复旦大学1998高等代数

合集下载

南开各院系参考书目

南开各院系参考书目

电话:23503593 何曼君等 朱常英编讲义 王积涛等 邢其毅等编著 朱志昂、阮文娟编 朱志昂、阮文娟编 傅献彩等 潘瑞炽等 陆时万、吴国芳 高玉葆、石福臣 刘凌云、郑光美主编 南开大学等五校合编 志等 2001 年 李博主编 孙儒泳等编著 沈萍 复旦大学出版社 2003 年第 十次印刷 南开大学高分子教研室 2003 年 南开大学出版社 2003 年第 二版 高等教育出版社(第三版) 科学出版社 2008.6 科学出版社 2007.6 月第 二次印刷 南京大学出版社 1990 年 高等教育出版社(六) 高等教育出版社(二) 科学出版社 2008 年 高等教育出版社 1997 年第 三版 彩万 人民教育出版社 1980 年 中国农业出版社 2001 年 高等教育出版社,2000 高等教育出版社,2002 高等教育出版社 2000 年第 一版
院系所名称: 化学学院 《无机化学》 综合化学 《定量化学分析》 《有机化学》
电话:23508473 吉林大学、武汉大学、南开大 高等教育出版社 2004 年第 学 合编 许晓文等 王积涛等 一版 南开大学出版社 96 年 8 月 南开大学出版社 2003 年第 二版 科学出版社 2004 年 9 月 一版 高等教育出版社 2002、1 Gosport,2001 南开大学出版社 96 年 8 月 北京大学出版社 1997 年 5 月 南开大学出版社 2003 年第 二版 南开大学出版社 2004 年 1 月
有机化学与农药化 学
院系所名称: 生命科学学院 高分子化学与物理 (生科院) «高分子物理» «高分子化学» «有机化学» 有机化学(生科院) «基础有机化学» «近代物理化学»第四版 物理化学(生科院)«物理化学学习指导» «物理化学»(上、下) 植物生理学 植物学 动物学 昆虫学 普通生态学 微生物学 植物生理学 植物学(上册、下册) 植物生物学与生态学实验 《普通动物学》 《昆虫学》 《普通昆虫学》 《生态学》 《基础生态学》 《微生物学》

高等代数 教材 选用

高等代数 教材 选用

高等代数教材选用
高等代数是数学专业的一门重要基础课程,以下是一些比较受欢迎的高等代数教材:
《高等代数》(第三版,姚慕生、吴泉水、谢启鸿编著)和配套学习指导书(俗称白皮书,第三版,姚慕生、谢启鸿编著):这两本是复旦大学数学学院一年级新生学习高等代数的必备书籍。

《高等代数》(屠伯埙、徐诚浩、王芬编著)和配套学习指导书(屠伯埙编著):对于想做难题,特别是涉及矩阵论技巧的难题的同学,可以参考此书。

《高等代数》(许以超编著):这本教材较好地体现了中国科学院华罗庚先生遗留下的矩阵论技巧。

《高等代数》(张贤科、许甫华编著,第二版)和配套学习指导书(许甫华、张贤科编著,第二版):这两本书论述和论证简洁,补充内容较多,比较适合学有余力的同学参考。

《高等代数》(丘维声编著):分为上下两册,内容知识点齐全,可以配合丘维声教授在b站的课程一起学习。

你可以根据自己的需求和学习风格选择适合自己的教材。

高等代数教学大纲(12学分)

高等代数教学大纲(12学分)

高等代数教学大纲(Higher Algebra)前言教学大纲是一门课程的指导性文件.教学大纲的科学化、规范化,对建设良好的教学秩序,提高教学质量,搞好教学管理等方面都有很重要的意义.为此,我们根据学校有关文件,编写了《高等代数》这门课程的教学大纲.《高等代数》这门课程是数学系各专业的必修专业基础课程之一,可为后继课程的学习打下必要的基础.它是数学系各专业硕士研究生入学考试的必考课程.它除培养学生掌握必要的基础知识之外,同时着重训练学生掌握数学结构的观念、公理化的方法、纯形式化的思维,从而在知识结构、综合素质、创新能力等方面对学生加以全面培养和整体提高.本课程的基本内容有: 包括:多项式,行列式,线性方程组, 矩阵,二次型,线性空间, 线λ矩阵,欧几里得内积空间,双线性函数和辛空间.重点是下列几章:多项式,行性变换, -列式,线性方程组, 矩阵,二次型,线性空间, 线性变换,欧几里得内积空间.通过本课程的学习,学生能正确理解矩阵、行列式、线性空间、线性变换、欧几里得空间等有关概念, 能理解并掌握线性方程组理论和多项式的理论,并能熟练地应用它们,为后续课程的学习打下坚实的基础.本课程作为基础课,对其它课程依赖不大,当然,如果在学完《空间解析几何》之后开设效果会更好.本课程作为基础课,应在大学低年级学生中开设,建议对本科一年级学生开设.本课程为一学年课程.教材: 《高等代数学》(第三版)北京大学数学系几何与代数教研室前代数小组, 高等教育出版社,2003年。

参考书:《线性代数》吴赣昌主编,中国人民大学出版社,2006年《高等代数学》姚慕生编, 复旦大学出版社,1999《高等代数新方法》王品超主编,山东教育出版社,1989年《高等代数学》(第二版)张贤科主编,清华大学出版社,2002年《Linear Algebra》S.K.Jain, A.D.Gunawardena,机械工业出版社,2003年建议学时分配课程内容第一章多项式[教学目的与要求]通过本章学习,实现如下目的:(1)理解整除、最大公因式、互素、多项式的不可约性、重因式、本原多项式等概念;(2)熟练掌握整除的性质;(3)熟练掌握最大公因式的求法;(4)熟练掌握有无重因式的判别方法;(5)熟练掌握整系数多项式的有理根的求法;(6)熟练掌握整系数多项式在有理数域上不可约的艾森斯坦判别法;(7)掌握复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用;(8)掌握韦达定理和多元多项式的基本性质.[教学重点]整除的性质、最大公因式的求法、有无重因式的判别方法、整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法;复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用.[教学难点]整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法.[教学内容]§1.1. 数域数域的定义和例子§1.2. 一元多项式一、一元多项式的定义二、一元多项式的运算和运算律§1.3. 整除的概念一、带余除法二、整除的定义和几个常用的性质§1.4. 最大公因式一、最大公因式的定义和求法二、互素§1.5. 因式分解定理一、不可约多项式的定义和简单性质二、因式分解唯一性定理§1.6. 重因式重因式的定义和性质§1.7. 多项式函数一、余数定理二、多项式的根或零点§1.8. 复系数与实系数多项式的因式分解一、复系数多项式的因式分解定理 二、实系数多项式的因式分解定理§1.9. 有理系数多项式一、本原多项式的定义和高斯引理 二、整系数多项式的有理根的求法 三、爱森斯坦判别法§1.10. 多元多项式多元多项式的定义及其次数§1.11. 对称多项式一、初等对称多项式二、对称多项式基本定理思考题1. 证明:多项式)(x f 整除任意多项式的充要条件是)(x f 是零次多项式.2. 设b a ,为两个不相等的常数.证明:多项式)(x f 被))((b x a x --除所得的余式为ba b bf a af x b a b f a f --+--)()()()(3. 证明:1|1--n d x x 当且仅当n d |.4. 设k 为正整数.证明:)(|x f x k 当且仅当)(|x f x .5. 已知242)(234---+=x x x x x f ,22)(234---+=x x x x x g ,求)(),(x v x u 使))(),(()()()()(x g x f x g x v x f x u =+. 6. 证明:如果)(|)(x f x d ,)(|)(x g x d ,且)()()()()(x g x v x f x u x d +=,则)(x d 是)(x f 与)(x g 的最大公因式.7. 证明:如果1))(),((=x g x f ,1))(),((=x h x f ,则1))()(),((=x h x g x f . 8. 证明:如果1))(),((=x g x f ,则1))(),((=mmx g x f . 9. 若1))(),((21=x f x f ,则对任意的)(x g ,))(),(())(),(())(),()((2121x g x f x g x f x g x f x f =.10.判断下列多项式在有理数域上是否有重因式,若有,则求出重因式,并确定重数(1)1)(24++=x x x f(2)277251815)(2346+-++-=x x x x x x f11.设)(x p 是)(x f '的k 重因式,能否说)(x p 是)(x f 的1+k 重因式,为什么?12.设n 为正整数,证明:如果)(|)(x g x f nn ,则)(|)(x g x f .13.设)(x p 为数域P 上的不可约多项式,)(x f 与)(x g 为数域P 上的多项式.证明:如果)()(|)(x g x f x p +,且)()(|)(x g x f x p ,则)(|)(x f x p ,且)(|)(x g x p .14.设)(x f 为数域P 上的n 次多项式,证明:如果)(|)(x f x f ',则nb x a x f )()(-=,其中P b a ∈,.15.求多项式92)(24++=x x x f 与944)(234-+-=x x x x g 的公共根.16.求多项式61510)(25-+-=x x x x f 的所有根,并确定重数.第二章 行列式[教学目的与要求] 通过本章学习,实现如下目的: (1) 理解行列式的概念;(2) 能熟练应用行列式的性质和展开定理计算行列式; (3) 会用Cramer 法则求解线性方程组. [教学重点]行列式的计算、Cramer 法则. [教学难点] 行列式的定义 [教学内容]§2.1. 引言二阶、三阶行列式与线性方程组的解§2.2. 排列一、排列及排列逆序数的定义 二、奇偶排列§2.3. n 阶行列式 n 阶行列式的定义§2.4. n 阶行列式的性质 n 阶行列式的性质及其推论§2.5. 行列式的计算n 阶行列式的计算§2.6. 行列式按一行一列展开一、n 阶行列式按一行一列展开定理 二、范德蒙(Vandermonde )行列式§2.7. 克拉默(Cramer )法则 克拉默(Cramer )法则§2.8. 拉普拉斯(Laplace )定理 行列式的乘法规则一、拉普拉斯(Laplace )定理 二、行列式的乘法规则思考题1. 求下列排列的逆序数:(1))2(24)12(13n n -; (2)21)1( -n n . 2. 写出四阶行列式中含有因子4123a a 的项,并指出应带的符号. 3.用行列式的定义计算下列行列式:(1)00001002001000nn -; (2)000000053524342353433323125242322211312a a a a a a a a a a a a a a a a . 4.用行列式的性质及行列式的展开定理计算下列行列式:(1)xa a a a x a a a a x a a a a xn nn321212121; (2)na a a +++11111111121,其中021≠n a a a(3)12125431432321-n n n; (4)221222212121211nn n n n na x a a a a a a a x a a a a a a a x +++其中021≠n x x x .(5)x a a a a a x x x n n n +-----122110000010001;(6)nnn n n nn n nna a a a a a a a a a a a21222212222121111---5. 已知4阶行列式D 中的第1行上的元素分别为4,0,2,1-,其余子式分别为1,5,2,1--;第3行上元素的余子式分别为x ,7,1,6-;求行列式D 的值,及x 的值.6.设4阶行列式1234302186427531中第4行元素的余子式分别为44434241,,,M M M M ,代数余子式分别为44434241,,,A A A A ,求44434241432A A A A +++,44434241432M M M M +++.7. 设4阶行列式2211765144334321中第4行元素的代数余子式分别为44434241,,,A A A A ,求4241A A +与4443A A +.8. 设行列式nn0010301002112531-中第1行元素的代数余子式分别为n A A A 11211,,, ,求n A A A 11211+++ .第三章 线性方程组[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握向量的线性表示、线性相关性的判别法; (2) 掌握极大无关组的求法; (3) 掌握矩阵秩的求法;(4) 掌握线性方程组解情况的判定方法; (5) 掌握齐次线性方程组的基础解系的求法; (6) 掌握非齐次线性方程组解结构定理[教学重点] 向量的线性表示、线性相关性、极大无关组、向量组的秩、矩阵的秩、齐次线性方程组的基础解系.[教学难点] 极大无关组、矩阵的秩.[教学内容]§3.1. 消元法消元法§3.2. n 维向量空间n 维向量及其运算§3.3. 线性相关性一、线性表示二、向量组的线性相关性 三、向量组的极大无关组、秩§3.4. 矩阵的秩矩阵的行秩、列秩、秩§3.5. 线性方程组有解判定定理线性方程组有解判定定理§3.6. 线性方程组解的结构一、齐次线性方程组的解结构 二、非齐次线性方程组的解结构§3.7. 二元高次方程组二元高次方程组可作为选学内容.思考题1.设)1,1,1(1λα+=,)1,1,1(2λα+=,)1,1,1(3λα+=,),,0(2λλβ=.问当λ为何值时(1)β不能由321,,ααα线性表出?(2)β可由321,,ααα线性表出,并且表示法唯一?(3)β可由321,,ααα线性表出,并且表示法不唯一? 2.设)1,2,(1a =α,)0,,2(2a =α,)1,1,1(3-=α,问a 为何值时321,,ααα线性相关?3. 求下列向量组的一个极大无关组,并将其余向量表为该极大无关组的线性组合.(1))5,2,1(1-=α,)1,2,3(2-=α,)17,10,3(3-=α;(2))4,0,1,1(1-=α,)6,5,1,2(2=α,)0,2,1,1(3--=α,)14,7,0,3(4=α. 4.已知21,ββ是非齐次线性方程组b Ax =的两个解,21,αα是其导出组0=Ax 的基础解系,21,k k 是任意常数,则b Ax =的通解是( ).(A)2)(2121211ββααα-+++k k ; (B)2)(2121211ββααα++-+k k ;(C)2)(2121211ββββα-+-+k k ; (D)2)(2121211ββββα++-+k k .5.设A 为秩为3的45⨯矩阵,321,,ααα是非齐次线性方程组b Ax =的三个不同的解,若)0,0,0,2(2321=++ααα,)8,6,4,2(321=+αα,求方程组b Ax =的通解. 6.设b Ax =为4元线性方程组,其系数矩阵A 的秩为3,又321,,ααα是b Ax =的三个解,且)0,2,0,2(1=α,)0,2,2,0(32=+αα,求方程组b Ax =的通解.7.已知β是非齐次线性方程组b Ax =的解,s ααα,,,21 是其导出组0=Ax 的基础解系,证明s αβαβαββ+++,,,,21 是b Ax =解向量组的极大无关组.8.线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132k x x x x x x k x x x x x x x x x x ,当21,k k 取何值时,无解?有唯一解?有无穷多解?在方程组有无穷多解时,用导出组的基础解系表示其全部解.第四章 矩阵[教学目的与要求] 通过本章学习,实现如下目的:(1) 能熟练地进行矩阵的各种运算(加、减、数乘、乘、转置、求逆等); (2) 能熟练掌握矩阵的初等变换,理解初等变换和初等矩阵的关系; (3) 能掌握各种求逆矩阵的方法; (4) 会应用分块乘法的初等变换. [教学重点]矩阵的各种运算(加、减、数乘、乘、转置、求逆等);矩阵的初等变换; 初等变换求逆法;分块乘法的初等变换.[教学难点] 分块乘法的初等变换 [教学内容]§2.1. 矩阵的概念的一些背景矩阵的概念§2.2. 矩阵的运算一、矩阵的加法、减法 二、矩阵的乘法三、数与矩阵的乘法 四、矩阵的转置§2.3. 矩阵乘积的行列式与秩一、矩阵乘积的行列式 二、矩阵乘积的秩§2.4. 矩阵的逆一、矩阵可逆的定义 二、伴随矩阵求逆法§2.5. 矩阵的分块一、分块矩阵的概念 二、分块矩阵的运算三、几种分块矩阵的逆矩阵§2.6. 初等矩阵一、初等矩阵及其性质 二、初等变换求逆法§2.7. 分块乘法的初等变换及应用举例一、分块乘法的初等变换二、分块乘法的初等变换应用举例思考题1. 举例说明下列命题是错误的:(1) 若02=A ,则0=A ;(2) 若A A =2,则0=A 或E A =;(3) 若E A =2,则E A =或E A -=; (4) 若AY AX =,且0≠A ,则Y X =. 2. 证明(1)2222)(B AB A B A +±=±成立当且仅当BA AB =; (2)22))((B A B A B A -=-+成立当且仅当BA AB =. 3.已知n n ij a A ⨯=)(为n 阶方阵,写出:(1)2A 的k 行l 列元素; (2)TAA 的k 行l 列元素; (3)A A T的k 行l 列元素. 4. 已知)3,2,1(=α,)31,21,1(=β.设矩阵βαT A =,求n A . 5. 证明:对任意的n m ⨯矩阵A ,T AA 和A A T都是对称矩阵.6. 设A 是n 阶方阵,且E AA T=,1||=A ,求||n E A -.7.已知A 为三阶方阵,且21||=A ,求|2)3(|*1A A --.8.已知⎪⎪⎪⎭⎫ ⎝⎛--=100021201A ,求1*])[(-T A .9.(1)已知⎪⎪⎪⎭⎫ ⎝⎛=300130113A ,矩阵B 满足B A AB 2+=,求B ;(2)已知⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,矩阵B 满足B A E AB +=+2,求B ;(3)已知)1,2,1(-=diag A ,矩阵B 满足E BA BA A 82*-=,求B . 10.已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A .11.(1)证明)()()(B r A r B A r +≤+;(2)若n 阶矩阵B A ,满足0=AB ,证明n B r A r ≤+)()(;(3)若n 阶矩阵A 满足A A =2,证明n E A r A r =-+)()(;(4)若n 阶矩阵A 满足E A =2,证明n E A r E A r =-++)()(. 12.(1)B A ,为两个n 阶方阵,证明||||B A B A AB BA -⋅+=; (2)B A ,分别为m n ⨯和n m ⨯矩阵,证明||||BA E AB E E AB E m n nm -=-=.第五章 二次型[教学目的与要求] 通过本章学习,实现如下目的:(1)掌握用非退化线性替换把二次型化成标准形和规范形的方法; (2)会判断二次型的正定性.[教学重点] 二次型化标准形和规范形的方法;惯性定理;二次型的正定性. [教学难点] 惯性定理 [教学内容]§5.1. 二次型及其矩阵表示一、二次型及其矩阵表示 二、矩阵的合同§5.2. 标准形化二次型为标准形的配方法§5.3. 唯一性一、复二次型的规范形二、实二次型的规范形、惯性定理§5.4. 正定二次型一、正定二次型的概念和判定方法二、半正定二次型简介思考题1.写出下列二次型AX X '的矩阵,其中 (1)⎪⎪⎪⎭⎫⎝⎛---=205213111A ; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211 2. 设二次型32212221442x x x x x x f --+=,分别作下列可逆线性变换,求新二次型的矩阵,(1)Y X ⎪⎪⎪⎭⎫⎝⎛--=100210211; (2)Y X ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2101101121.3.分别用配方法和初等变换法化下列二次型为标准形,并写出所作的非退化线性替换(1)2332223121214322x x x x x x x x x f +++++=; (2)323121622x x x x x x f -+=.4. 分别在实数域和复数域上将3题中的两个二次型进一步化成规范型,并写出所作的非退化线性替换.5. 证明:秩等于r的对称矩阵可以表示成r个秩等于1的对称矩阵之和. 6. 证明:一个实二次型可以分解成两个实系数的一次齐次多项式的乘积的充分必要条件是,它的秩等于2和符号差等于0,或者秩等于1. 7. t 取什么值时,下列二次型是正定的:(1)3231212222214223x x x x x tx x x x f +-+++=; (2)32312123222161024x x x x x tx x x x f +++++=.8. 证明:如果A 正定,则1-A 和*A 也都正定.9.已知m 阶实对称矩阵A 正定,B 是n m ⨯矩阵,证明:AB B T正定的充要条件是n B r =)(.10. 已知A 为实矩阵,证明:)()(A r A A r ='.第六章 线性空间[教学目的与要求] 通过本章学习,实现如下目的:(1)能熟练地判断所给非空集合在指定的运算下能否构成线性空间; (2)会判断所给非空子集能否构成子空间; (3)会判断子空间之间的和是否为直和; (4)会判断两个线性空间的同构;(5)能熟练掌握线性空间基和维数的求法;(6)能熟练求向量在基下的坐标、基到基的过渡矩阵; (7)能熟练地求和空间的维数;(7)能熟练地应用维数公式求交空间的基与维数.[教学重点] 线性空间的定义、子空间的直和、维数公式、线性空间的同构. [教学难点] 线性空间的定义 [教学内容]§6.1. 集合 映射一、集合的概念和运算二、映射的概念、映射的乘法、逆映射§6.2. 线性空间的定义与简单性质一、线性空间的定义 二、线性空间的简单性质§6.3. 维数 基与坐标一、线性表示、线性相关和线性无关、向量组的等价 二、线性空间的基、维数,向量的坐标§6.4. 基变换与坐标变换一、基到基的过渡矩阵 二、坐标变换公式§6.5. 线性子空间一、线性子空间的定义二、线性子空间的维数和基§6.6. 子空间的交与和一、子空间的交 二、子空间的和§6.7. 子空间的直和一、两个子空间的直和 二、多个子空间的直和§6.8. 线性空间的同构一、线性空间同构的定义 二、同构映射的性质思考题1.检验下列集合对于所规定的运算是否构成给定数域上的线性空间:(1) 数域P 上的对角线元素的和为零的所有n 阶方阵所成的集合,对于矩阵的加法和数量乘法;(2) 设},|2{Q b a b a V ∈+=,Q 为有理数域,对于通常数的加法和乘法; (3) 设},|),{(R b a b a V ∈=,R 为实数域,定义加法和数乘如下:),(),(),(21212211b b a a b a b a +=+, ),(),(kb ka b a k = )(R k ∈.(4) 按照通常的数的运算,实数域R 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间?(5) 按照通常的数的运算,复数域C 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间? (6) +R 是全体正实数组成的集合,定义加法和数乘如下:ab b a =⊕, k a a k =⋅,这里+∈R b a ,,R k ∈.2.证明:在数域P 上的线性空间V 中,成立以下运算律:(1)βαβαk k k -=-)(;(2)αααl k l k -=-)(.这里P l k ∈,,V ∈βα,.3.实数域R 按照通常的乘法构成实数域R 上的线性空间.全体正实数集合+R 对1(6)题中定义的加法和数乘也构成实数域R 上的线性空间,能否据此说明+R 是线性空间R 的一个子空间?+R 是线性空间R 的子空间吗?4. 设)1,2,1(1-=α,)3,1,0(2-=α,)0,1,1(3-=α;)5,1,2(1=β,)1,3,2(2-=β,)2,3,1(3=β,(1) 证明:321,,ααα和321,,βββ都是3R 的基; (2) 求321,,ααα到321,,βββ的过渡矩阵; (3) 求向量)1,4,1(=α在两组基下的坐标.5. 在线性空间nR 中,判断下列哪些子集是子空间,(1)},|),0,,0,{(11R a a a a n n ∈ ;(2)}0|),,,{(121=∑=ni in aa a a ;(3)}1|),,,{(121=∑=ni in aa a a ;(4)},,2,1,|),,,{(21n i Z a a a a i n =∈.6. 举例说明线性空间的两个子空间的并一般不是子空间.两个子空间的并仍是子空间的充要条件是什么?7. 设线性空间V 含有非零向量,21,V V 是V 的任意两个真子空间,证明:V V V ≠⋃21. 8.在线性空间3][x P 中,求向量组21-=x α,x 22=α,x -=13α,24x =α 的一个极大无关组.9. 判断正误,并说明理由.(1)V 是n 维向量空间,V r ∈αα,,1 ,则r αα,,1 是子空间),,(1r L αα 的一组基;(2)n 个向量n αα,,1 是n 维向量空间V 的一组生成元,则n αα,,1 一定是V 的一组基;(3)向量空间V 的维数等于V 的任一生成组所含向量的个数; (4)任一向量空间都有基; (5)若向量空间V 的每一个向量都可以由n αα,,1 唯一的线性表示,则n αα,,1 是V 的一组基;(6)若s αα,,1 与t ββ,,1 的极大无关组分别是r i i αα,,1 与p j j ββ,,1 ,则),,(),,(11t s L L ββαα +的一组基为r i i αα,,1 p j j ββ,,1 .10. 下列向量组是否为3][x P 的基:(1)}22,,1,1{2322++++++x x x x x x x ; (2)},22,1,1{322x x x x x -+--. 11.求下列子空间的维数:(1)3))4,2,5(),2,4,1(),1,3,2((R L ⊆--; (2)][),1,1(22x P x x x x L ⊆---;(3)],[),,(32b a C e e e L x xx⊆,],[b a C 表示区间],[b a 上的全体连续函数空间.12.设⎪⎪⎪⎭⎫ ⎝⎛=000100010A ,求33⨯P 中所有与A 可交换的矩阵组成的子空间的维数和一组基.13.令},|{1A A P A A V n n ='∈=⨯,},|{2A A P A A V n n -='∈=⨯,证明21V V P n n ⊕=⨯. 14.设n αα,,1 是P 上n 维线性空间V 的一组基,A 是P 上的一个s n ⨯矩阵,令A n s ),,(),,(11ααββ =,证明:)(),,(dim 1A r L s =ββ . 15.证明:线性空间][x P 可以和它的真子空间同构.第七章 线性变换[教学目的与要求] 通过本章学习,实现如下目的: (1) 能熟练掌握线性变换的运算; (2) 能理解线性变换与矩阵的关系;(3) 能熟练地求线性变换的特征值与特征向量;(4) 理解哈密尔顿—凯莱(Hamilton-Caylay )定理; (5) 能熟练地将矩阵对角化;(6) 能熟练地求出线性变换的值域与核; (7) 了解若尔当标准形理论.[教学重点] 线性变换与矩阵的关系;线性变换的特征值与特征向量;线性变换的值域与核;矩阵对角化.[教学难点] 矩阵的对角化 [教学内容]§7.1. 线性变换的定义一、线性变换的定义 二、线性变换的简单性质§7.2. 线性变换的运算一、线性变换的乘法 二、线性变换的加法三、线性变换的数量乘法 四、线性变换的逆§7.3. 线性变换的矩阵一、线性变换的矩阵 二、矩阵的相似§7.4. 特征值与特征向量一、线性变换特征值与特征向量的概念 二、线性变换特征值与特征向量的求法 三、哈密顿-凯莱定理§7.5. 对角矩阵一、特征向量的性质二、线性变换的矩阵可以是对角矩阵的条件§7.6. 线性变换的值域与核一、线性变换的值域 二、线性变换的核§7.7. 不变子空间一、不变子空间二、不变子空间与线性变换矩阵的化简§7.8. 若尔当(Jordan )标准形介绍若尔当标准形介绍§7.9. 最小多项式最小多项式概念和性质思考题1.线性空间V 到V 的同构映射称为线性空间V 的自同构.线性空间V 的线性变换和它的自同构有什么异同?2.A 是线性空间V 的线性变换,s αα,,1 是V 中一组线性无关的向量,问)(,),(1s ααA A 是否仍线性无关?试举例说明. 3.设A 是n 维线性空间V 的线性变换,证明:(1)A 是线性空间V 的自同构当且仅当A 把线性无关的向量组变成线性无关的向量组;(2)A 把线性空间V 中某一组线性无关的向量变成一组线性相关的向量的充要条件是A 把V 中某个非零向量变成零向量,即}0{)0(1≠-A ;(3)A 是线性空间V 的自同构当且仅当}0{)0(1=-A .4.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A ,定义4P 的变换为:ξξA =A ,4P∈ξ,证明A 为4P 的线性变换,并求A 的核和象空间以及它们的维数.5.为什么线性变换的问题可以转化为相应的矩阵的问题去研究?)(V L 与nn P ⨯有什么关系?求出线性空间)(V L 的维数.6.设⎪⎪⎭⎫ ⎝⎛=4321A ,求22⨯P 的如下线性变换A 在基⎪⎪⎭⎫ ⎝⎛=00011ε,⎪⎪⎭⎫⎝⎛=00102ε,⎪⎪⎭⎫ ⎝⎛=01003ε,⎪⎪⎭⎫⎝⎛=10004ε下的矩阵. (1)AX X =)(A ; (2)XA X =)(A .7.在3R 中,试求关于基)0,0,1(1=ε,)0,1,1(2=ε,)1,1,1(3=ε的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=221101211A 的线性变换.8.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛---=6788152051115A ,求A 在基321,,βββ下的矩阵,其中321132αααβ++=,321243αααβ++=,321322αααβ++=.若3212αααξ-+=,求)(ξA 在基321,,βββ下的坐标.9.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A , 求(1)A 在基123,,ααα下的矩阵;(2)A 在基321,,αααk 下的矩阵;)0(≠k (3)A 在基3221,,αααα+下的矩阵.10.四维线性空间V 的线性变换A 在基4321,,,αααα下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3707011311013412A ,求:(1)A 的值域; (2)A 的核;(3)在A 的值域中选一组基,把它扩充成线性空间V 的基; (4)在A 的核中选一组基,把它扩充成线性空间V 的基.11.若矩阵A 与B 相似,证明:(1) 若A 与B 可逆,则1-A 与1-B 相似; (2) 对任意的常数k ,kA 与kB 相似;(3) 对任意的正整数m ,mA 与mB 相似;(4) 对于任意多项式)(x f ,)(A f 与)(B f 相似.12.若矩阵A 与B 相似,C 与D 相似,证明:⎪⎪⎭⎫⎝⎛C A 00与⎪⎪⎭⎫⎝⎛D B 00相似. 13.取定矩阵n n P A ⨯∈.对于任意的nn P X ⨯∈,定义变换A 为XA AX X -=)(A ,(1) 证明A 为线性空间nn P ⨯的线性变换;(2) 若⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A λλλ00000021,求线性变换A 在基},1|{n j i E ij ≤≤下的矩阵. 14.在线性空间3P 中,定义线性变换A 为),,(),,(312321x x x x x x =A .令}2,1,|)0,,{(21=∈=i P x x x S i ,则S 是3P 的一个子空间,试问S 是否为线性变换A 的不变子空间.15.V 为数域P 上的一个线性空间,A 为V 的一个线性变换,][)(x P x f ∈,如果S 为线性变换A 的不变子空间,则S 线性变换)(A f 的不变子空间.16.若S 为线性空间V 的线性变换A 和B 的不变子空间,则S 也是B A +和AB 的不变子空间.17.若21,S S 为线性空间V 的线性变换A 的不变子空间,则21S S ⋂,21S S +也是A 的不变子空间. 18.若S 为线性空间V 的线性变换A 的不变子空间,当线性变换A 可逆时,则S 也是1-A的不变子空间. 19.若A 是线性空间V 的线性变换,且满足A A=2,证明:(1)}|)({)0(1V ∈-=-ξξξA A; (2))Im()0(1A A ⊕=-V .20.n 阶矩阵A 和B 相似时,它们有相同的特征多项式.反过来对吗?即n 阶矩阵A 和B 有相同的特征多项式时,哪它们相似吗?试举例说明.21.A 是线性空间V 的线性变换,证明A 可逆的充分必要条件是A 的特征值都非零. 22.证明线性变换A 的一个特征向量不能同时属于两个不同的特征值.23.证明:对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021和⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n b b b 0021 相似的充分必要条件是n b b b ,,,21 是n a a a ,,,21 的一个排列.24.设A 是复数域C 上的一个n 阶矩阵,n λλλ,,,21 是A 的全部特征值(按重数计算),证明:(1)如果][)(x C x f ∈是次数大于0的多项式,则)(,),(),(21n f f f λλλ 是)(A f 的全部特征值;(2)如果A 可逆,则n λλλ,,,21 全部不等于零; (3)如果A 可逆,则nλλλ1,,1,121 为1-A 的全部特征值.25.设三维线性空间V 的线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=533242111A , 求:(1)A 的特征值和特征向量;(2)是否存在V 的基321,,βββ使得线性变换A 在其下的矩阵为对角形.若这样的基321,,βββ存在,试写出由基321,,ααα到321,,βββ的过渡矩阵T .以及A 在321,,βββ下的矩阵;(3)计算AT T 1-.第八章 -λ矩阵[教学目的与要求] 通过本章学习,实现如下目的: (1)会求-λ矩阵的标准形 (2)会求-λ矩阵的行列式因子(3)会求矩阵A 的初等因子,并能写出A 若尔当标准形 (4)会求矩阵A 的有理标准形[教学重点] 矩阵A 的初等因子,矩阵的A 若尔当标准形 [教学难点] 矩阵相似的条件 [教学内容]§8.1. -λ矩阵一、-λ矩阵的秩 二、-λ矩阵的可逆§8.2. -λ矩阵在初等变换下的标准形一、-λ矩阵的初等变换 二、-λ矩阵的标准形§8.3. 不变因子一、-λ矩阵的行列式因子 二、-λ矩阵的不变因子§8.4. 相似矩阵的条件两个矩阵相似的充要条件§8.5. 初等因子一、初等因子的概念 二、初等因子的求法§8.6. 若尔当(Jordan )标准形理论推导一、若尔当矩阵的概念二、矩阵的若尔当标准形的求法§8.7. 矩阵的有理标准形一、有理形矩阵的概念 二、有理标准形的求法思考题1.求下列矩阵的初等因子、不变因子、行列式因子,并写出若当标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛-----222333111, (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0167121700140013, (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10021*********1. 2. 已知nn P A ⨯∈,证明A 与A '相似.3. 设复矩阵⎪⎪⎪⎭⎫ ⎝⎛-=102002c b a A ,(1)求出A 的一切可能的若当标准形;(2)给出A 可对角化的条件.第九章 欧几里得空间[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握求标准正交基的施密特(Schmidt )正交化方法;(2) 会判断两个欧氏空间的同构; (3) 理解正交变换与正交矩阵的关系; (4) 会求欧氏空间子空间的正交补;(5) 能熟练地把实对称矩阵正交相似于对角矩阵; (6) 能掌握最小二乘法.[教学重点] 求标准正交基的施密特(Schmidt )正交化方法;欧氏空间的同构;正交变换;对乘变换;实对称矩阵正交相似于对角矩阵的方法.[教学难点] 最小二乘法[教学内容] §9.1. 定义与基本性质一、内积与欧氏空间的定义 二、向量的长度 三、向量的正交四、欧氏空间基的度量矩阵§9.2. 标准正交基一、标准正交基的概念 二、标准正交基的求法§9.3. 同构一、欧氏空间同构的概念 二、欧氏空间同构的充要条件§9.4. 正交变换一、正交变换的定义 二、正交变换的性质§9.5. 子空间一、欧氏空间中子空间的正交 二、欧氏空间子空间的正交补§9.6. 实对称矩阵的标准形一、对称变换二、实对称矩阵的特征值特征向量的性质 三、实对称矩阵的对角化四、二次型化标准形的正交变换法§9.7. 向量到子空间的距离 最小二乘法一、向量到子空间的距离 二、最小二乘法§9.8. 酉空间介绍一、酉空间的概念二、酉空间中的一些重要结论思考题1.下列线性空间对给定的二元函数),(βα是否构成欧氏空间(1)在线性空间nR 中,对任意向量),,(1n a a =α,),,(1n b b =β,定义二元函数∑==ni i i b a 1||),(βα(2)在线性空间nn R ⨯中,对任意向量nn RB A ⨯∈,,定义二元函数)(),(A B tr B A '=2. 在欧氏空间4R 中求出两个单位向量使它们同时与下面三个向量正交.)0,4,1,2(1-=α,)2,2,1,1(2--=α,)4,5,2,3(3=α3. 称||),(βαβα-=d 为向量α和β间的距离.证明:),(),(),(βγγαβαd d d +≤. 4.设α,β是欧氏空间中任意两个非零向量,证明:(1))0(>=k k βα的充分必要条件是α和β间的夹角为零; (2))0(<=k k βα的充分必要条件是α和β间的夹角为π. 5. 已知)0,1,2,0(1=α,)0,0,1,1(2-=α,)1,0,2,1(3-=α,)1,0,0,1(4=α是4R 的一个基,对这个基正交化,求出4R 的一个标准正交基.6. 在欧氏空间]1,1[-C 里,对基32,,,1x x x 正交化,求出]1,1[-C 的一个标准正交基. 7. 已知))0,2,0(),0,0,1((L W =是3R 的一个子空间,求⊥W . 8.设21,,W W W 为欧氏空间V 的子空间,则(1)W W =⊥⊥)(;(2)如果21W W ⊂,则⊥⊥⊂12W W ; (3)⊥⊥⊥⋂=+2121)(W W W W . 9.求正交矩阵T 使得AT T '成对角形.其中A 为(1)⎪⎪⎪⎭⎫ ⎝⎛--510810228211; (2)⎪⎪⎪⎭⎫ ⎝⎛----114441784817. 10.用正交的线性替换化下列二次型为标准形(1)322322214332x x x x x f +++=;(2)43324121242322212222x x x x x x x x x x x x f +--++++=; (3)434232413121222222x x x x x x x x x x x x f ++--+=.第十章 双线性函数与辛空间 *[教学目的与要求] 通过本章学习,实现如下目的:(1)理解线性函数的定义,熟悉线性函数的简单性质 (2)理解线性空间与其对偶空间的同构关系(3)理解双线性度量空间、正交空间、准欧氏空间、辛空间等概念 [教学重点] 对偶空间和对偶基、双线性函数、双线性度量空间、正交空间、准欧氏空间、辛空间等概念。

高等代数 教学大纲

高等代数  教学大纲

教学大纲一.课程的教学目的和要求通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。

要突出传授数学思想和数学方法,让学生尽早地更多地掌握数学的思想和方法。

突出高等代数中等价分类的思想,分解结构的思想,同构对应的思想,揭示课程内部的本质的有机联系。

二.课程的主要内容:代数学是研究代数对象的结构理论与表示方法的一门学科。

代数对象是在一个集合上定义若干运算,且满足若干公理所构成的代数系统,线性空间则是数学类专业本科生所接触和学习的第一个代数对象。

本课程力求突出代数学的思想和方法。

《高等代数》分为两个部分主要内容。

一部分是基本工具性质的,包括多项式,行列式,矩阵初步,二次型。

既然是工具性质的,因而除了多项式内容外,也是数学专业以外的理科、工科、经管类《线性代数》的内容,以初等变换为灵魂的矩阵理论是这部分内容的核心。

另外一部分是研究线性空间的结构,这是研究代数结构的起点和模型,也是《高等代数》有别于《线性代数》之所在。

《高等代数》从三个角度进行研究。

从元素的角度看,研究向量间的线性表示,线性相关性,基向量;从子集角度看,研究子空间的运算和直和分解;从线性空间之间的关系来研究线性空间结构,就是线性映射,线性变换,线性映射的像与核,Jordan 标准形对应的空间分解。

而欧氏空间则是具体的研究空间的例子。

在研究线性空间中,始终贯穿着几何直观和矩阵方法的有机结合,矩阵的相似标准形和对应的线性空间分解则是这种有机结合的生动体现和提升,因而是本课程的精华内容。

本课程力求突出几何直观和矩阵方法的对应和互动。

我们强调矩阵理论,把握简洁和直观的代数方法,同时重视线性空间和线性映射(变换)的主导地位和分量,从几何观点理解和把握课程内容。

三.课程教材和参考书:教材:林亚南编著,高等代数,高等教育出版社,第一版参考书:1. 姚慕生编著,高等代数(指导丛书),复旦大学出版社,第二版2. 北京大学数学系编,高等代数,高等教育出版社,北京(1987)3. 张禾瑞、郝炳新,高等代数,高等教育出版社,北京(1999)4. 樊恽、郑延履、刘合国,线性代数学习指导,科学出版社,北京(2003)5. 林亚南编:高等代数方法选讲,2002年,见厦门大学精品课程“高等代数”网站四.课程内容及学时分配本课程开课时间:一学年(共两学期),共170学时,其中课堂讲授122学时,习题讨论课42学时,考试6学时。

抽象代数——精选推荐

抽象代数——精选推荐

抽象代数⼀、课程⽬的与教学基本要求本课程是在学⽣已学习⼤学⼀年级“⼏何与代数”必修课的基础上,进⼀步学习群、环、域三个基本的抽象的代数结构。

要求学⽣牢固掌握关于这三种抽象的代数结构的基本事实、结果、例⼦。

对这三种代数结构在别的相关学科,如数论、物理学等的应⽤有⼀般了解。

⼆、课程内容第1章准备知识(Things Familiar and Less Familiar)10课时复习集合论、集合间映射及数学归纳法知识,通过学习集合间映射为继续学习群论打基础。

1、⼏个注记(A Few Preliminary Remarks)2、集论(Set Theory)3、映射(Mappings)4、A(S)(The Set of 1-1 Mappings of S onto Itself)5、整数(The Integers)6、数学归纳法(Mathematical Induction)7、复数(Complex Numbers)第2章群(Groups) 22课时建⽴关于群、⼦群、商群及直积的基本概念及基本性质;通过实例帮助建⽴抽象概念,掌握群同态定理及其应⽤;了解有限阿贝尔群的结构。

1、群的定义和例⼦(Definitions and Examples of Groups)2、⼀些简单注记(Some Simple Remarks)3、⼦群(Subgroups)4、拉格朗⽇定理(Lagrange’s Theorem)5、同态与正规⼦群(Homomorphisms and Normal Subgroups)6、商群(Factor Groups)7、同态定理(The Homomorphism Theorems)8、柯西定理(Cauchy’s Theorem)9、直积(Direct Products)10、有限阿贝尔群(Finite Abelian Groups) (选讲)11、共轭与西罗定理(Conjugacy and Sylow’s Theorem)(选讲)第3章对称群(The Symmetric Group) 8课时掌握对称群的结构定理,了解单群的概念及例⼦。

复旦版高等代数笔记

复旦版高等代数笔记

复旦版高等代数笔记
复旦版高等代数笔记是由复旦大学数学系编写的高等代数课程讲义,主要用于辅助学生学习高等代数课程。

以下是一份可能包含的内容:
第一章:集合与二元运算
- 集合的概念与表示方法
- 集合的运算:并、交、差、补等
- 二元运算的概念与性质
第二章:群论
- 群的定义与基本性质
- 子群与陪集
- 群的同态与同构
- 群的分类
第三章:环论
- 环的定义与基本性质
- 理想与商环
- 环的同态与同构
- 域与域的扩张
第四章:域论
- 域的定义与基本性质
- 有限域
- 代数闭域与伽罗华理论
- 分裂域与多项式的分解
第五章:线性代数
- 向量空间的概念与性质
- 线性变换与矩阵
- 行列式与特征值
- 内积空间与正交性
第六章:模论
- 模的概念与基本性质
- 子模与商模
- 生成元与循环模
- 线性方程组与模的应用
以上是一份可能的《复旦版高等代数笔记》的内容,具体的学习内容还需要根据教学安排进行调整。

如有需要,建议查阅复旦大学数学系相关教材或参考资料获取详细的学习内容。

数学专业书籍推荐

数学专业书籍推荐

1.课程号:课程名:高等代数-1课程英文名:Advanced Algebra-1学时:102 学分:5先修课程:高中数学考试方式:考试基本面向:数学数院各专业教材:《Linear Algebra》彭国华、李德琅,高等教育出版社,2006参考书:1。

《高等代数》北京大学数学系几何代数教研空编高等教育出版社 2.《高等代数》张禾瑞、郝锅新高等教育出版社3.《Linear Slgebra》B。

Jacob W.H.Freeman and Company 1990 课程简介:高等代数以研究线性方程组为出发点来讨论求解和解的结构和分类等问题,进而研究矩阵,行列式,线性空间,线性映射以及二次型的基本理论。

本课程分两个学期讲授。

高等代数-1的主要内容包括线性空间和线性映射,线性变换,欧氏空间,线性和双线性型。

2.课程号:课程名:高等代数-2课程英文名:Advanced Algebra-2学时:102 学分:5先修课程:高等代数-1考试方式:考试基本面向:数学学院各专业教材:《Linear Algebra》彭国华、李德琅,高等教育出版社,2006参考书:1.《高等代数》北京大学数学系几何代数教研空编高等教育出版社 2. L.W. Johnson, R.D. Riess and J.T. Arnold, Introduction to Linear Algebra (5th Edition), Prentice-Hall Inc. and China Machine Press, 2002 3. D.C. Lay, Linear Algebra and Its Applications (3rd Edition), Pearson Addison Wesley Asia Limited and Publishing House of Electronics Industry, 2003课程简介:一元与多元多项式、行列式、线性方程组,矩阵代数,二次型,线性空间,线性变换,矩阵法式,欧氏空间3.课程号:课程名:近世代数课程英文名:Abstract Algebra学时:68 学分:4先修课程:高等代数、数学分析考试方式:考试基本面向:数学学院教材:《近世代数基础》刘绍学编高等教育出版社第一版参考书:1.《近世代数引论》冯克勤、李尚志、查建国中国科学技术大学出版社 19882.《代数学引论》聂灵沼、丁石孙高等教育出版社 19883.《Basic Algebra(I)》N.Jacobso W.H.Freeman and Company 1985 课程简介:代数学是因解多项式方程而发展起来的,而方程解的结构往往是人们感兴趣的的问题,近世代数是研究具有良好代数结构的群,环域,模为主要内容的一门课程。

高等代数和线性代数

高等代数和线性代数
小学教育(数学)专业
《高等代数》
课程教学大纲
(课程代码:)
本课程教学大纲由数学与统计学院高等数学教学部讨论制订,数学与统计学院教学工作委员会审定,教务处审核批准。
一、课程基本信息
课程名称:高等代数课程代码:
课程类别:专业核心课程
适用专业:小学教育(数学)
课程修读性质:必修先修课程:中数学
学分:6学分学时:90学时
2
线性方程组和向量
1.消元法
课程目标2
重点:
1.线性相关性
2.矩阵的秩
3.线性方程组的解的判定
4.线性方程组解的结构
难点:
5.线性相关性
讲授法
24
2.向量空间
课程目标2
3.线性相关性
课程目标2
4.矩阵的秩
课程目标2
5.线性方程组的解的判定
课程目标2
6.线性方程组解的结构
课程目标2
3
矩阵
1.矩阵的运算
学时
1
行列式
1.排列
课程目标1
重点:
1.行列式的基本概念和性质
2.行列式的计算
3.行列式按一行(列)展开
难点:
5.行列式的计算
6.行列式按一行(列)展开
讲授法
18
2.低阶行列式
课程目标1
3.行列式的基本概念和性质
课程目标1
4.行列式的计算
课程目标1
5.行列式按一行(列)展开
课程目标1
6.克拉默法则
课程目标1
课程目标5
教学方法
本课程主要采用讲授法,结合多媒体课件提高讲课效率。
四、课程考核
(一)考核内容与考核方式
课程目标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复旦大学高等代数1998
1.α,β是复数.μ,ν∈1⨯n C ,μ≠0,≠ν0.证明: (I-H αμν)1-=I-H βμν,α=0时必β=0,0≠α时必≠β0且μνβαH =+--11 (15分)
2.A=⎪⎪⎪⎭
⎫ ⎝⎛20001ωωc b a .c b a ,,为实数,231-+-=ω.求100A (10分) 3.n 个实变量n x x x ,,,21 的二次型为2∑∑≤≤≤=+n j i j i n i i x x x
112,它是否正定?说明理由. (15分)
4.求A=⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛----0100110001010011的Jordan 标准型和全体特征子空间. 5.实阵H 是初等反射阵,即T I H μμ2-=,1⨯∈n R μ,1=μμT
,当且仅当H 正交相似于⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛-111 .证明之. (20分)
6.g f ,是互质的实多项式.n n R
M ⨯∈ ,)(M f E =,)(M g F =. (i)
证明:)()()(f N E N EF N ⊕=。

(ii) 由(i )证:若n n R A ⨯∈且A A =3,则有非奇异阵n n R T ⨯∈,使
=-AT T 1⎪⎪⎪⎭⎫ ⎝
⎛--0s r s I I ,)(A r r =. (20分)
记号:
n m R ⨯ 是n m ⨯实阵全体.n m C ⨯是n m ⨯复阵全体.T A ,H
A 分别是阵A 的转置和转置复共轭.)(A N 是阵A 的零空间,即齐次方程组0=Ax 的解空间.方阵A 的特征子空间是)(I A N λ-,其中λ是A 的某个特征值.I 是单位阵.21W W ⊕ 是子空间21,W W 的直接和.)(A r 是阵A 的秩.。

相关文档
最新文档