广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题20含答案
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题: (7) Word版含答案

高考数学三轮复习冲刺模拟试题07数列01一、选择题1 .已知函数5(4)4(6),()2(6).x a x x f x a x -⎧-+≤⎪=⎨⎪>⎩()0,1a a >≠ 数列{}n a 满足*()()n a f n n N =∈,且{}n a 是单调递增数列,则实数a 的取值范围是( )A .[)7,8B .()1,8C .()4,8D .()4,72 .已知等差数列{}na 中,a 7+a 9=16,S11=299,则a 12的值是 ( )A .15B .30C .31D .643 .数列}{n a 的前n 项和为)()1(,1*2N n a b n n S n n n n∈-=++=,则数列}{n b 的前50项的和为( )A .49B .50C .99D .1004 .已知正项等比数列{a n }满足:765=2a a a +,若存在两项,n m a a14a =,则nm 41+的最小值为 ( )A .23 B .35 C .625D .不存在5 .等差数列{a n }中,如果147=39a a a ++,369=27a a a ++,数列{a n }前9项的和为( )A .297B .144C .99D .666 .若∆ABC 的三个内角成等差数列,三边成等比数列,则∆ABC 是( )A .直角三角形B .等腰直角三角形C .等边三角形D .钝角三角形7 .已知正项等比数列{}n a 满足:7652a a a =+,若存在两项,m n a a14a =,则14m n+的最小值为 ( )A .32B .53C .256D .不存在8 .设n S 是等差数列{a n }的前n 项和,5283()S a a =+,则53a a 的值为 ( )A .16B .13C .35D .569 .已知等比数列{a n }的首项为1,若1234,2,a a a 成等差数列,则数列⎭⎬⎫⎩⎨⎧n a 1的前5项和为 ( ) A .1631 B .2 C .1633 D .3316二、填空题 10.正项等比数列中,若,则等于______.11.某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层均堆成正六边形,且逐层每边增加一个花盆(如图).设第n 层共有花盆的个数为)(n f ,则)(n f 的表达式为_____________________.12.数列{a n }中,若a 1=1,123n n a a +=+(n ≥1),则该数列的通项a n =________。
2018届广东省中山市高考数学三轮复习冲刺模拟试题(7)有答案

高考数学三轮复习冲刺模拟试题07数列01一、选择题1 .已知函数5(4)4(6),()2(6).x a x x f x a x -⎧-+≤⎪=⎨⎪>⎩()0,1a a >≠ 数列{}n a 满足*()()n a f n n N =∈,且{}n a 是单调递增数列,则实数a 的取值范围是 ( )A .[)7,8B .()1,8C .()4,8D .()4,72 .已知等差数列{}na 中,a 7+a 9=16,S11=299,则a 12的值是 ( )A .15B .30C .31D .64 3 .数列}{n a 的前n 项和为)()1(,1*2N n a b n n S n n n n∈-=++=,则数列}{n b 的前50项的和为 ( )A .49B .50C .99D .1004 .已知正项等比数列{a n }满足:765=2a a a +,若存在两项,n m a a使得14a =,则nm 41+的最小值为 ( )A .23B .35 C .625D .不存在 5 .等差数列{a n }中,如果147=39a a a ++,369=27a a a ++,数列{a n }前9项的和为( ) A .297 B .144 C .99D .66 6 .若∆ABC 的三个内角成等差数列,三边成等比数列,则∆ABC 是( )A .直角三角形B .等腰直角三角形C .等边三角形D .钝角三角形7 .已知正项等比数列{}n a 满足:7652a a a =+,若存在两项,m n a a14a =,则14m n+的最小值为 ( )A .32 B .53C .256D .不存在8 .设n S 是等差数列{a n }的前n 项和,5283()S a a =+,则53a a 的值为 ( )A .16B .13C .35D .569 .已知等比数列{a n }的首项为1,若1234,2,a a a 成等差数列,则数列⎭⎬⎫⎩⎨⎧n a 1的前5项和为 ( ) A .1631 B .2 C .1633 D .3316二、填空题10.正项等比数列中,若,则等于______.11.某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层均堆成正六边形,且逐层每边增加一个花盆(如图).设第n 层共有花盆的个数为)(n f ,则)(n f 的表达式为_____________________.12.数列{a n }中,若a 1=1,123n n a a +=+(n ≥1),则该数列的通项a n =________。
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题: (4) 含答案

个长度单位 12 D.向右平移 个长度单位 6
B.向右平移
8 .在 ABC 中,角 A, B, C 所对边长分别为 a, b, c ,若 a
2
b2 2c 2 ,则 cos C 的最小值为(
D.
)
A.
3 2
B.
2 2
C.
1 2
1 2
9 .在△ABC 中,a,b,c 分别是角 A,B,C 的对边,a=
( A. B. C. D. (
)
3 .在钝角△ABC 中,已知 AB=
3 , AC=1,∠B=30°,则△ABC 的面积是
C.
)
A.
3 2
B.
3 4
3 2
D.
3 4
4 .设函数 f(x)=Asin( x
)(A>0, >0,-
2 < < )的图象关于直线 x= 对称,且周期 2 2 3
高考数学三轮复习冲刺模拟试题 04 三角函数 01
一、选择题 1 .若 f ( x ) a sin x b (a,b 为常数)的最大值是 5,最小值是-1,则
A. 、
2 .边长为
2 3
B. 、
2 2 或 3 3
C. 、
3 2
)
a 的值为 b 3 D. 、 2
(
)
的三角形的最大角与最小角的和是(
值是(
)
A.
2 3
4 B. 3
6 .已知 tan(
4
) 3 5
sin 2 cos 2 1 ,则 的值为( 1 cos 2 2
B.
)
A.
5 6
C. 1
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题: (5)

高考数学三轮复习冲刺模拟试题05三角函数02三、解答题 1. 已知函数.(1)求函数图象的对称轴方程; (2)求的单调增区间.(3)当时,求函数的最大值,最小值.2. 如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知的横坐标分别为.(1)求的值;(2)求的值.3.设函数22()(sin cos )2cos(0)f x x x x ωωωω=++>的最小正周期为23π.(Ⅰ)求ω的值; (Ⅱ)求()f x 在区间-63ππ⎡⎤⎢⎥⎣⎦,上的值域; (Ⅲ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到,求()y g x =的单调增区间.4.在△ABC中,a,b,c 分别为角A,B,C 的对边,A 为锐角,已知向量→p =(1,3cos 2A ),→q =(2sin 2A,1-cos2A),且→p ∥→q .(1)若a 2-c 2=b 2-mbc,求实数m 的值;(2)若a=3,求△ABC 面积的最大值,以及面积最大是边b,c 的大小.5.设函数22()cos()2cos ,32xf x x x R π=++∈.(Ⅰ) 求()f x 的值域;(Ⅱ) 记△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c,若()1f B =,1b =,3c =求a 的值.6.已知向量⎪⎭⎫⎝⎛-=-=21,cos 3),1,(sin x x ,函数()b a x f +=)(·2- (1)求函数)(x f 的最小正周期T 及单调减区间(2)已知c b a ,,分别是△ABC 内角A,B,C 的对边,其中A 为锐角,4,32==c a 且1)(=A f ,求A,b 和△ABC 的面积S7.已知函数1sin cos )2sin sin 32()(2+⋅-=xx x x x f .(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.8. (本小题满分13分)在△ABC 中,A ,C 为锐角,角A ,B ,C 所对应的边分别为a ,b ,c ,且32=,=510cos A sinC 。
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题: (12)

高考数学三轮复习冲刺模拟试题12解析几何01一、选择题1.若直线1l :280ax y +-=与直线2l :(1)40x a y +++=平行 ,则a 的值为( )A .1B .1或2C .-2D .1或-22.倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x3.若抛物线y 2=a x 上恒有关于直线x +y-1=0对称的两点A ,B ,则a 的取值范围是( )A .(43-,0) B .(0,34) C .(0,43) D .403(,)(,)-∞+∞ 4.己知抛物线方程为2=2y px (>0p ),焦点为F ,O 是坐标原点, A 是抛物线上的一点,FA与x 轴正方向的夹角为60°,若OAF ∆3则p 的值为 ( )A .2B .3C .2或23D .225.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32.双曲线221x y -=的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A .22182x y += B .221126x y += C .221164x y += D .221205x y += 6.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,在双曲线右支上存在一点P 满足12PF PF ⊥且126PF F π∠=,那么双曲线的离心率是( )AB C 1D 17.设F 是抛物线)0(2:21>=p px y C 的焦点,点A 是抛物线与双曲线22222:by a x C -=1)0,0(>>b a 的一条渐近线的一个公共点,且x AF ⊥轴,则双曲线的离心率为( )A .2B .3C .25 D .5二、填空题 8.若⊙5:221=+y x O 与⊙)(20)(:222R m y m x O ∈=+-相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是____________________;9.已知双曲线)0,0(12222>>=-b a by a x 的左右焦点为21,F F ,P 为双曲线右支上的任意一点,若||||221PF PF 的最小值为8a,则双曲线的离心率的取值范围是_________. 10.已知抛物线的参数方程为⎩⎨⎧==ty t x 882(t 为参数),焦点为F ,准线为l ,P 为抛物线上一点,l PA ⊥,A 为垂足,如果直线AF 的斜率为3-,那么=PF _________ .参考答案一、选择题 1. 【答案】A【解析】直线1l 的方程为42ay x =-+,若1a =-,则两直线不平行,所以1a ≠-,要使两直线平行,则有282114a a -=≠=-+,由211a a =+,解得1a =或2a =-。
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(14)

高考数学三轮复习冲刺模拟试题14排列、组合、二项式定理一、选择题1 .如图,用四种不同的颜色给图中的P A B C D 、、、、五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共有( )种 ( )A .72B .86C .106D .1202 .现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 (A)152 (B)126 (C)90 (D)543 .试题)在1012x x ⎛⎫- ⎪⎝⎭的二项展开式中,4x 的系数为( )A .-120B .120C .-15D .154 .试题)92)21(xx -的展开式中的常数项为 ( )A .1B .3C .1621 D .8155 .二项式8312⎪⎪⎭⎫⎝⎛-x x 的展开式中的常数项是( )A .-28B .-7C .7D .286 . 2521(2)(1)x x+-的展开式的常数项是( ) ( )A .-3B .-2C .2D .37 .若51()ax x-(0)a >展开式中3x 的系数为581-,则a 的值为 ( )A .13B .19C .127D .18 .91x ⎫⎪⎭展开式中的常数项是( )A .36-B .36C .84-D .84二、填空题9 .(天津市六校2013届高三第二次联考数学理试题(WORD 版))在(1+x)2(1-x2)3的展开式中,含x 项的系数是 .参考答案一、选择题 1. A 2. B 3. C 4. C 5. C 6. D7. 【答案】A 二项展开式的通项为55521551()()(1)kkk k k k k k T C ax C a x x---+=-=-,由523k -=得1k =,所以14325(1)T C a x =-,即3x 的系数为45a -,即45581a -=-,所以4181a =,解得13a =,选A.8. 【答案】C解:展开式的通项公式为93921991()(1)kkkk k kk T C C x x --+=-=-,令9302k -=得3k =.所以常数项为3349(1)84T C =-=-,选C二、填空题 9. 4-。
【中小学资料】广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(1)

高考数学三轮复习冲刺模拟试题01集合一、选择题1 .已知集合,,则( )A .B .C .D .2 .设集合{1}A x x a x R =-<∈,,B={x|1<x<5,x ∈R},若A ⋂B=φ,则实数a 的取值范围是 ( )A .{a|0≤a ≤6}B .{a|a ≤2,或a ≥4}C .{a|a ≤0,或a ≥6}D .{a|2≤a ≤4}3 .已知集合2A={|log <1},B={x|0<<c}x x x ,若=A B B ,则c 的取值范围是 ()A .(0,1]B .[1,+)∞C .(0,2]D .[2,+)∞二、填空题4 .若不等式4+-2+1x m x ≥对一切非零实数x 均成立,记实数m 的取值范围为M .已知集合{}=A x x M ∈,集合{}2=--6<0B x R x x ∈,则集合=A B ___________.5 .设集合是A={32|()=83+6a f x x ax x -是(0,+∞)上的增函数},5={|=,[-1,3]}+2B y y x x ∈,则()R A B ð= ;6 .试题)己知集合222{|28},{|240}x x A x B x x mx -=<=+-<, 若{|11},{|43}A B x x A B x x =-<<=-<<,则实数m 等于__________ .7 .设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈,若∅=B A ,则实数a 取值范围是___________.三、解答题8 .已知={()|1},B={()|3,0x 3}2A x,y y =-x +mx -x,y x+y =≤≤,若AB ⋂是单元素集,求实数m 的取值范围.参考答案一、选择题1. 【答案】B【解析】{(3)0}{03}P x x x x x =-<=<<,={2}{22}Q x x x x <=-<<,所以{02}(0,2)P Q x x =<<=, 选B. 2. 【答案】C【解析】{1}{11}A x x a x R x a x a =-<∈==-<<+,,因为=A B φ,所以有15a -≥或11a +≤,即6a ≥或0a ≤,选C.3. 【答案】D【解析】2{log 1}{01}A x x x x =<=<<.因为AB B =,所以A B ⊆.所以1c ≥,即[1,)+∞,选B.二、填空题4. {}-1<3x x ≤;5. 【答案】(,1)(4,)-∞+∞【解析】2()=2466f 'x x a x -+,要使函数在(0,)+∞上是增函数,则2()=24660f 'x x ax -+>恒成立,即14a x x <+,因为144x x +≥=,所以4a ≤,即集合{4}A a a =≤.集合5={|=,[-1,3]}+2B y y x x ∈{15}y x =≤≤,所以{14}A B x x ⋂=≤≤,所以()=R A B ð(,1)(4,)-∞+∞.6. 【答案】32222{|28}{|230}{13}x x A x x x x x x -=<=--<=-<<,因为{|11},{|4A B x x A B x x =-<<=-<<,所以由数轴可知{|41}B x x =-<<,即4,1-是方程2240x mx +-=的两个根,所以4123m -+=-=-,解得32m =。
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(8)

高考数学三轮复习冲刺模拟试题08数列02三、解答题1.已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M 在 直线上,且. (1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.2.设等差数列的首项及公差d 都为整数,前n 项和为S n . (1)若,求数列的通项公式;(2)若求所有可能的数列的通项公式.3.设等比数列{}n a 的前n 项和为n S ,已知122()n n a S n N *+=+∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列, 设数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T ,证明:1516nT <.4.已知数列{a n }中,a 1=1,若2a n+1-a n =)2n )(1n (n 2-n ++,b n =a n -)1n (n 1+(1)求证:{ b n }为等比数列,并求出{a n }的通项公式; (2)若C n =nb n +)1n (n 1+,且其前n 项和为T n ,求证:T n <3.5.已知数列{}n a 的前n 项和11()22n n n S a -=--+(n 为正整数)(Ⅰ)令2nn n b a =,求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)令121,n n n n n C a T C C C n+==+++,试比较n T 与521nn +的大小,并予以证明6.已知数列}{n a 满足()2,34,3,1*1121≥∈-===-+n N n a a a a a n n n ,(1)证明:数列}{1n n a a -+是等比数列,并求出}{n a 的通项公式 (2)设数列}{n b 的前n 项和为n S ,且对任意*N n ∈,有1222211+=+++n na b a ba b nn 成立,求n S 7.设数列{}na的前n 项和为n S .已知11a =,131n n a S +=+,n *∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n T 为数列{}n na 的前n 项和,求n T .8.设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n=1,2,3,…(1)求数列{a n }的通项公式;(4分)(2)若数列{b n }满足b 1=1,且b 1+n =b n +a n ,求数列{b n }的通项公式;(6分) (3)设C n =n (3- b n ),求数列{ C n }的前n 项和T n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
高考数学三轮复习冲刺模拟试题20
复数
一、选择题
1 .
在复平面内,复数21ii对应的点的坐标为( )
A.、(-1,1) B.、(l,1) C.、(1,-l) D.、(-1,-l)
2 .
i
是虚数单位,复数31ii= ( )
A.i21 B.12i C.2i D.2i
3 .
i是虚数单位,i33i= ( )
A.i123-41 B.i12341 C.i6321 D.
i63-
2
1
4 .
已知i2i1z,则复数z=( )
A. -1+3i
B.1-3i C.3+i D.3-i
5 .
i是虚数单位,复数iiz37= ( )
A.i2 B.i2 C.i2 D.
i2
6 .
复数10i12i ( )
A.42i B. 42i C.24i D.
24i
- 2 -
7 .
i是虚数单位,复数3+22-3ii等于 ( )
A.i B.-i C.12-13i D.12+13i
8 .
复数ii)(43212的值是 ( )
A.-1 B.1 C.i D.ii
9 .试题)
复数22 ()1ii(其中i为虚数单位)的虚部等于 ( )
A.i B.1 C.1 D.
0
10.
计算 242(1)12iii ( )
A.0 B.2 C.-4i D.4i
11.
复数2i2i ( )
A.34i55 B.34i55 C.41i5 D.
3
1i5
12.
复数iii111 ( )
A.i B. C. i1 D.
i1
- 3 -
二、填空题
13
.
设为虚数单位,则
______.
- 4 -
参考答案
一、选择题
1.
A
2.
C
3.
B
4.
B
5.
B
6.
A
7.
【答案】A
【解析】3+223ii(3+2)(23)13=23(23)13iiiiii(),选A.
8.
【答案】A
【解析】22(12)144341343434iiiiiii,选A.
9.
【答案】B22222 22()12(1)iiiiiii,所以虚部为1,选B.
10.
【答案】C
解:242(42)(12)10(1)22412(12)(12)5iiiiiiiiiii,选C.
11.
【答案】A
解:2(2)(2)34342(2)(2)555iiiiiiii,选A.
12.
【答案】D
解:2211(1)1221(1)(1)12iiiiiiiiiiii,选D.
二、填空题
13.
【答案】i【解析】因为44142430nnnniiii。所以
262
11iiiiii