线线平行、线面平行、面面平行的判定方法(本人原创)
立体几何常考定理的总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。
.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。
空间中的平行(经典)

空间中的平行一、知识梳理<一>线线平行与线面平行1.线线平行:定义:空间中两直线共面且没有交点,则两直线平行.证明两直线平行的主要方法是:①三角形中位线平行并等于底边的一半;②平行四边形两组对边分别平行;③梯形的一组对边平行;④直线平行的传递性:若a//b,b//c,则a//c.2.线面平行定义:若直线和平面没有交点,则称直线和平面平行.判定1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(只需在平面内找一条直线和平面外的直线平行就可以)////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭判定2:两平面平行,一平面上的任一条直线与另一个平面平行.a a a a αβαββααβ⇒⇒⊂⊂⎫⎫⎬⎬⎭⎭或线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行.<二>面面平行1.定义:若两个平面没有交点,则两个平面平行2.判断:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.,,a b a b A a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭,,,a b a b A a a b b a b ααββ⊂⎫⎪=⎪⇒⎬''⎪⎪''⊂⎭判定定理的推论: 一个平面内的两条相交直线与另一个平面上的两条直线分别平行,两平面平行.3.两平面平行的性质: 性质Ⅰ:如果一个平面与两平行平面都相交,那么它们的交线平行.a ab b αβαγβγ=⇒=⎫⎪⎬⎪⎭性质Ⅱ:平行于同一平面的两平面平行;性质Ⅲ:夹在两平行平面间的平行线段相等;,,A C AC BD B D AB CD αβαβ∈⇒=∈⎫⎪⎪⎬⎪⎪⎭二、典例精析【例1】如图所示的几何体中,△ABC 是任意三角形,AE ∥CD ,且AE =AB =2a ,CD =a ,F 为BE 的中点.求证:DF ∥平面ABC .【练习】如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点.求证:MN ∥平面P AD .【例2】已知正方形ABCD 所在的平面和正方形ABEF 所在的平面相交与AB ,M 、N 分别是AC 、BF 上的中点.求证:MN//平面BCE .【练习】如图,在四棱锥P-ABCD 中,底面ABCD 为矩形,E 为PD 的上一点,且PE=2ED .若F 为PE 的中点.求证:BF ∥平面AEC .【例3】如图,四棱锥P-ABCD 中,底面ABCD 为梯形,AB ∥DC ,AB ⊥BC .AB =BC=22AD ,点E 在棱PB 上,且PE=2EB .求证:PD ∥平面EAC .【练习】如图,正四棱锥P-ABCD 中,PA=AB ,点M ,N 分别在PA ,BD 上,且31==BD BN PA PM .求证:MN ∥平面PBC .2【例4】a ,b ,c 为三条不重合的直线,α,β,γ为三个不重合平面,现给出六个命题①a ∥c ,b ∥c ⇒a ∥b ②a ∥γ ,b ∥γ ⇒a ∥b ③α∥c ,β∥c ⇒α∥β④ α∥γ ,β∥γ ⇒α∥β ⑤α∥c ,a ∥c ⇒α∥a ⑥α∥γ ,a ∥γ ⇒α∥a其中正确的命题是( )A.①②③⑥ B .①④⑤ C .①④ D .①④⑥【练习】下面六个命题中正确命题的个数是( )①如果a 、b 是两条直线,b a //,那么a 平行于经过b 的任何一个平面;②如果直线a 和平面α满足a //α,那么a 与平面α内的任何一条直线平行;③如果直线a //α,b //α,那么b a //;④如果直线a 、b 和平面α满足b a //,a //α,α⊄b ,那么b //α;⑤如果直线a 与平面α上的无数条直线平行,则a //α;⑥如果平面α的同侧有两点A 、B 到平面α的距离相等,则AB //α.A. 0B. 1C. 2D. 3【例5】一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A .异面B .相交C .平行D .不能确定【练习】直线a //平面α,α内有n 条直线交于一点,这n 条直线直线中与直线a 平行的直线( )A.至少有一条 B .至多有一条 C .有且只有一条 D .没有三、课后练习1.已知直线a ∥平面α,P α∈,那么过点P 且平行于α的直线( )A .只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内 2.若夹在两个平面间的三条平行线段相等,则这两个平面位置关系是( )A .平行B .相交C .相交或平行D .以上答案都不对3.下列结论中正确的是( ) ①α∥β,β∥γ,则α∥γ;②过平面外一条直线有且只有一个平面与已知平面平行;③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行;④如果一条直线与两个平行平面中一个相交,那么它与另一个必相交.A .①②③B .②③④C .①③④D .①②③④4.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( )A .过A 且平行于a 和b 的平面可能不存在B .过A 有且只有一个平面平行于a 和bC .过A 至少有一个平面平行于a 和bD .过A 有无数个平面平行于a 和b5.如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系是( )A .平行B .相交C .平行或相交D .AB ⊂α6.如图所示,在棱长为a 的正方体1111ABCD A BC D -中,E ,F ,P ,Q 分别是BC ,11C D ,1AD ,BD 的中点.(1)求证:PQ //平面11DCC D ;(2)在DC 上找一点H ,使EFH //平面11BB D D .7.如图,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD .8.如图所示,已知三棱锥BCD A -被一平面所截,截面为平行四边形EFGH ,求证:(1)//EF 平面BCD ;(2)CD EF //.。
直线、平面平行的判定与性质

直线、平面平行的判定与性质重点难点重点:掌握线线平行、线面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题.难点:线面平行与面面平行在判定中的相互转化使用.方法突破线面平行的判定定理的实质是:对于平面外的一条直线,只需在平面内找出一条直线与这条直线平行,就可断定这条直线必与这个平面平行. 线面平行的性质定理的实质是:已知线面平行,过已知直线作一平面与已知平面相交,其交线必与已知直线平行. 两个平面平行问题的判定与证明,是将其转化为一个平面内的直线与另一个平面平行的问题,即“线面平行,则面面平行”,必须注意这里的“线面”是指一个平面内的两条相交直线和另一个平面.1. 判定线线平行的三种方法(1)公理4:证明两直线同时平行于第三条直线.(2)线面平行的性质定理:如果一条直线和一个平面平行,且经过这条直线的平面和这个平面相交,那么这条直线与交线平行.推理模式:l∥α,l∥β,α∩β=m?圯l∥m.(3)平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.推理模式:α∥β,γ∩α=a,γ∩β=b?圯a∥b.2. 判定线面平行的三种方法(1)根据线面平行的判定定理:如果不在某个平面内的一条直线与该平面内的一条直线平行,那么这条直线与这个平面平行.推理模式:l?埭α,m?奂α,l∥m?圯l∥α.使用定理时,一定要说明“平面外的一条直线与平面内的一条直线平行”,若不注明该条件,则证明过程就不完备.(2)面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:α∥β,a?奂α?圯a∥β.3. 判定面面平行的三种方法(1)根据面面平行的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式:a?奂β,b?奂β,a∩b=P,a∥α,b∥α?圯β∥α.(2)平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:a∩b=P,a?奂α,b?奂α,a′∩b′=P′,a′?奂β,b′?奂β,a∥a′,b∥b′?圯α∥β.(3)向量法:如果两个不同平面的法向量相互平行,那么就可以判定两个平面平行.典例精讲一、线线平行的判定■已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.思索若证四边形是平行四边形,只需证一组对边相等且平行或两组对边分别平行,选其一证出即可. 利用平行公理证明两条直线平行的思路就是要找准一条直线与这两条直线都平行的直线来传递.破解如图1,连结BD,因为EH是△ABD的中位线,所以EH∥BD,EH=■BD. 又因为FG是△CBD的中位线,所以FG∥BD,FG=■BD. 根据公理4,FG∥EH且FG=EH,所以四边形EFGH是平行四边形.■图1二、线面平行的判定■如图2,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=■,AF=1,M是线段EF的中点. 求证:AM ∥平面BDE.■图2思索设AC与BD相交于G,连结EG,证明四边形AGEM 是平行四边形,可得EG∥AM,利用线面平行的判定定理可证.破解设AC与BD相交于G,连结EG,则G是AC的中点. 因为M是线段EF的中点,ACEF是矩形,所以EM∥AG,EM=AG,所以四边形AGEM是平行四边形,所以EG∥AM. 因为AM不在平面BDE内,EG在平面BDE内,所以AM∥平面BDE.三、面面平行的判定■如图3,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB. 过A作AF⊥SB,垂足为F,点E,G分别是侧棱SA,SC的中点. 求证:平面EFG∥平面ABC.■图3思索证明平面EFG∥平面ABC,需要在平面EFG内找到两条相交直线与平面ABC平行,而线面平行的判定定理告诉我们,要证明线面平行,需要转化为证明线线平行. 因此,证明该题的关键是在平面内最为恰当的位置找出一条直线与该直线平行.破解(1)因为E,G分别是侧棱SA,SC的中点,所以EG∥AC.因为AC?奂平面ABC,EG?埭平面ABC,所以EG∥平面ABC. ?摇因为AS=AB,AF⊥SB,所以F为SB的中点,所以EF∥AB.因为AB?奂平面ABC,EF?埭平面ABC,所以EF∥平面ABC.因为EF∩EG=E,EF,EG?奂平面EFG,所以平面EFG∥平面ABC.四、线线平行、线面平行、面面平行的转化■如图4,已知点S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为三角形SAB上的高,D,E,F分别是AC,BC,SC的中点,试判断SG与平面DEF的位置关系,并给予证明.■图4思索一可判断SG∥平面DEF,要证明结论成立,只需证明SG与平面DEF内的一条直线平行,观察图形可以看出,转化成线线平行的证明.破解一连结CG交DE于点H,因为DE是△ABC的中位线,所以DE∥AB. 在△ACG中,D是AC的中点,且DH∥AG,所以H为CG的中点,所以FH是△SCG的中位线,所以FH ∥SG. 又SG?埭面DEF,FH?奂面DEF,所以SG∥平面DEF. 思索二要证明SG∥平面DEF,只需证明平面SAB∥平面DEF,从而得到线面平行.破解二因为EF是△SBC的中位线,所以EF∥SB,又EF?埭面SAB,SB?奂面SAB,所以EF∥平面SAB. 同理,DF∥平面SAB.因为EF∩DF=F,所以可得面SAB∥面DEF. 又SG?奂面SAB,所以SG∥平面DEF.证法一直接应用线面平行的判定定理来证明;证法二是通过线线平行证面面平行,再由面面平行证线面平行. 在本题的证明过程中实现了线线平行、线面平行、面面平行的转化.变式练习1. 如图5,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点. 求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.■图52. 如图6,在三棱锥S-ABC中,M,N,P分别为棱SA,SB,SC的中点,求证:平面MNP∥平面ABC.■图63. 如图7,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点,求证:AC1∥平面CDB1.参考答案1. (1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC. 因为AD?奂平面ABC,所以CC1⊥AD. 因为AD⊥DE,且CC1,DE?奂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1. 又因为AD?奂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1. 因为CC1⊥平面A1B1C1,且A1F?奂平面A1B1C1,所以CC1⊥A1F. 因为CC1,?摇B1C1?奂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1. 由(1)知,AD⊥平面BCC1B1,所以A1F∥AD. 又因为AD?奂平面ADE,?摇A1F?埭平面ADE,所以直线A1F∥平面ADE2. 因为M,N,P分别为棱SA,SB,SC的中点,所以MN∥AB,PN∥BC. 因为MN?埭平面ABC,AB?奂平面ABC,PN?埭平面ABC,BC?奂平面ABC,所以MN∥平面ABC,PN∥平面ABC. 因为MN∩PN=N,MN,PN?奂平面MPN. 所以平面MNP∥平面ABC.3. 证法一(利用线面平行的判定定理):设C1B与CB1的交点为E,由已知得E为C1B的中点. 连结AC1,DE,则OE■■AC1. 又DE?奂平面CDB1,AC1?埭平面CDB1,所以AC1∥平面CDB1.证法二(利用共线向量定理证明线面平行):因为直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,所以AC,BC,CC1两两垂直,以AC,BC,CC1为x,y,z轴建立空间直角坐标系,由已知可得C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D■,2,0. 设CB1与C1B的交点为E,则E(0,2,2),因为■=-■,0,2,■=(-3,0,4),所以■=■■,所以■∥■. 因为DE?奂平面CDB1,AC1?埭平面CDB1,所以AC1∥平面CDB1.证法三(利用法向量证明线面平行):因为直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,所以AC,BC,CC1两两垂直,以■,■,■为正交基底,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B■(0,4,4),D■,2,0,故■=(-3,0,4),■=(0,4,4),■=■,2,0. 设平面CDB1的法向量为n=(x,y,z),则4y+4z=0,■x+2y=0,故有n=(4,-3,3),所以■?n=0. 因此■⊥n. 又AC1不在平面CDB1内,从而有AC1∥平面CDB1. ■。
线面、面面平行的判定与性质

线面、面面平行的判定与性质一、线线、线面、面面平行间的相互转化(1)平行公理:平行于同一直线的两直线平行(线线平行的传递性)(2)线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行(线线平行→线面平行)(3)面面平行的判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行(线面平行→面面平行)(4)线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行(线面平行→线线平行)(5)面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面(面面平行→线面平行)(6)面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(面面平行→线线平行)三、证明线线平行的方法:(1)线线平行的传递性; (2)三角形中位线; (3)平行四边形对边平行; (4)三角形中对应边成比例; (5)线面平行的性质定理. 三、典型例题例:已知四棱锥ABCD P ,E 是PD 的中点.证明:ACE PB 面//E P DBAC变式1:已知四棱锥ABCD P -,E 是AD 的中点,F 是PB 的中点.证明:ACE PB 面//.变式2:已知四棱锥ABCD P -,BC EF //,EFHG 平面与ABCD 平面相交于HG ,PB HI //,证明:PBC IG 面//.四、巩固训练1.三棱柱111ABC A B C -中,D 为AB 边的中点.求证:1AC ∥平面1CDB .PD BACE FEPDBACF GHIBACA 1B 1C 1D2.【2014高考北京卷 节选】如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.,求证:1//C F 平面ABE .3.【2013年辽宁卷 节选】如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点, Q 为PA 的中点,C 是圆O 上的点,G 为AOC ∆的重心.求证:PBC QG 平面//4.【2013年陕西卷】如图,四棱柱1111D C B A ABCD -的底面ABCD 是正方形,O 是底面中心,O A 1⊥底面ABCD ,211==B AA AB .(1)证明:B CD BD A 11//平面平面;(2)求三棱柱111D B A ABD -的体积.C 1B 1A 1F ECBA5.【2014高考陕西卷】四面体ABCD 及其三视图如图所示,平行于棱BC AD ,的平面分别交四面 体的棱CA DC BD AB ,,,于点H G F E ,,,.(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.221俯视图左视图 主视图ABCDEFGH6. 【珠海市2015届高三9月摸底考试】如图的多面体中,四边形11ABB A 和11ACC A 都为矩形. (1)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ;(2)是否存在过1A C 的平面α,使得直线1//BC α平行,若存在请作出平面α并证明,若不存在请说明理由.1AA。
立体几何线面面面平行的证明

立体几何线面面面平行的证明线面、面面平行是立体几何中重要的概念,在几何证明中经常会遇到。
下面将分别介绍线面平行和面面平行的证明。
一、线面平行的证明:线面平行是指一条直线与其中一平面上的其他线段或射线都平行。
下面给出线面平行的证明。
设直线l与平面α相交于点A,我们要证明直线l与平面上任意一条线段或射线都平行。
设平面上有一条线段BC,先证明直线l与线段BC平行。
假设直线l与线段BC的其中一点D相交,连接线段AD和CD。
现在需要证明线段AD与线段BC平行。
根据平面几何的基本知识,在平面上,如果三个点在同一条直线上,那么该直线上的任意两点连线也位于平面上。
故点A、D、C三点在同一条直线上,那么线段AD也位于平面α上。
又因为直线l与线段BC和AD的交点分别为D和A,根据定理“若两条直线平行,则与这两条直线分别相交的两个平行线交点连线也平行”。
所以,直线l与线段AD平行。
同理,可以证明直线l与线段CD平行。
综上所述,直线l与线段BC平行。
接下来证明直线l与平面上的任意一条射线EF平行。
同样以与射线EF有相交点E的直线l为基准,连接射线BE和EF。
然后使用相同的证明方法,即证明射线BE与EF平行。
通过以上证明,我们可以得出结论:直线l与平面α上的任意一条线段或射线都平行。
即证明了线面平行。
二、面面平行的证明:面面平行是指两个平面平行,这在立体几何中也有重要应用。
下面给出面面平行的证明。
设平面α与平面β相交于一条直线l,我们要证明平面α与平面β上的任意一条线段或射线都平行。
以直线l为基准,设平面α上有一条线段AB,我们需要证明线段AB 与平面β平行。
作直线AB的平行线于平面β相交于点C。
现在需要证明直线BC与线段AB平行。
根据平面几何的基本知识,若两条直线平行,那么有一个点在一条直线上,则另一条直线上的点的连线也在同一平面上。
因此点C在平面β上,那么连接线段BC位于平面β上。
又因为平面α与平面β分别与直线AB和BC相交于A和C两点,根据定理“若两个平面分别与一条直线相交,那么它们的交线上的任意两点连线也在这两个平面的交线上”。
面面平行的判定公式

面面平行的判定公式在我们的数学世界里,面面平行可是一个相当有趣的概念,特别是它的判定公式,就像是一把神奇的钥匙,能帮我们打开几何世界的大门。
咱们先来说说什么是面面平行。
简单来讲,两个平面如果没有公共点,那就叫面面平行。
想象一下,家里的地板和天花板,它们就是平行的两个面,永远不会相交。
那怎么来判定两个平面是不是平行呢?这就轮到我们的判定公式登场啦!判定公式一:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
比如说,在一个教室里,黑板所在的平面和对面墙所在的平面。
假设黑板平面内有两条相交的直线,一条是黑板的上边沿,另一条是黑板的左边沿,这两条直线都和对面墙平面内对应的两条直线平行,那黑板平面和对面墙平面就是平行的。
我记得有一次给学生们讲这个知识点的时候,有个调皮的小家伙就问我:“老师,那要是这两条直线不相交呢?”我笑着回答他:“那可不行哦,如果这两条直线不相交,就没法确定一个平面啦,就像你在操场上随便画两条不相交的直线,它们可不能确定一个固定的区域,是不是?”小家伙恍然大悟地点点头。
判定公式二:如果两个平面都垂直于同一条直线,那么这两个平面平行。
这就好比两根笔直的电线杆,它们都垂直于地面,那它们所在的平面也就和地面平行啦。
还有啊,在实际解题中,可不能死记硬背这些公式,得灵活运用。
有时候题目会故意给你设置一些小陷阱,就看你能不能识破啦。
比如说,有一道题是这样的:一个平面内有三条直线,其中两条平行,另一条与这两条相交,问这两个平面是否平行。
这时候就得仔细分析了,别一看有平行的直线就匆忙下结论。
学习面面平行的判定公式,就像是在搭建一座知识的大厦,每一块砖头都要放对位置,才能让这座大厦稳稳当当。
希望同学们在面对这些知识的时候,都能像勇敢的探险家,不怕困难,勇往直前,把面面平行的判定公式掌握得牢牢的!这样在数学的海洋里,就能更加自由自在地遨游啦!。
数学线面平行的判定定理

数学线面平行的判定定理
数学中,判断一个线和一个面是否平行存在定理。
这个定理称为线面平行判定定理。
线面平行判定定理可以通过以下两种方式表示:
1. 如果一条直线与一个平面在同一平面内且这条直线与这个平面上的任意一条直线都平行,则这条直线与这个平面平行。
2. 如果一条直线与一个平面垂直相交的直线与这个平面的另一条直线平行,则这条直线与这个平面平行。
简单来说,如果一条直线与平面内的所有直线都平行,那么这条直线与这个平面是平行的;或者如果一条直线与平面内的一条垂直直线与平面的另一条直线平行,那么这条直线也与这个平面平行。
这个定理在几何学和数学中都有着广泛的应用,它可以用来判断两个物体之间的关系,例如判断两个平面是否平行、判断一条直线是否与一个平面平行、或者判断两个线段是否平行等等。
(完整版)立体几何中有关平行、垂直常用的判定方法

有关平行、垂直问题常见判定方法一、 线线平行的判定1、 公理4:平行于同一直线的另两直线互相平行. a ∥b ,b ∥c ==> a ∥c2、 三角形中位线平行于底边;平行四边形对边平行;棱柱侧棱互相平行.3、 线面平行的性质:一条直线与一个平面平行,过该直线的平面与已知平面相交,该直线与交线平行.a ∥α,a ⊂β,αβ=b ==> a ∥bβαba4、 面面平行的性质:两个平面平行,同时与第三个平面相交,所得的两条交线互相平行. α∥β,γα=a ,γβ=b ==> a ∥bγβαb a5、 平行于同一平面的两直线互相平行.a ⊥α,b ⊥α ==> a ∥bαba二、 线面平行的判定1、 线面平行的判定定理:若平面外的一条直线与此平面内的一条直线平行,则该直线与此c b a平面平行.a ⊄α,b ⊂α,a ∥b ==> a ∥ααba2、 若两平面平行,则一个平面内的任一直线与另一平面平行.α∥β,a ⊂α ==> a ∥βαβa3、 α⊥β,a ⊥β,a ⊄α ==> a ∥αβαa4、 a ⊥b ,b ⊥α,a ⊄α ==> a ∥ααab三、 面面平行的判定1、 面面平行的判定定理:若一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.a ⊂α,b ⊂α,a b =O ,a ∥β,b ∥β ==> α∥βO αβa b αβa2、 垂直于同一直线的两个平面互相平行.a ⊥α,a ⊥β ==> α∥β (见上图)3、 平行于同一平面的两个平面互相平行.α∥γ,β∥γ ==> α∥βαγβ4、 柱体的上下底面互相平行四、 线线垂直1、线线垂直的定义:a 与b 所成的角为直角.2、线面垂直的定义:若一条直线与一个平面垂直,则该直线与平面内的任一直线都垂直. a ⊥α,b ⊂α ==> a ⊥bαab3、a ⊥α,b ∥α ==> a ⊥bαab4、三垂直定理及其逆定理l ⊥α( H 为垂足),a ⊂α,HM 是斜线PM 在平面α内的射影三垂线定理(垂影则垂斜):a ⊥HM ==> a ⊥PM三垂线定理的逆定理(垂斜则垂影):a ⊥PM ==> a ⊥HMlM H Pαa5、a ⊥α,b ⊥β,α⊥β ==> a ⊥bβαab五、线面垂直的判定1、线面垂直的判定定理:若一直线和平面内的两相交直线都垂直,则该直线与此平面垂直. a ⊂α,b ⊂α,a b =O , l ⊥a ,l ⊥b ==> l ⊥αlO αa b2、a∥b,a⊥α ==> b⊥ααb a3、直棱柱的侧棱与底面垂直4、一条直线垂直于两平行平面中的一个平面,也垂直于另一个平面α∥β,a⊥α ==> a⊥βαβa5、面面垂直性质:两平面垂直,一个平面内垂直于它们交线的直线垂直于另一个平面.α⊥β,αβ=l,a⊂α,a⊥l ==> a⊥βlβαa5、 两相交平面同时垂直于第三个平面,则它们的交线也与第三个平面垂直.αβ=l ,α⊥γ,β⊥γ ==> l ⊥γl γβα六、面面垂直的判定1、定义:两平面相交所成二面角为直二面角.2、判定定理:若一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.a ⊥β,a ⊂α ==> α⊥βl βαa2、a ∥α,a ⊥β ==> α⊥ββαa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*
在空间“线线平行、线面平行、面面平行”的判定方法一、两条直线平行的判定方法
(1)在同一平面内没有公共点的两条直线平行(定义)
(2)先证在同一平面内,再用平面几何中的平行线的判定理或者相关图形的性质进行证明。
如①在同一平面内,两条直线被第三条直线所截,如果同位角或
内错角相等,或同旁内角互补,则两直线平行。
②三角形、梯形中位线定理。
③平行四边形、矩形、菱形、正方形性质(对边平行)。
④在同一个平面内,同垂直于一条直线的两条直线平行(注意:
此结论在空间不适合)。
(3)(线面平行的性质)如果一条直线和一个平面平行,则经过这条直线的一个平面与这个平面相交,那么这条直线和交线平行。
(4)如果两直线都平行于第三条直线,那么这两条直线互相平行(平行的传递性)。
(5)(面面平行的性质)如果两个平行平面分别和第三个平面相交,则它们的交线平行。
(6)(线面垂直的性质之一)如果两条直线垂直于同一个平面,那么这两条直线平行。
(7)用向量证明。
二、一条直线和一个平面平行的判定
(1)如果一直线和一平面没有公共点,那么这条直线就和这个平面平行(定义)
(2)平面外的一条直线,如果和这个平面内的一条直线平行,那么这条直线就和这个平面平行(线面平行的判定定理)。
(3)如果两个平面相互平行,那么在一个平面内的任何一条直线都平行于另一个平面.
(线面平行的性质)。
(4)向量法。
三、两个平面平行的判定
(1)如果两个平面没有公共点,那么这两个平面互相平行(定义)(2)如果一个平面内的两条相交直线分别和另一个平面平行,那么这两个平面平行。
(3)如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
(4)如果两个平面分别平行于第三个平面,那么这两个平面平行。
(5)如果两个平面垂直于同一条直线,那么这两个平面平行。
在空间“线线垂直、线面垂直、面面垂直”的判定方法一、两条直线垂直的判定
(1)在同一个明面内证明两条直线垂直可按照平面几何的有关定理和方法判定。
①证明两条直线形成的角等于90°
②正方形、矩形性质(四个角都是直角);③正方形、菱形对角
线互相垂直;
④勾股定理逆定理;⑤“直角三角形斜边上的中线等于斜边的
一半”的逆定理。
⑥证明一个三角形两个内角和为90°,则另一个内角为90°。
⑦证明一个三角形和一个直角三角形全等,利用全等三角形对
应角相等证明直角。
⑧证明两个邻补角相等且和为180°,则每一个角为90°
(此两个角有公共定点,有一条公共边,非公共边互为反向延
长线)。
⑨等腰三角形性质(三线合一)。
⑩直径所对的圆周角是直角。
(2)如果一条直线垂直于一个平面,那么它垂直于这个平面内的任何一条直线。
(3)如果平面内的一条直线和此平面的一条斜线在平面内的射影垂直,那么它也和这条斜线垂直(三垂线定理)
(4)如果平面内的一条直线和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直(三垂线定理的逆定理)。
(5)如果一条直线垂直于两条平行线中的一条直线,那么它也垂直于另一条直线
(此定理在平面和空间都适合)。
(6)证明空间两条异面直线相互垂直,可证明这两条直线所成的角为90°。
(7)向量法。
二、一直线和一个平面垂直的判定
(1)如果一条直线和一个平面内的任何一条直线都垂直,那么这条直线就垂直于这个平面。
(2)如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。
(3)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面。
(5)如果两个平面互相垂直,那么在一个平面内垂直于交线的直线必垂直于另一个平面
(面面垂直的性质定理)。
(6)如果两个相交平面α和β都垂直于平面γ,那么它们的交线也垂直于平面γ(不能当定理引用)。
(7)向量法。
三、两平面垂直的判定
(1)如果两相交平面所成的二面角为直二面角,那么这两个平面互相垂直(定义)。
(2)
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*
(3) 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直
(线面垂直性质定理)。
四、 有关直线与平面位置关系中的几个性质定理
(1) 夹在两个平行平面之间平行线段的长相等。
(2) 两平行平面间的距离处处相等。
(3) 两直线如果被三个平行平面所截,那么所截得下对应线段成比
例。
(4) 如果两个角的两边分别平行且方向相同,那么这两个角相等。
五、 要点分析
(1) 线线、线面、面面平行关系的转化
////1////
−−−−−→线面判定面面判定公理4
平面几何定理
线面性质
面面//性质2
线线//线面面面平行
(2)线线、线面、面面垂直关系的转化
创作编号:
GB8878185555334563BT9125XW
创作者: 凤呜大王*。