an s+d model.
1
2
345
6
7
∆e /∆p
0.6
0.811.21.4∆C /C N
FIG.1:Jump of the specific heat ∆C/C N as function of ratio between “equatorial”and “polar”order parameter ∆e /∆p .For one and the same jump ∆C/C N we have prolate and oblate solution.
This model leads to useful results for the temperature dependence of the upper critical field H c 2and of the spe-
cific heat,which can be fitted to the experimental data,thereby determining the optimal anisotropy parameter a .Note that a =∆p /∆e −1,with ∆p =∆(z =1)and ∆e =∆(z =0).For example,the dimensionless ratio ∆C/C N of the specific heat jump at T c relative to the normal state specific heat,measured by Wang et al.,2is a tool for estimating a .Haas and Maki 1focused on the case a >0.
For oblate-shaped gap anisotropy (∆e >∆p ),in-dicated by recent experiments on the critical field anisotropy,3,4we take a <0.The sign of a is relevant for this physical property,but irrelevant for the jump of the heat capacity.Note that for a <−1the model gives a gapless superconductor,which is not applicable for MgB 2.Following the weak-coupling BCS approach by the authors 1we derived the analytic expression ∆C
7ζ(3)1+4a/3+38a 2/45+4a 3/15+a 4/25
∆e /∆p
−1,
∆e /∆p =
1。